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This lecture note is based on the course "Elementary Algebraic Topology" which I taught in the
fall 2023. For the moment, there are still some parts to be completed.

This course is an elementary introduction to Algebraic Topology for those who first meets
this subject.

I would like to thank all students taking this course for their participation and all the valuable
discussions.
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Chapter 1

Introduction

In this chapter, we review briefly some history on general topology and algebraic topology. More
details can be found in [2]| and the following two websites

mathshistory.st-andrews.ac.uk
analysis-situs.math.cnrs.fr

1.1 Some interesting problems

We start by discussing some interesting problems to have an idea of what a topological problem
looks like.

The Seven Bridges of Konigsberg

The starting point of topology is Euler’s study on the famous "The Seven Bridges Problem". Here
(See Figure|l.1.1)) is a map of an old town called Koningsberg which was the capital of the east
Prussia in east Europe. It is now called Kaliningrad, a city of Russia.

KONINGSBERGA
e/ ¥

Figure 1.1.1: Map of Kéningsberg (from Wikipedia)

The city was divided into four parts by the Pregel River. The question asked by Euler was:
Is it possible to visit all parts of the city by passing each bridge exactly once?

The actual shape of each part is not essential in this problem. Figure is a sketch map of
the town to simplify the situation.
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Figure 1.1.2: Sketch map of Koningsberg

Notice that when we try to solve this question by walking in the city, staying in one part will
not change the result. Therefore, we can simplify the map by shrinking each part to a point and
obtain the following graph (See Figure[1.1.3)).

Figure 1.1.3: Graph for The Seven Bridges Problem

Euler’s question is then equivalent to the following one:
Is it possible to find a circle path in the graph passing each edge of the graph exactly once?

One observation is that if we pass a vertex in the middle of the circle path, there should be one
edge arriving at this vertex and another one leaving it. Hence, if we call the number of half edges
adjacent to one vertex the degree of this vertex, then all vertices should have even degree unless
it is the starting or the ending vertex.

In 1736, Euler published a paper on the solution of this question, not only showing that this is
impossible, but also providing a solution for the general question which can be stated in today’s
language as follows.

Theorem 1.1.1 (Euler)

A finite connected graph has a circle path passing each edge exactly once if and only if
there is no vertex with odd degree.

It has a path with distinct starting and ending points passing each edge exactly once if
and only if there are exactly two vertices with odd degree.

Notice that the graph for "The Seven Bridges Problem" has 4 vertices where one has degree 5
and the other three have degree 3. Hence there is no way that we can visit all parts of the city by
passing each bridge exactly once.
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Polyhedron

Another famous work done by Euler is about convex polyhedrons in the Euclidean space. Given
a convex polyhedron, Euler gives the following formula

v—e+ f=2

where v is the number of vertices of the polyhedron, e is the number of edges of the polyhedron
and f is the number of faces of the polyhedron.

There are three observations which one can make from this identity. Firstly all data involved
in this identity has nothing to do with the geometry of the convex polyhedron. For example, any
convex polyhedron with 5 vertices with the same adjacency relation among vertices, edges and
faces has a same identity (See Figure [[.1.4)).

X B

Figure 1.1.4: Identity for different geometric information: 5 — 9+ 6 = 2

Secondly the value on the right hand side is a constant independent of the values of v, e and
f- In the other words, if we consider another convex polyhedron with maybe 6 or 10 vertices,
this constant is still the same (See Figure [1.1.5)).

S~ —

=

Figure 1.1.5: Identity for the left: 6 — 10 + 6 = 2;
Identity for the right: 7—11+6 = 2

Thirdly this identity also holds for non-convex polyhedron (See Figure [1.1.6]).

A =

Figure 1.1.6: Identity for the left: 6 — 12+ 8 = 2;
Identity for the right: 10 — 24 + 16 = 2
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Later, this identity is generalized by Antoine-Jean Lhuilier. He notice that Euler’s formula is
wrong when there are "holes" in the polyhedrons. If there are g holes, then we have

v—e+ f=2—2g.

For example, Figure is a polyhedron with 1 hole.

Figure 1.1.7: Identity for genus 1: 12 —-244+12=0=2-2x1

Remark 1.1.2.

Given a polyhedron with g holes, if we do not distinguish vertices, points on edges and points on
faces, the surface of this polyhedron is a genus g surface. From this point of view, each polyhedron
with g holes can be considered as a genus g surface marked by some distinguished points as
vertices and distinguished lines as edges. The value 2 — 2g on the right hand side of the identity
only depends on the genus g of the surface. This is called the Euler characteristic of the genus g
surface. In particular, Euler’s work consider the case g = 0 where the surface is a sphere.

Intersection number between two closed planar curves

Consider two closed curves . )
a: S =R

s = (au(s), aa(s))

and
B:8' =R’

t (Bi(t), Ba(t))

For simplicity, we assume that both a and j are C!, and for any s,t € S, we have &(s) # (0,0)
and S(t) # (0,0).

Figure 1.1.8: Two curves with 14 intersection points with each other.



1.2. POINCARE’S ANALYSIS SITUS 11

Assume that o N 3 is finite. We are interested in the parity of the number of intersection
points between « and S. To make this question more clear, we assume that all intersections
between o and 3 are transversal, and a and [ pass each intersection point only once. In the
other words, at each intersection point in oo N 3, we assume that the tangent vector of o and the
one of 3 are linearly independent, and for each s € S! (resp. t € St), there is at most one t € S*
(resp. s € SY), such that a(s) = S(t).

Poincaré showed the following result.

Theorem 1.1.3 (Poincaré)
The number of intersection points between a and § is always even.

Notice that in the statement of this result, there is no condition on geometric information of
« and f, although the whole problem lies in a context of Euclidean geometry.

Intuitively this is not hard to understand. If « is a round circle, it separate the plane into two
parts. We call the compact part the inside of «, and the infinite part the outside of . When we
walk along 8 with the starting point outside of c. The intersection happens when we meet a.
Since the intersection is transversal, each time when we meet «, we go from inside to outside
or from outside to inside. Since the starting point is outside, we have to meet o even number
of times to be outside of «, which suggests the number of intersection points between a and g
should be even. Of course, one needs to consider general cases and make a rigorous proof to get a
theorem.

1.2 Poincaré’s analysis situs

Since 1895, Poincaré published the famous paper "Analysis Situs" and its five supplements,
introducing "analysis situs" which he considered as a third geometry after the metric geometry
and the projective geometry. Its key feature different from the previous ones is that there is
no more notion of quantities of geometric measurements. The properties considered are all
qualitative. For example, two figures are considered as the same if we can change one to the other
by a continuous deformation.

In Analysis situs, Poincaré introduced the notion of manifold, Betti number, homology and
cohomology and their duality, fundamental group, the Euler-Poincaré formula, etc. Notice that
from the work of Euler and its generalization, we may associate numbers to topological objects as
topological invariants. Poincaré extended the notion of topological invariant, so that a topological
invariant could be an algebraic object, such as fundamental group, homology group, etc, instead
of just a number.

For more details about "Analysis Situs", see the following CNRS website:

analysis-situs.math.cnrs.fr



12

CHAPTER 1.

INTRODUCTION



Chapter 2

General Topology

2.1 Topological Space

As mentioned in the introduction, Poincaré considered topology as "third geometry" following
"metric geometry" (about distance) and "projective geometry" (about lines). The key feature
differentiating "topology" from the other two is that there is no distance, angle or any other
quantitative measurements. For example, in the "Seven Bridges Problem", when we walk in the
city, all we care about is which part of the city we are in, instead of the exact location. In other
words, we still care about geometry but in a large sense. Instead of saying the exact location, we
will consider neighborhoods. This will be described by so called topological structures.

Topological structures
Definition 2.1.1
Let X be a non-empty set. A topological structure on X is a collection 7T of subsets of
X, satisfying the following properties:
1) XeTand @ eT;
2) for any U,V € T, we have UNV € T;

3) for any non-empty subset A C T, we have

Jiv |U e A}

Definition 2.1.2

A topological space is a couple (X, T) where X is a non-empty set and 7 is a topological
structure on X.

Given any topological structure 7 on X, we will call it a topology on X for short.

Remark 2.1.3 (a remark on the word "space").

Mathematically there is no essential difference between "space" and "set". Usually when we see
the word "space", we should expect a set with certain structure (for example topological structure,
differential structure, metric structure, symplectic structure, etc.) depending on the context, most
of the time relating to geometry. In this course, by a space we usually mean a topological space.

13
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To simplify the notation, given a topological space (X, 7T), when the topological structure T
is clear, we may simply denote it by X. Sometimes, we also say a space X without mentioning 7.
This means that we already have a topological structure chosen once and for all.

Definition 2.1.4

Let (X, T) be a topological space. Any subset U € T is called an open subset of X for the
topological structure 7. A subset K C X is said to be closed if its complement is open.

Remark 2.1.5.
It is possible (not necessary) that a subset is open and closed at the same time. Two trivial
examples are () and X for any topology on the space X.

Remark 2.1.6.

Roughly speaking, the subsets in the collection T tells "neighborhood"s of each point in X.
Consider the distance on the real line R given by the absolute value of the difference between

two points. To get to one point € R from anther point y € R, we may walk along R from y and

check the distance to = from our position. When the distance becomes 0, we know that we arrive

at z (See Figure[2.1.1)).

Y1 Y2 Ya

<

p
~

w

WV
N
Vv

T
—¢

<N
53—

Figure 2.1.1: A sequence converges to x

When we consider this in the context of topology, there is no notion of distance. Instead, we
may consider get into all neighborhoods containing the point z to say we get to the point = (See
Figure [2.1.2]).

N R r ARG AR >
T X N 77

Figure 2.1.2: A sequence converges to x

On the other hand, if we are not close to x, there must be one neighborhood where we are not
in. Therefore, to make this more rigorous, we have to make precise the meaning of neighborhood
here, and this is the notion related to open sets.

This example suggests that it is possible to use topologies on a space to distinguish points
in the Euclidean space. This may not be the case when considering more general topological
structures. A trivial example is the space X equipped with the topology 7 = {0, X} discussed
later.

We start by an example familiar to us the most. Consider the Euclidean space R?, and denote by
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dg the Euclidean metric. For any point p € R? and any positive real number r, the open ball in

R2 centered at p with radius r is defined to be

By(r) :=={q e R?| dg(p,q) < r}.

We define that a subset U C R? is said to be open if
Vpe U, 3r >0, By(r) CU.

We can verify that these open sets form a topology on R? (See Figure [2.1.3).

.....

Figure 2.1.3: An open set in R?

This construction can be done for any metric space. We call such a topology the one induced

by the metric or simply the metric topology.

Question 2.1.8
Show that with respect to this topology, an open ball By(r) is open.

If we forget the intuition from the metric geometry and simply play with the definition, we may
find the following two trivial examples. One is the following subset of P(X) denoted by

Ox = {X, 0},

while the other one is the whole power set P(X). They both satisfy all conditions in Definition
[2:1.7] trivially, hence both induce topologies on X. The topology Oy is called the trivial topology
on X, and the topology P(X) is called the discrete topology on X. In particular, every point

x € X forms an open set in the discrete topology.
Previously, we discussed how to talk about convergences without using distance. Under the

discrete topology, if a sequence of points x, in X converges to x, since the idea is to get into
every neighborhood of z, it is eventually a constant sequence with all z,, = x for n bigger than

some N € N.

Later we will introduce the notion of continuity, which is a map between two spaces relating the
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open sets in two spaces in certain way. Sometimes, we may be in a situation where we have a
map (or several maps) first and try to find and study a topology with respect to which the map
(or the maps) is continuous. One such example would be the projection from a Cartesian product
to one of its factors. See Subsection for details on product spaces.

We consider the construction for one map to have an idea. Let X be a non-empty set, and
(Y, Ty) be a topological space. Let f be any map from X to Y. Then

T:={f"U)|UCTy}

gives a topological structure on X. Under this topology the map f is continuous.

Let F be any field. Given a natural number n > 0, we consider the set F™. We say a subset
U C F™ is Zariski closed if it is the solution set of a family of polynomials on F' with n variables.
By considering the complement of a Zariski closed subset of F'™ as an open set, we get the Zariski
topology on F™. This is used a lot in the study of Lie theory and algebraic geometry.

Given any non-empty set X, as we have seen above, the space X could be equipped with
different topological structures. Hence whether a subset of X is open depends on the choice of
topological structures.

From its definition, it is possible that a topology on a non-empty set could be quite arbitrary
and artificial. By definition, to give a topology on a non-empty set, it is enough to describe all
open sets in this topology, which is also equivalent to describe all closed sets for this topology.

Comparison between topologies

Roughly speaking, a topology on X is a subset of P(X) satisfying certain properties. Unless X
contains only one element, such a subset in P(X) is not unique, i.e. the topology on X is not
unique when X contains more than one element. The partial order on the set P(X) given by
inclusion induces a partial order among all topologies on X.

Definition 2.1.12

Let 77 and 75 be two topologies on X. We say that 77 is finer than 75 if we have
T2 C Th.

In this case, we also say that 73 is coarser than 7.

This is equivalent to say that an open set in 73 is also an open set in 7;. This may remind us of
the comparison between different partitions of a given set. We will discuss this after introducing
the notion of subbasis and basis. Before that let us check two trivial examples.

By definition, all topologies of X contains X and (). Therefore, the trivial topology Ox is the
coarsest topology of X. On the other hand, any topology if coarser than the discrete topology
P(X). Therefore P(X) is the finest topology of X.

There are different ways to define metrics on R?, each of which can induce a topology on R2.
Here we consider the four metrics whose distance functions are given by the following formulas:
let O denote the origin of R2, for any point p = (x1,y1) and q = (72,92),
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L de(p.q) = /(z1 — 22)% + (11 — y2)%;
2. doo(pa q) = max{|x1 - x2| + |y1 - yQ‘}a

de(p,q), if O, p and q are colinear

3. d ,4) = ’
sncr(p:q) {dE(p,O)erlE(Q»O)v otherwise

Respectively, we denote their corresponding metric topologies Tg, Too, Tsncr and 7. Then by
considering balls for each metric, we can verify the following relations

Te = Too C Tsncr C T.

Remark 2.1.15.
We remark here that not every pair of topologies can be compared.

Subbases and bases

To give a topology on a set X, we may describe all its open sets. Alternatively, we can begin
with some subsets of X and try to get a topology of X by considering their intersections and
unions. This is what we call "generating a topology on X from a collection of its subsets".

More precisely, we denote by T C P(P(X)) the collection of all topologies on X. Let A denote
a collection of non-empty subsets of X. We give the following definition.

Definition 2.1.16

The topology generated by A is defined to be the following one

Ta:=({TeT|ACT}

Proposition 2.1.17
The set T4 is a topology on X.

Proof. For any T € T, we have
0.XeT,

from which we have

0,Xe(\TC({T€T|ACT}="Ta

By the definition of T4, for any U,V € T4, for any T € T containing A, we have
UverT.

Since T is a topology on X, we have
unverT.

Since This holds for any 7 € T containing A, we have

UNVe(UTEeTIACT}="Ta
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Similarly, by the definition of T4, for any collection {U,}acq of sets in T4, for any 7 € T
containing A, we have

{Ua}aeﬂ C T

Since T is a topology, we have

UJUaeT.

ae)

Since this holds for any 7 € T contianig A, we have

UUae({TeT|ACT}="Ta

acl)

As a conclusion of the above discussion, we show that 74 is a topology on X. O

We can also describe this topology in a constructive way.

Proposition 2.1.18

The topology T4 consists of subsets in X which can be written as an arbitrary union of
finite intersections of subsets in AU {X}.

Proof. We consider the following subset of P(X):

Ly ()

By consider the distribution, we have

(WAe) e (u(ne)) -y () (o))

The above set satisfies the Condition 2) and 3) in Definition By taking 2 to be empty set,
we can see that this set also contains (). The only thing not necessarily true is that it contains X.
To get over this problem, we may consider the same construction for AU {X}. O

Q arbitrary index set, n, € N*, Uy,; € A}

Definition 2.1.19

A subset A of T is called a subbasis of T if it generates 7.

Remark 2.1.20.
The above definition is essential the same as the one in the course "Point Set Topology". On the
other hand, if A is required to have the property that

Ja=x.

Then by considering all arbitrary union of finite intersections of subsets in A, we can have a
topology on X. There is no need to consider 4 U X. This is used as a definition for subbases in
some references.
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Definition 2.1.21

A subset B of T is called a basis of T if any U € T can be written as a union of open sets
in B.

Remark 2.1.22.
Both subbases and bases of T can be used to generate 7. The difference is that when we generate
T using a subbasis, we have to consider both "arbitrary unions" and "finite intersections', while
when using a basis, we only need to consider "arbitrary unions'.

Any non empty collection of subsets of X can be a subbasis of some topology on X, but this
is not true for bases.

To check if a subbasis is actually a basis, we may consider the definition, as well as the
following equivalent condition.

Proposition 2.1.23
Assume that B is a subbasis of T satisfying | JB = X. Then B is a basis of T if and only if
it satisfies the following property (see Figure for an illustration):

e YU VEBVYzeUNV,IWEB, zeWCUNV.

unv

Figure 2.1.4: Condition in Proposition [2.1.23

Proof. One direction is trivial. If B is a basis, then for any U and V in B, the intersection U NV
is in T, hence is a union of sets in B. Therefore, for any z € U NV, there is a set W € B, such
that

zeWcUnV.

Now we turn to the other direction. Assume that B is a subbasis, satisfying the condition
e VUV eB VxeUNV,IWeB, zecWCUNV.

If we can show that any intersection between two sets U and V in B is still in B, by induction,
any finite intersections of sets in B is in B, hence we can conclude that B is a basis.
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In fact the condition in the proposition is weaker than this. Let U and V be any sets in B.
For any x € U NV, by hypothesis, there is a set W, € B, such that

reW,cUnNYV,

therefore we have

unv= J W
zeUnNV

By induction, we may show that given any finitely many sets Uy, ..., U, in B, there is a collection
of sets {Wy}aeq in B, such that

Uyn--—-Nu, = UWa.
ae)

Since B is a subbasis of T with [JB = X, given any W € T, it can be written as a union of
finite intersections among sets in B:

w=J (ﬁUa>

ace) \i=1

By the previous discussion, for any «, there is a collection of sets {W,3}sceo in B, such that

ﬁ Uaz = U Waﬁa
=1 BeO

therefore, we have

w=U | UWaes ) = U U Wap.

acQ \ peo @€ BEO

Hence B is a basis of T . O

We consider the Euclidean space R3. Using the same notation as before, the collection of all open
balls in R? form a basis of the topology of R? induced by the Euclidean metric dg. In fact we can
choose a even smaller basis by considering only open balls with rational radius. Moreover, we can
check that the intersection between any two balls is not a ball. To fill in one such intersection, we
have to use infinitely many balls.

Let X be any non-empty set. Let B be a partition of X. We denote by 7 the topology on X
generated by B. Hence B is a subbasis of 7. Moreover, if we consider the definition of a partition
of a set, the condition in Proposition [2.1.23]is satisfied vacuously, since any two subsets in B have
empty intersection. Hence B is also a basis of T, and any open set in 7 is a union of subsets in B.

Neighborhoods and neighborhood bases

In order to study local properties near a point in a space, we introduce the notion of neighborhood
and neighborhood basis.
Consider a topological space X.
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Definition 2.1.26

For any non-empty subset A of X, a neighborhood of A is a subset B of X, such that
there is an open subset U of X containing A and contained in B:

AcUcCB.

In particular, for any point € X, we call a neighborhood of {z} a neighborhood of z.

Remark 2.1.27.
By its definition, a neighborhood of A is not necessary to be open (See Figure 2.1.5). If a
neighborhood of A is open (resp. closed) we will call it an open neighborhood (resp. closed
neighborhood).

Figure 2.1.5: One neighborhood B of a point p € R?, where B is the union of the three parts.

We obtain two immediate properties of neighborhoods from the above definition.

Proposition 2.1.28

Let p be a point in X.
1) If B is an open set in X containing p, then B is a neighborhood of p.

2) If B; and B are two neighborhoods of p, then so is their intersection By N Bs.

Proof. 1) Consider the definition of a neighborhood of p, since B is open, then we have
p € BCB.
Therefore B is a neighborhood of p.

2) This comes from the fact that the intersection between two open sets is open. By the
definition of a neighborhood of p, we have open set U; and Us, such that
pelU; C By,pe Uy C Bs.

Hence
pe Uy NUy C By N Bs.
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Since Uy N U is open, the intersection By N Bs is a neighborhood of p. O

Remark 2.1.29.

The second property relies on the fact that openness is preserved by finite intersections. Since
openness is not necessary preserved by arbitrary intersection, we do not have 2) for the intersection
of arbitrarily many neighborhoods of p.

Using the notion of neighborhood, we have a criteria for a subset to be open in X.

Proposition 2.1.30

A subset A of X is open if and only if for any = € A, the set A is a neighborhood of z.

Proof. By the previous proposition, if A is open, then it is a neighborhood of any of its points.
Conversely, if A is a neighborhood of any € A, then by the definition of the neighborhood,
for any x € A, there is a open set U,, such that

reU, CA.
Hence we have
A= ] U..
T€A
Therefore, the set A is open. O

Remark 2.1.51.

If we recall the discussion on the open sets in an Euclidean space (See Example [2.1.7)), by that
definition, open balls are also open. Then similar to the above proposition, we have a subset of
the Euclidean space is open if and only if any point admits a ball neighborhood contained in this
subset.

Let M (z) denote the collection of all neighborhoods of x in X.

Definition 2.1.32

A subset B C N (z) is called a neighborhood basis of x if it satisfies the following property

VU e N(z), 3B € B, B C U.

We consider the Euclidean space R2. Consider a point p € R%. Let (r,),>0 be a sequence of
positive real numbers such that

lim r, = 0.
n—roo

Then
{Bn = By(ry) | n € N},

is a neighborhood basis of p (See Figure [2.1.6]).

We consider another example which may look strange at the first glance. Let X be a non-empty
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By By

Figure 2.1.6: One neighborhood basis of p € R?

set. We consider the discrete topology. Then for any « € X, the single point set {z} itself can
form a neighborhood basis of z.

Limit points and limit values

Let us first recall what is the limit of a sequence in R that we saw in the Analysis course. Let
(zn)nen be a sequence in R converging to a:

lim z, = a,
n—oo

i.e. for any € > 0, there is N € N, such that for any natural number n > N, we have
|z, —al <e.

From the topological point of view, we consider the usual topology on R induced by the
Euclidean metric, the following subsets of R

{(zx—e,xz+¢€)|eeRso},

form a neighborhood basis of x. The limiting condition above is then written as for any
neighborhood (x — €,z + €) of x, there is a natural number N, such that for any n > N, we have

Ty € (x—€,2+€).
See Figure for an illustration.
Using the limit of a sequence, we can define the continuous function from R to itself. Let
fR—=R,
be a function. Let a be a point in R. In Analysis course, we say that f is continuous at a if

lim f(z) = f(a),

r—a

which means that whatever the sequence (z,,) converging to a is, we have

lim f(z,) = f(a).

n— oo
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Another way to say it is that
Ve>0,30>0,Vz € (a—9d,a+9), f(x) € (f(a) —¢, f(a) +¢€).
From the topological point of view, here we consider a neighborhood basis of a
B={(a—6,a+0)|decRso},
and a neighborhood basis of f(a)
C=A{(f(a) —€ fla) +€) | € € Rxo},

such that

YV ecC, 33U ehB, f(U)CV.

Figure is an illustration

v

Figure 2.1.7: The function f(z) continuous at a.

Following this idea, we have the following topological definition of the convergence of a
sequence.

Definition 2.1.35

Let (x,)nen be a sequence in a topological space X. We say that the sequence (x,)nen
converges to a point a € X, if for any neighborhood U of a, there exists N € N, such
that for any n > N, we have z,, € U.

Similar, we have a topological definition of a map continuous at a point as follows.
Definition 2.1.36

Let f be a map from a topological space X to a topological space Y. We say that f is
continuous at a € X, if for any neighborhood V of f(a), there exists a neighborhood U of

a, such that
fU)cw
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Remark 2.1.37.
Notice that in the e-0 language, the quantities ¢ and § are used to find these neighborhoods in
the above definitions.

These definition can also be restricted to some subset of a topological space.

Definition 2.1.38

Let A be a subset of a topological space X. A point x € X is said to be an adherent point
of A if for any neighborhood U of x, we have

UNA#0.

Let f be a map from a topological space X to a topological space Y. Let A be a subset
of X and a be an adherent point of A. We say that f admits a limit value y € Y when x
tends to a in A, if for any neighborhood V of y and any neighborhood U of a, we have

FUNA)NV £0.

We say that f(z) admits a limit when z tends to a in A, if there exists y € Y, such
that for any neighborhood V' of y, we have a neighborhood U of a,

fUNA)CV.

Remark 2.1.59.
We will discuss the uniqueness of a limit in the next part.

Hausdorff condition

In the study in the Euclidean plane R?, the convergence of a sequence in R? is one thing which
we discuss a lot. One fact used a lot is that the limit is unique for any convergence sequence in
R2. This relates to the property of R? used here is that any two distinct points admit disjoint
neighborhoods. For example, if two points in R? have distance r > 0, then we may choose a ball
neighborhood of radius r’ < r/2 for each one of them, which are disjoint.

Figure 2.1.8: Disjoint neighborhoods of two points p and ¢ in R2.

This can guarantee that there is no ambiguity of the limit point. However, such a property
does not hold for any topological space.
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Definition 2.1.40

We say that a topological space X satisfies the Hausdorff condition if any distinct points
z and y in X admit disjoint neighborhoods, i.e. there exist a neighborhood U of z and a
neighborhood V of y such that

unv =40.

If the space X satisfies the Hausdorff condition, we say that X is Hausdorff.

By this definition, the Euclidean plane, and more generally all metric spaces are Hausdorff. Now
let us check some non-Hausdorff spaces.

Consider the union
{0*} U {O+} U (07 1)

For any z €]0, 1], it has a neighborhood basis

B(z) = { (x—ix—i—i) M (0,1)

n e N*} .
A neighborhood basis of 0_ can be given by

B0_) = {{0_}u (o, i) nc N*},

and similarly a neighborhood basis of 04 can be given by

B(0,) = {{0+} U (OD ne N*}.

Then we may see that it is impossible to separate 0_ and 04 with disjoint neighborhood.

The above example may be a little bit artificial. The following one appears a lot in the study
of character varieties.

Consider the special linear group SL(2,R). Let x denote the set of conjugacy classes of elements
in SL(2,R). The group SL(2,R) can be considered as part of R*. We consider the restriction of
the Euclidean metric dg on R* to SL(2,R) and give a topology on SL(2,R).

Given two subsets A and B of SL(2,R), we can define the distance between them as

dg(4, B) := inf{dg(z,y) | z € A,y € B}.

There is a natural projection from SL(2,R) to x. By defining a subset in x is open if it is the
image of an open set of SL(2,R), we have a topology on x (we will talk about this construction
later in details).
The non-Hausdorff phenomenon appears when A and B are distinct elements in x with
dg(4, B) = 0, then there is no way that we can separate A and B by disjoint neighborhoods in .
Such A and B do exist in x. Consider the following two matrices

b i bl
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Notice that in the conjugacy class of x, we have the elements of following form

EI O e 1

for any t # 0. As t goes to +00, we have
1 t2 [t
0 1 0 1|’

Now we turn to the relation between the uniqueness of convergence limit and the Hausdorff
condition.

Proposition 2.1.43

If the topological space X is Hausdorff, then given any convergent sequence (zp)nen in X,
its limit is unique.

Proof. We prove it by contradiction. Let (z,)nen be a sequence in X. Assume that a and b be
two distinct limits of (2, )nen in X. Since X is Hausdorff, there are U and V' neighborhoods of a
and b respectively, such that

unv =4.

On the other hand, since a is a limit of (z,,),en, there exists N, € N, such that for any n > N,
we have
x, € U.

Similarly, since b is a limit of (2,)nen, there exists N, € N, such that for any n > N,;, we have
x, € U.
Let N = max{N,, Ny}, then for any n > N, we have
r, €eUNYV,
which contradicts to the fact that U NV is empty. 0
Interior, closure and boundary
Let X be a topological space and A be one of its subset.

Definition 2.1.44

The interior of A is defined as:
A:={z € A|3U neighborhood of z,U C A}.
The closure of A denoted by A is the set of all adherent points of A, i.e.
A= {z € X |V neighborhood U of z, UN A # 0}.
The boundary of A is defined to be the subset

A=A\ A.
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U =

(2) 3) (4)

Figure 2.1.9: (1) subset A of R?; (2) the interior A of A; (3) the closure A of A;
(4) the boundary 0A of A.

Example 2.1.45.
See Figure for an illustration of the above definition for a subset A in R2. Here the dash
line means those boundary points are not in A.

There are certain facts which can be verified directly using the definitions.

Proposition 2.1.46

For any subset A of X, we have
1) the interior of A is the union of all open subsets of X which are contained in A;
2) the closure of A is the intersection of all closed subsets of X which contain A;

3) the boundary of A is the intersection between A and A¢.

Proof. To show the first point, it is enough to prove the following two facts:
o Ais open;
e any open subset of A is contained in A.

For any x € /i, by the definition of interior and the definition of neighborhood, there is an
open neighborhood U of x contained in A. By Proposition 2.1.30] since U is open, it is also a
neighborhood of any point y € U. Hence every y € U is also a point in A, which implies

U C A.

Hence A is a neighborhood of x. Since this holds for any x € fi, we have A open.
Let B be an open subset of X contained in A. By Proposition [2.1.30} for any = € B, the open
set B is a neighborhood of  which is contained in A by hypothesis. Therefore, we have

B C A,

and it holds for any open subset of A, including A. Hence A is the union of all open subsets of A
(in another word, A is the largest open subset of A).

To show the second point, it is enough to prove the following two facts:
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o the complement of A is open;

o any open subset of X disjoint from A is contained in (A4)°

If x € X is not a limit point of A, there is an open neighborhood U of x with
UNA=0.
Moreover for any y € U, the set U is a neighborhood of y, hence
y¢ A
Hence B
U c (4)-.

Therefore (A)¢ is open and A is closed.

Let B is a closed subset in X containing A, then B¢ is open and disjoint from A. For any
point x € B¢, since B€ is open, hence it is a neighborhood of . Hence x is not a limit point of A,
therefore z ¢ A. Hence we have

B°NA=09.

This implies that
AcCB.

From the above discussion, we conclude that A is the intersection of all closed set in X
containing A (in another word, A is the smallest closed subset containing A).
To show the third point, let x € A, by the definition of the boundary, we have

red, z¢A
By the definition of A, given any neighborhood U of z, we have
UnA®£0,

for otherwise, if U N A® = (), we have U C A, which means that z € A. This is a contradiction.
Hence we have
x € A°,

and then
HA C An Ae.

Conversely, let x € AN A, for any neighborhood U of z, we have

UNA#0D, UNA®#0.

Hence U is not a subset of A, hence z ¢ ;1, and we have

red\A=0A.
Hence we have

AN Ac C 0A.
As a conclusion, we have

AN Ac = 0A.

O

If we consider taking the interior or the closure of a map as maps from P(X) to P(X), their
relations with taking the union or the intersection of two subsets, or taking the compliment of a
subset are as follows.



30 CHAPTER 2. GENERAL TOPOLOGY

Proposition 2.1.47

If A and B are both subsets of X, we have
1) AUBCAUB, AUB=A4AUB;
2) AnB=AnB, AnBcANnB;

o
.

_ _ 2\ €
3) Ac =A°, A= (A) . A= 0A°.

Proof. 1) For any p € AUB , we have p € A or pE B. Without loss of generality, we assume

p € A. Then there is a neighborhood U of p, such that

peUCACAUB.

Hence we have
pe AUB

The other direction is not correct. For example, we consider A = (0,1) U {5} and
B = (4,5) U (5,6). Consider the Euclidean metric topology on R, then 5 is an interior
point for AU B, but

o o

A= (071)3 B =B,
which shows that 5 ¢ AU B.

Let p € AU B. For any neighborhood U of p, we have
UN(AUB) #0.

Hence we have UN A # () or UN B # .
If all neighborhoods of p have non empty intersection with A, we have

p € A

Otherwise, there is a neighborhood U of p disjoint from A. We claim that all neighborhoods of p
have non empty intersection with B. For otherwise, there is a neighborhood V' of p disjoint from
B. Notice that U NV is also a neighborhood of p, and we have

UnNnV)NA=0={UNV)NB.
This contradicts to the fact that p € A U B. Therefore, we have
AUBC AUB.

Conversely, if p € AU B, without loss of generality we may assume that p € A, then given any

neighborhood U of p, we have
UNA#0.

this implies that
UNn(AUB) # 0.

Therefore we have p € AU B, and moreover

AUB D> AUB.
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As a conclusion, we have

AUB=AUB.

For any point in p € ANB , there is a neighborhood U of p, such that
UcCAnNB,

hence
UcAand U C B.

This implies that
peAandp € B.

from which we have
peANBDB.
Hence .
ANBc AnB.
Conversely, if p € AnB , there are two neighborhoods U4 and Ugp of p, such that
Uy C Aand Ug C B.

Hence
U,NUg € ANB.

By Proposition 2.1.28] the intersection U4 N Ug is again a neighborhood of p, hence

peEANB.
Therefore we have .
ANBOANB
We conclude now that .
ANB=ANB

Now we consider the closure of A, B and AN B. If p € AN B, then given any neighborhood
U of p, we have
UnN(ANB) #0.

Equivalently, we have
UNA#QandUNB#0D

Hence
pe Aand p € B.

Therefore, we have

ANBCANB.

The other direction of inclusion is not correct. For example, we consider A = (0, 1) and
B =(1,2). Then we have
A=10,1 and B = [1,2].

Hence
ANB={1},

while AN B = () which implies that AN B = 0.
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3) A point x is in ;1\@, if and only if there is a neighborhood U of x such that
UcC A"
Hence U N A = () which is equivalent to 2 ¢ A. This shows that

o
— —c

Ac=A".

A point z is in A€, if and only if for any neighborhood U of z, we have
UnA®#0.
This is equivalent to the fact that given any neighborhood U of z, we have
U¢ A,

which is equivalent to

= (4)".
By the point 3) in Proposition [2.1.46) we have
0A = AN Ae.

Hence we have

Replacing A by A°, we have

OA° = A° N (A°)° = AN A = 0A.

2.2 Continuity

Let X and Y be two topological spaces. To build the connection between the two spaces in a
topological way, we use so called continuous maps.

Definition 2.2.1

A map
f: X =Y,

is said to be continuous if it satisfies one of the following equivalent conditions:
1) for any open set V C Y, its preimage f~1(V) is an open set in X;
2) for any closed set V C Y, its preimage f~1(V) is a closed set in X;
3) for any set A C X, we have f(4) C f(A);
4) for any point x € X, for any neighborhood V of f(z) € Y, there is a neighborhood U
of z, such that f(U) C V.

Remark 2.2.2.
From Definition [2.1.36] the last condition means that the map f is continuous at every point
reX

Consider Definition we may replace the last condition by an equivalent one
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5) for any point z € X, there is a neighborhood basis B of z and a neighborhood basis C of
f(zx), for any neighborhood V' € C, there is U € B, such that f(U) C V.

Proposition 2.2.3
All conditions listed in the definitions are equivalent to each other.

Proof. 1) <= 2) This comes from the fact that for any subset V in Y’

4) = 3) Let A be a subset of X. Assume that for any = € A, any neighborhood V. of f(x), we
have a neighborhood U, of x, such that

f(Ug) C V.
Then for any neighborhood V,. of f(x), we have

Vo f(A) D f(Uz) N f(A) #0.

Hence f(z) € f(A). We have

f(A) c f(A).
3) = 1) Assume that for any set A, we have
F(A) € F(A),
Let V be an open set in Y. Then its complement is closed, hence
Ve=ve.

Let K = f~1(V¢). We have

fK) C f(K)=Ve=V"
Let U denote f~1(V). Notice that K = U°.
For any x € U, if any neighborhood W of z satisfies
Wnue#9,

we have

rz e K.

By the previous discussion, we have

f(z) € f(K) =V".
Hence
¢ [THV) =1,

which is a contradiction. Therefore for any = € U, there is a neighborhood W of x contained in
U, hence U is also a neighborhood of z. This means U is open.

4) = 1) Let V be a open set of Y. For any x € X, such that f(x) € V, the set V is a
neighborhood of f(z), hence there is a neighborhood U, of x, such that

fUz) CV,



34 CHAPTER 2. GENERAL TOPOLOGY

Hence we have
U, C f7HV).
By the definition of neighborhood, there is an open neighborhood U, of z, such that

UL cU, c f1(v).

Hence we have
= U u
z€X, f(z)EV

Therefore f~1(V) is open in X.
1) = 4) Assume that given any x € X for any neighborhood V of f(z), there is an open
neighborhood V,, of f(x) contained in V. By 1), f~1(V,) is open, hence a neighborhood of x. Let
U, = f~1(V,), we then have

fUz) CVy CV.

O

As mentioned in the previous in Example 2.1.10] any map from X to Y can induce a topology on
X by considering the preimages of open sets in Y.
Consider a map
f:X—>Y.

We denote by Tx the topology on X and by 7T the topology induced by f.

Proposition 2.2.4
The map f is continuous if and only if the topology Tx is finer than 7.

Proof. Let Ty denote the topology on Y. By the definition of 7y, for any U € Ty, there is an
open set V € Ty, such that

U=fYv).

By definition, the map f is continuous with respect to the topology Tx on X, if and only if
for any V € Ty, we have

fﬁl(v) S TXa
this is equivalent to
7} C TXa
i.e. Tx is finer than 7. O
Definition 2.2.5
A map
f: X =Y,

is called a homeomorphism if it is continuous and bijective, and its inverse
iy - X,

is also continuous.
Two topological space are said to be homeomorphic if there is a homeomorphism
between them.



2.2. CONTINUITY 35

Now assume that the map
f: X =Y,

is bijective.
IJf [ is continuous, by taking preimage and considering Proposition2.2.4] it induces a map
[ Ty = Tx,
whose image is 7. If f~! is continuous, then by the same reason, we have a map
(fH Tx = Tv,

whose image is Ty-1.
Assume that f is a homeomorphism. Since f o f~! is identity map, for any V € Ty, we have

V=(fof"H(V)=f(f*(V))= (D" (V),

hence it induces the identity map
() ef Ty =Ty

Similarly, the composition
Fro(f7) +Tx = Tx

is also the identity map. Therefore, both map f* and (f~!)* are bijective, and we have
Tx =Tp, Ty =Ty

In fact, we could have the following proposition.

Proposition 2.2.6

Let f be a bijective map from a topological space (X, 7Tx) to a topological space (Y, Ty).
Then f is a homeomorphism if and only if Tx = 7.

Proof. If f is a homeomorphism, the above discussion shows that Tx = T;.
Now let us assume that Tx = 7;. We would like to show that the bijective map f and its
inverse are both continuous.
By Proposition we have f continuous. To study f~!, notice that the fact that f is
bijective induces a bijective map
fP(X) = P(Y),
A f(A).
Its has an inverse
fHPY) = P(X),
B f7Y(B).
which is also bijective.
Let U € Tx be any open set of X. Since Tx = Ty, there is an open set V' € Ty, such that

vy =u.

Since f~! is bijective and f(U) satisfies

open for any U € Tyx. The map f~! is continuous.
As a conclusion, the map f is a homeomorphism. O
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Remark 2.2.7.

All these discussions shows that if two topological spaces are homeomorphic to each other, from
the topological point of view (only playing with open sets), we cannot distinguish them. We will
see this phenomenon in a more concrete way later.

Remark 2.2.8.
The discussion here may reminds us the example to show that a continuous bijection is not
necessary a homeomorphism. Let us check what happens here and compare it with the above
proposition.

Let X be the interval [0,1) and Y be the unit circle S! in the Euclidean plane R?. We define
the map

f:00,1) — S,
t +— (cos 2tm, sin 2tm).

(See Figure [2.2.1]).

Figure 2.2.1: The map f

We consider the subspace topology (which will be talk about later). The topology in [0,1)
considered here is generated by its intersections open intervals in R, while the topology in S*
considered here is generated its intersection with Euclidean open balls in R.

Notice that this is a continuous map and bijective, but f~! is not continuous. The problem
appears when we consider the neighborhoods of 0. The interval [0,1/2) is open in [0, 1), but its
preimage is not in S*.

If we would like to compare Tx and Ty, we will see that a neighborhood basis of 0 in Tx can

be given by
1
{os)
n

while a neighborhood basis of 0 in 7; can be given by

{ {07 1) <n 171)
n n
(See Figure [2.2.2))

Hence for any n € N\ {0, 1}, the subset

neN\{O,l}},

neN\{O,l}}.
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N

=1 ]
N
N

o *—— o
1 0 1

Figure 2.2.2: A neighborhood basis of 0 for Tx (Left); a neighborhood basis of 0 for 7; (Right)

is never a neighborhood of 0 for 7;. We can verify that

T2T;.

2.3 Constructions of topologies

There are several ways which we usually use to construct topological spaces from a set possibly
equipped with some (geometric, algebraic, topological, etc.) structures.

Subspace topology

Let X be a topological space. Given any non-empty subset A C X, we can define a topology on
A by considering the topology on X in the following way:

e a subset of A is open if and only if it can be written as an intersection A N U, where U is
open in X.

Definition 2.3.1

This topology on A is called the subspace topology, and the subset A equipped with the
subspace topology is called a topological subspace of X (or simply a subspace of X).

The following is an immediate consequence of the definition.

Proposition 2.3.2

Let A be a subset of X and consider the subspace topology on A.

1) Let B be a basis (resp. subbasis) of the topology on X, then
{ANnU|U e B}
form a basis (resp. subbasis) of the topology on A.
2) Let p be a point in A and B, be a neighborhood basis of p in X, then
{ANU|U € B}

is a neighborhood basis of p in A equipped with the sub

Denote by C a circle in the Euclidean plane R?. Consider the Euclidean metric topology on R?,
and the induced subspace topology on C. Since open balls form a basis of the topology on R2,
their intersections with C, which are open circular arcs, form a basis of the topology on C' (See

Figure for an illustration).
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Figure 2.3.1: An open circular arc on a circle

For any n € N*, we consider the circle C,, in R? centered at (1/n,0) of radius 1/n. Let X be the
union

X = U C,,.

neN*
This is usually called the Hawalii earring.

We consider the subspace topology on X induced by the Euclidean metric topology on R?

Let p € X be a point different from 0. There is a unique circle C,,, such that p € C,,. The local
picture around p in X would be the same as that around p in C,,.

The difference appears when we consider the neighborhood of the origin O. A neighborhood

basis of O in R? can be given by open disks. Let D be an open disk centered at O of radius r > 0.
Then for any n € N* such that n~! < r, we have

C, CD.

(See Figure for an illustration.)

Figure 2.3.2: Any neighborhood of O contains C,, from some N € N*

Hence, by taking a neighborhood of O in each circle C,, and taking the union of them, we do
not necessary get a neighborhood of O (See Example [2.3.24] "Wedge Sum").

Remark 2.3.5.
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If A and B are both subsets of X, with
ACBCX,

Then A has a subspace topology T4 x induced by the topology of X. At the same time, the set
A also has a subspace topology T4, induced by the subspace topology of B which is a subspace
of X. Since A C B, given any open set U of X, we have

ANU=(ANB)NU = AN (BNU).

Hence Ta,x = Ta.B.

Initial topology
Let X be a non-empty set, and Y be a topological space. As in Example for any map
f: X =Y,
we can associate to X a topology defined as follows:
e a subset of X is open if and only if it is the preimage of an open set of Y.

By Proposition this topology is the coarsest topology on X with respect to which f is
continuous.
This construction can be done in a more general setting. We consider the following set

= {((Ya, Ta), fa) | @ € Q},

where (2 is the index set, and for each o € Q, (Y,,, T.) is a topological space and f, is a map from
X to Y,. We then consider the following set

A={UeP(X)|3aecQ, IV eT, U= f'(V)},
as a subbasis and denote by Z the topology on X generated by A.

Definition 2.3.6

The topology Z constructed above is called the initial topology on X induced by (fo)acq-

Proposition 2.3.7

If 7 is a topology on X, and for any a € 2, f, is continuous with respect to 7, then T is
finer than 7.

Proof. For any a € ), since f, is continuous with respect to T, for any V open set in Y, we

have the preimage
U=f*V)eT.

Hence we have A C T, which implies Z C T. O

The subspace topology is a special case of the initial topology. Let A be a non-empty subspace of
a topological space X. We consider the embedding map

t:A—> X,

then the subspace topology on A is the initial topology induced by .



40 CHAPTER 2. GENERAL TOPOLOGY

Let (E,| - ||) be a real normed vector space. Notice that || - || induces a distance on E, which
moreover induces a topology on E which we usually called the strong topology. A map from E to
a topological space is said to be strongly continuous if it is continuous with respect to the strong
topology on E.

The dual space E* of E is then defined to be the space of linearly strongly continuous maps
from E to R (or linear functionals, linear forms). The initial topology induced by

{t|1eEY,

is called the weak topology on E.
Reciprocally, the space E can be considered as part of the dual space of E*. The initial
topology induced by

{z|zeE},

is called the weak-x topology on E*.

Remark 2.3.10.
The term "weak topology" may be used in a more general sense, sometimes considered as the
same as initial topology in some references.

How to describe an initial topology

With same notation as above, in practical, we can take a basis B, of each 7, then consider the
fa-preimages in X

{f'(U) | U € Ba}.

Then
U {£10) | U € B}

ae

is a subbasis of Z.

Product topology

Let (X&)acq be a family of topological spaces. We consider their Cartesian product
Q
H Xo =14 (Ta)aca € <U Xa) Vae D, z, € Xo
a€e aEe

For each a € , there is a canonical projection map

pro: ] Xo— Xa,
ae

(ma)OZEQ = ZTq-

Definition 2.3.11

The initial topology on [],cq Xa induced by (prg)acq is called the product topology on

[Toco Xa-

ae)
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Final topology

In a similar fashion, we can define the final topology on a non-empty set X by setting X as the
image space instead of the domain space of a map. More precisely, consider a map

Yy =X,
where Y is a topological space. We can associate to X a topology defined as follows

e a subset of X is open if and only if its preimage is open in Y.

Remark 2.3.12.
Notice that the map f is not necessarily injective, hence the preimage of U being open in Y is
not the same as U being the image of an open set in Y.

We denote this topology by F. Similar to Proposition we have the following proposition
about the relation between this topology and the continuity of f.

Proposition 2.3.13

Given a topology 7 on X, the map f is continuous with respect to T if and only if T is
coarser than F.

Proof. If f is continuous, then for any U € T, the preimage f~1(U) is open in Y, hence by the
definition of F, we have
UeF.

This implies that
TCF.

Conversely, if T C F, for any U € T, we have U € F. By the definition of F, the preimage
f~1(U) is open in Y. Hence f is continuous. O

Similar to the initial topology, we can generalize the above discussion and consider a collection of
maps from topological spaces to X. Let (Y, 7a)aco be a collection of topological spaces. For
each a € 2, we denote by

fa:Ye — X,

a map from Y, to X. Then we consider the following set
B={UeP(X)|Vaec®, f'(U) € T},
as a subbasis and denote by F the topology on X generated by B.

Definition 2.3.14

The topology F constructed above is called the final topology on X induced by (fs)acq-

A generalization of Proposition [2.3.13| can be stated as follows, which can also be used as the
definition of the final topology on X with respect to (fu)acq-
Proposition 2.3.15

Given any topology T on X, all maps f,’s are continuous with respect to 7 if and only if
T is coarser than F.
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Let X be a non-empty set and (X, )qcq be a family of subsets of X whose union is X. Denote
by tq the inclusion of X, into X. Assume that for each «, the subset X, is equipped with a
topology 7T,. Then the final topology on X induced by (to)acq is called the coherent topology on
X induced by (X4 )acq, also called the weak topology on X.

If X is a topological space and (X, )acq is an open cover of X, then for each «, the topology
on X, is the subspace topology. Then the coherent topology coincides with the given topology
on X.

How to describe a final topology

It is slightly more complicated to describe a final topology. By the definition of the final topology,
any open set U in X must have the f,-preimage open in Y,. Hence U is necessarily the f,-image
of an open set of Y,. Hence with the same notation as above, we start by considering the
fa-images of open sets in B,

{fa(V) [V € Ta}.

Notice that since f, is not necessarily injective, we only have

vV C N fa(V)),

instead of equality in general. Hence we do not necessarily have every f,(V) open in X with
respect to the final topology. We need those V € T, such that f;(f,(V)) is still open in Y.
Hence we consider the following set

C=J{faV) |V ET ¥BEQ, f5 (fa(V)) € T5}.
ae

which is a subbasis of the final topology.

Quotient topology

Let X be a non-empty set and R C X x X be an equivalence relation on X. We denote by X/R
the set of R-equivalence classes and
7m: X - X/R,

the canonical projection.
Assume that X admits a topology, then the final topology on X/R induced by 7 is called the
quotient topology on X/R.

Example I: Quotient by a group action

We have learned groups actions on a set. By considering the orbits decomposition, each group
action on a set X induces a partition of X, hence an equivalent relation on it. If moreover X
admits a topological structure, then it induces a quotient topology on X/R. In this following, we
give some explicit examples.

When talking about the circle S*, we usually consider the unit circle in the complex plane and

define it as the following set 4
St = {7 | g € R}.

Alternative, we can also consider S' as a quotient space of R by an action. We consider the
real line R and the group Z of integers acts on it by

FfiZxR—-R
(nyz) > xz+n
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For any z € R, its orbit is
Oy ={z+n|neZ}.

‘We consider
R/Z := {0, | z € R}.

To describe the final topology, it is enough to describe a collection of subsets of R/Z whose
preimages form a basis of the topology of R.

We first describe a basis of the topology on R. By considering the Euclidean metric on R, a
basis can be given by considering all open intervals. We denote this basis by B.

For any open interval I € B of R, we consider its image under 7. Notice that the image of
any open interval of length greater than 1 is R/Z. We only need to consider the open interval
with length smaller or equal to 1. To give an explicit description, we use the following fact: there
is a bijective map

v:R/Z —[0,1),

by sending an orbit to its unique representative in [0, 1).
We consider the composition
pom:R—10,1),

then the image of an open interval in R with length smaller or equal to 1 is one of the following
two types:

e either it is an interval (a,b) C (0,1);
e or there are ¢ and b in (0, 1) with a < b, such that the image is [0,a) U (b, 1).

Moreover their preimages in R are all open. Hence they can generate the final topology on [0,1).

RN

S

Figure 2.3.3: A neighborhood basis of a point in (0,1) (left); a neighborhood basis of 0 (right)

Consider the topology on [0, 1) generated by these two kinds of open sets, we may find the
resulting topological space is homeomorphic to S', and the following map

¥ :[0,1) — S,
x> 2,
is an homeomorphism.

In this way, we found that the space R/Z with quotient topology is topologically the same as
St

Remark 2.3.18.

In fact, we can even going further to talk about metric geometry in this example. Since Z acts
isometrically on R "properly discontinuously", the metric on R induces a metric on R/Z whose
length is 1.
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Remark 2.3.19.
We will come back to this example when we talk about "fundamental group” and "universal cover".

Example II: Gluing spaces by identifying points

The third way to obtain a circle topologically is familiar to everyone the most in some way. In
our daily life, we can tie two ends of a rope together to get a circle. We will give a mathematical
description of this process.

We consider the unit interval [0, 1] on R as a subspace. The goal is to "glue" 0 and 1 together.
We consider the following equivalence relation:

R :={(z,z) | z €[0,1]}U{(0,1),(1,0)} C [0,1]2.

Then in the quotient space

[0,1]/R,

the point 0 and 1 are identified together.

Figure 2.3.4: Identifying 0 with 1.

We can show that the set [0,1]/R with the quotient topology is homeomorphic to the circle.
To be more precise, we notice that the topology on [0, 1] is the subspace topology, hence a basis
can be given by considering the following three types intervals

 open intervals in [0, 1],
« intervals [0,z) for any = € (0,1],
o intervals (z,1] for any = € [0,1).

Let 7 denote the quotient map. Notice that the singletons 0 and 1 are not open, hence the set
7([0, z)) should not be open in the quotient topology, since

n = (n([0,2))) = [0,2) U {1},

which is not open in [0, 1]. A neighborhood basis of w(0) can be given by

{m([0,2) U (y,1]) |z € (0,1], y € [0, 1)},

Under this topology, notice that not only 0 and 1 are glued together, so are their neighborhoods.
Hence, the topological space [0,1]/R is homeomorphic to St.
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Figure 2.3.5: Gluing neighborhoods of 0 with neighborhoods of 1 in [0, 1].

The above example shows how we describe "glue two point together' in a mathematical way
using equivalence relation. A slightly more complicated example is the following way to get torus.

We consider the unit square D in R? with vertices
v1 = (0,0), va = (1,0), v3 = (1,1), v4 = (0, 1).

For any pair of points p and ¢ in R?, the segment connecting them can be parametrized by [0, 1]
in the following way
p(t) = (1 —t)p+tg, t €0,1].

We then define the following equivalent relation

R :={(u(t),v(t)) |Vt €[0,1], u(t) = (1 — t)vs + tva, v(t) = (1 — t)vg + tvg}U
U{(u(t),v(t)) |Vt €[0,1], u(t) = (1 — t)vy + tvg, v(t) = (1 — t)vy + tvg U
U{(v(t),u(t) |Vt € [0,1], u(t) = (1 — t)vy + tvg, v(t) = (1 — t)vg + tvz}U
U{(v(t),u(t)) |Vt € [0,1], u(t) = (1 — t)vy + tvg, v(t) = (1 — t)vg + tvz}U
U{(v,v) | v € D} c D%

The quotient space D/R is then obtained by identifying the sides v1vs (resp. v1v4) and vqvs
(resp. vous). The resulting surface is a torus which we denote by 7. Notice that the four vertices
of D are identified together and we denote it by p.

Similar as in the previous example, roughly speaking, when we glue two points on the sides of
D, we also glue their neighborhoods together to get a neighborhoods of the resulting point in T,
and the neighborhoods of four vertices are glued together to get neighborhoods of p in T' (See
Figure for an illustration).

The following example is more like what we do when making Baozi.

When we make a baozi, if we forget those pleats, roughly speaking we change a disk into a sphere
by identifying the boundary of the disk to a point. Mathematically, we consider the unit disk D
in C given by

D={zeC||z] <1}.

We consider the following equivalence relation

R :={(z,2) | z€ DU (S")? c D?
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Figure 2.3.6: Gluing opposite sides of a square step by step.

Then the quotient space D/R is a sphere (See Figure for an illustration). In particular, we
denote by p the resulting point by identifying points in S* together, and a neighborhood of S* is
then sent to a neighborhood of p.

Figure 2.3.7: Identifying all points in S! together.

From above examples, we may conclude that by taking quotient, we may identify certain
points together to get a point, and at the same time we also identifying their neighborhoods to
get the neighborhood of the resulting point for the quotient topology.

Question 2.3.23
Consider the unit circle in the Fuclidean plane

SUi= {2 | g € R}.

We consider the subgroup (ry) of the isometry group of the Fuclidean plane generated by the
rotation r, which rotates the plane around the origin for an angle o ¢ 2mQ counterclockwise.
Describe the quotient topology on St /(r.).

In the above examples, what we did was to modify some part of the space to get a new space.
Next we would like to introduce two ways to construct new spaces by connecting several given
spaces together.
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Let (Xa, Za)aco be a family of topological spaces X, marked by a point xz,. We consider the
disjoint union of these spaces
X=X

a€c)

and the coherent topology on X is generated by the topologies on X, ’s (See Example [2.3.16]).
We define the following equivalence relation

R :={(z,z) € X% |2 € X} U {(w0,75) € X* | a, B € Q}.

The quotient space X /R is called the wedge sum of (X4, Za)acq and is denoted by

V (Xa,2a).

acl)

Intuitively, what we have done is identifying all z,’s together. Let us denote this resulting point
by y € X. Roughly speaking, the neighborhood of y can be obtained by two steps: first taking
one neighborhood for each x,, then identifying all z,’s together.

For example, we consider the wedge sum of two circles, and the resulting space is the figure
eight (See Flgure 3 g)).

Figure 2.3.8: Wedge sum of two circles.

Consider two n-manifolds M7 and Ms. Let By and Bs be open n-balls in M7 and M, respectively,
and denote their boundary in M; and My by A; and Ay. Since both A; and Ay are (n—1)-spheres,
there is an orientation reversing homeomorphism

A — A,

We consider the disjoint union
N = (M; \ By) U (M3 \ Bs),
with the coherent topology, and construct the following equivalence relation
R :={(z,z) € N> |z € N}U{(z, f(z)) € N* |z € A,y U{(f(z),2) € N* |z € A}.
The quotient space N/R is called the connected sum between M; and Ms, and we denote it by
My# M.

Figure [2:3.9]is a connected sum of two copies of torus.
Remark 2.5.26.

Notice that the construction of a connected sum can guarrentee that the resulting space is still
an n-manifold.
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Figure 2.3.9: Connected sum of two torus.

We end this part by one example which is a technique usually called "cone off" part of a space.

Let X be a topological space. We consider the following product space
X x [0,1].
A cone based on X is then defined as the following quotient space
Cone(X) := X x [0,1]/R,
where
R = {((.1), (,1) € (X x[0, 1) | 2 € Xx[0, 1}U{((2, 1), (3 1)) € (X x[0,1])? | 2,y € X x[0,1]}.

If X = S, the above construction gives exactly the cone that we are used to know (See Figure

2.3.10| for an illustration).

1/\
v

*@ *A
U

Figure 2.3.10: A cone.

The above construction can be done for a part of the space X. Let A be a non empty subset
of X. We consider the following disjoint union

Y = X U Cone(A4).
We define an equivalent relation on it by
R:={(yy) €Y’|yeY}U{(z,(2,0) €eY?|z e A}.

Roughly speaking, the space Y/R can be understood as gluing Cone(A) to X along A. The
process of changing X to Y/R is called "coning off A in X" (See Figure[2.3.11| for an illustration).

2.4 Connectivity

We recall here three basic properties of topological spaces which we usually discuss. The intuition
of these properties has something to do with the study of Euclidean space. We will discuss them
one by one in this part.
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ST K SR e Gl

X

Figure 2.3.11: Coning off A in X.

Connected spaces

When we study the continuity in Euclidean space, it is intuitively related to the notion of
connectedness. For example, let
fila,b] = R,

be a continuous increasing function defined on a closed interval [a,b] C R. The intermediate value
theorem tells us for any y € [f(a), f(b)], there exists a point ¢ € [a,b], such that f(c) =y. In
other words, the image [f(a), f(b)] is a interval of R with no gap in the middle which consists
with our impression on connectedness.

When we follow this observation and study the connectedness for a general topological space,
we find that the connectedness can be understood in different ways which are no longer equivalent
when consider a general space. One way to say that something is connected is that it cannot be
described as a union of two disjoint components. More rigorously, we have the following definition
of being connected.

Definition 2.4.1

We say that a topological space X is connected if X cannot be written as a disjoint union
of two non-empty open subset, i.e. there is NO pair of open sets in X denoted by U and V
respectively, which satisfy the following properties:

1) U and V are non-empty;
2) UNV =
3) UUV =X.

A subset A of X is connected if by considering its subspace topology it is a connected
topological space.

Remark 2.4.2.
Alternatively, the above definition can be rewritten as: The space X is connected if and only if
the only subsets of X both open and closed are X and ().

Proposition 2.4.3
If A is a connected subset of X, so is A.

Proof. We prove this proposition by contradiction.
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Let A be a connected subset of X. If A is not connected, there are open sets U and V in X,
such that

1) UN A and V N A are not empty;
2) UNV NAis empty;
3) (UuV)nAis A
Let € U N A. Notice that U is a neighborhood of . Since z is also a limit point of A, we have

UNA#Q.

Similarly, we have
VNA#Q.

Since A C A, by 2) we have
UNVNACUNVNA=,

and by 3) we have
UUV)NA=(UUuV)NA)NnA=A4

The above discussion shows that A is not connected which is a contradiction. O
This result can be enhanced to the following one.

Corollary 2.4.4

Let A be a connected subset of X. If B is a subset of X with
ACBCA,

then B is connected.

Remark 2.4.5.
The proof is the same. In the previous proof, we only use the fact that points in A are limit
points of A, and A C A. These are still true, when we replace A by B.

Given a point x of X, there may be many connected subsets of X containing x.

Lemma 2.4.6

Let = be a point in X, and U and V' be two connected subsets containing =, then U UV is
still connected.

Proof. We prove this lemma by contradiction. Assume that U UV is not connected. Let A and
B be two non empty open sets of U UV, such that

ANB=0, AUuB=UUV.

Since A is non empty and A C U UV, one of ANU and ANV must be non empty. Without loss
of generality, we may assume that

ANU #0.
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If ANV is empty, since V C AU B, we have V' C B, from which we have
zeVnNUcCBnNU.

Therefore, U can be written as a disjoint union of two non empty open sets ANU and BNU
which contradicts to the fact that U is connected.

If ANV is also non empty, then since one of BN U and BNV must be non empty, there is
one of U can V having non empty intersections with both A and B. Without loss of generality,
we may assume that it is U. Therefore, U can be written as a disjoint union of two non empty
open sets ANU and BN U which contradicts to the fact that U is connected. O

Remark 2.4.7.

Here we consider connected sets containing x which may not be neighborhoods of x. In the
proof, the existence of x can guarantee that U NV is not empty, which is the condition needed
essentially.

Using this lemma, we may define the following equivalence relation in X: given any pair of
points x and y in X,

o 1z ~ y if and only if there is a connected set U containing both x and y.

Definition 2.4.8

An equivalence class of the equivalence relation ~ in X is called a connected component
in X.
Here are several facts about connected components of X.

Proposition 2.4.9

The connected components of X have the following properties.
1) The space X is a disjoint union of its connected components.

2) A subset of X is a connected component if and only if it is a maximal connected
subset of X.

3) A connected component is closed.

Proof. 1) This comes from the fact that each connected component is an equivalent class for an
equivalence relation on X. By the properties of equivalence classes, we have the statement.

2) Let C be a connected component of X and x be any point in C. We first show that C' is
connected. Otherwise, there are two open sets U and V' of X, such that

e UNC #0,VNC # 0
e UNV =0
e (TUV)NC=C.

Let z e UNC and y € VNC. Since x ~ y, we have a connected subset W of X containing z
and y. Notice that all points of W are equivalent to x, hence

W ccC.

By the relation among U, V' and C, we have the following facts
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s UNW D, VNW #D;
c UNVNAWCUNVNC =0
« (UUV)NW =UUV)N([CNW)=CnW =W.

Therefore W is not connected which is a contradiction. Hence C' is connected.

Now we show the maximality of C. Let D be any connected subset of X having non empty
intersection with C'. Let = be in this intersection. For any y € D, we have x ~ y, therefore D C C.
Hence C' is a maximal connected subset of X (no other connected subset of X containing C).

Conversely, assume that C is a maximal connected subset of X. Let x be a point in C. Since
C is connected, we have
CClal,
where [z] is the equivalence class of x.
Let y be any point in X with y ~ x. By the definition of the equivalence relation, we have a
connected subset U containing both z and y. Then the union U U C' is again a connected subset
containing x. Since C' is maximal, we have

vucC=_cC.
Therefore U C C' which implies that y € C'. Hence
[z] C C.
As a conclusion, we have
C =z,
which is a connected component by definition.

3) If C is a connected component of X, 2) shows that C' is connected. By Proposition m
its closure C is also connected and contains C. By the maximality of C, we have

C=C,
which is closed. O

Remark 2.4.10.
The point 2) is an equivalent way to define a connected component in X.

The above proposition told us that the closedness holds all the time. Since the openness is
preserved by finite intersection, we have the following immediate corollary of the above proposition.

Corollary 2.4.11

If X has finitely many connected components, then each of these components is open.

However the openness of a connected component does not hold in general. For example, we
consider Q as a subspace of R (consider the Euclidean metric topology). Let p be a rational
number. Then we can show that its connected component is {p}.

In fact, we can always cut R at an irrational number to separate Q and any of its subsets into
two subsets which are both open and closed, unless this subset contains only one element. Notice
that for a basis of the subspace topology on Q can be given by the intersections between Q and
open intervals in R.

The openness can be guaranteed when the space satisfies the following local property, called
local connectedness.
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Definition 2.4.12

The space X is said to be locally connected if for any point = € X, for any neighborhood
U of x, there is a connected neighborhood V' of x satisfying V' C U.

Considering a neighborhood basis of a point in X, the above definition is equivalent to the
following one.

Proposition 2.4.13

The space X is locally connected if every point z € X admits a neighborhood basis consisting
of connected sets.

Remark 2.4.14.

Since this definition is about local property, there is no reason that we should expect that a locally
connected space is connected. For example, the subspace (0,1) U (2,3) of R with the Euclidean
metric topology is locally connected, but not connected.

When we check the other direction of implication, it is also not true in general. Notice that in
the definition of local connectedness, we do not require only one connected neighborhood at each
point. Instead, we require the existence of a neighborhood basis formed by connected subsets at
each point which is strictly stronger. We may consider the following example to see this.

This example is usually called the "topologist’s sine curve". We consider the map
f:(0,3) =R,
o1
x > sin —.
x

Consider the graph

Graph(f) :={(z, f(z)) | = € (0,3)}.
Then we consider the set given by

X = Graph(f) U{(0,9) |y € [-1,1]}.

(See Figure for an illustration.)

Consider it as a subspace of R?. Then given any point
pe {(Ovt) ‘ te [_171]}a

any of its neighborhood basis will essentially contain some disconnected pieces.

Proposition 2.4.16

A space X is locally connected if and only if the connected components of any open set in
X are open.

Proof. If X is locally connected, the each point of x has a neighborhood basis in which all sets
are connected. Given any open set U of X, by the previous discussion, we may write it into a
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Figure 2.4.1: The set X.

disjoint union of connected components:
U=|] Ca
a€e

For any a € Q, and any x € C,, since U is a neighborhood of z and X is locally connected, there
is a connected open neighborhood V,, of z, such that

Ve CU.

Since V. is connected, we have
Ve C Cy.

Hence C,, is a neighborhood of z. Since x can be choose arbitrarily in C,, we have C, open.
Therefore we may conclude that for any a € €2, the component C,, is open.

Conversely, for any x € X, we consider a neighborhood U of z and denote U, is an open
neighborhood of x contained in U. We may write it into a disjoint union of connected components:

U= | | Ca

Choose 3 € ) such that x be a point of C. Since all connected components of U, are open, we
have Cz open in U,. By the definition of subspace topology, there is an open subset V' of X, such
that

Cﬁ =VnuU,.

Since both U, and V are open in X, we have C,, open in X. Therefore the neighborhood U of =
contains a connected neighborhood Cj of x. Hence X is locally connected. O

Corollary 2.4.17

If a space X is locally connected, then each connected component of X is both closed and
open.
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Remark 2.4.18.
If we work with nice topological spaces such as manifold, we can always assume that this is the
case.

Another key feature of connectedness is that it is preserved by a continuous map.

Proposition 2.4.19

Let X and Y be two spaces and
f: X =Y,

be a continuous and surjective map. If X is connected, then Y is connected.
Proof. We prove it by contradiction. If Y is not connected, then there are two nonempty open

subsets of Y, denoted by V; and Vs, which are disjoint and whose union is Y.
Since f is continuous and surjective, the preimages

Ui=ftV)#0 and Uy= f (Vo) #0
are both open in X. Moreover,
)N V) = T (in V) = 0.
VUi (V) = I (Viu V) = X.

Hence X is not connected, which is a contradiction. O

Corollary 2.4.20
Let X and Y be two spaces and
f: X =Y,

be a continuous. If X is connected, then the image f(X) is a connected subset of Y.

Using this property, we may have another equivalent definition of connectedness.

Definition 2.4.21

A space X is connected if any continuous map from X to a space with discrete topology is
constant.

Remark 2.4.22.
For example, we may consider the space {0, 1} with discrete topology.

Path connected spaces

Another way of understanding connectedness is that we can go from any point to another one in
a continuous way (walking along a path). This is actually the notion of being path connected.

Definition 2.4.23

A path in X is a continuous map

~v:[0,1] —» X.
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Definition 2.4.24

The space X is said to be path connected if for any pair of points p and ¢ in X, there is a
path
~v:[0,1] = X,

such that v(0) = p and v(1) = q.

Some spaces familiar to us are path connected. We give some examples.

We consider R™ equipped with the Euclidean metric topology. Given any pair of points p and ¢
in R™, we consider the map
~v:[0,1] - R"

t— (1—1t)p+tg.

Figure 2.4.2: The segment connecting p to ¢

The image of v is a segment of R™ connecting p to ¢ (See Figure [2.4.2)). We may verify with
the definition that this is a path in R™. Hence R" is path connected.

We use the coordinates in R™*1:
Sn — {(mla ...,xn+1) € Rn+1 | 1‘% 4ot $i+1 _ 1}.

Let p and ¢ be two points in R”, and denote by P the plane in R"*! passing p, ¢ and O the
origin. The intersection S™ N P is a circle of radius 1 and passing p and ¢. It is enough to show
that a circle is path connected (See Figure for an illustration for S2).

N

Figure 2.4.3: Cutting an 2-sphere with a 2-plane

Consider the unit circle S in R2?, which can be described as follows:

St = {(cos0,sin ) € R* | € R}.
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Assume that
p=(cosf,sinfy), ¢q= (cosby,sinbsy),

we can define
~v:[0,1] — St

t > (cos((1 —t)fy + tb1),sin((1 — )0 + tb1)).
This is a path in S! connecting p to ¢. Hence S is path connected, so is S™.

Another way to see this is to consider the stereographic projection. Let N = (0, ...,0,1) € R*+1,
We consider the map

7 S"\{N} = {(z1, ..., 7,,0) e R"™ | 2, € R, ..., 3, € R},

(yl, o Yny Ynt1 — 1) .

(Y15 ooy Ynt1) — (0,...,0,1) + 1
— Yn+1

N

m(p)

Figure 2.4.4: The stereographic projection of S2

One may verify that this map is a homeomorphism. Since R™ is path connected, for any
points p and ¢ in S™ \ {N}, there is a path v in R™ connecting 7(p) and 7(g). We consider the
composition 7! o~y. This is path in S™ connecting p and ¢. If one of p and ¢ is IV, we may use an
SO(n) element A to move p and ¢ away from N. The above discussion works for A(p) and A(q),
and we have a path 7 connecting A(p) and A(g). Then A=! o is a path connecting p and q.

Remark 2.4.27.
The "n" in the notation S™ stands for the dimension of S™. Hence S™ is the unit sphere of R™*!.

Notice that [0, 1] is connected, hence any path in X would be connected. This indicated that
the path connectivity may implies the connectivity. In fact, this is true and we state it as follows.

Proposition 2.4.28

If a space X is path connected, then it is connected.

Proof. We prove it by contradiction. Assume that X is not connected, then there are non-empty
open set U and V such that
Unv=0 UUV=X.

Let x € U and y € V. Since X is path connected, there exists a continuous map

a:[0,1] —» X,
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such that a(0) = z and a(l) = y.
Let
A=a"Y(U), B=a (V).

Since « is continuous, both A and B are open in [0, 1]. Moreover, since
unv=0 UUV=X,

we have

AnB=10, AuB=][0,1].

Notice that 0 € A and 1 € B, both A and B are non empty. Hence [0, 1] is not connected which
is a contradiction. O

When we consider manifolds, it seems that there is not much difference between the connect-
edness and the path connectedness. However, the other direction does not hold in general. See
the following example.

We consider again the "topologist’s sine curve' (See Example . Same as before, the topology
on X is the subspace topology by consider X as a subset of the Euclidean space R2.

We use the same notation as in Example Notice that the graph of f is path connected,
hence is connected, and a connected component of X containing any point of Graph(f) must
contain the entire graph. Since a connected component is also closed, therefor this connected
components must contains all limit points of Graph(f). Notice that points in {(0,y) | y € [-1,1]}
are all limit points of Graph(f), hence are in its connected component. This means that there is
only one connected component in X. Hence X is connected.

However, the space X is not path connected. Let p = (0,0) and ¢ = (1,0). Given any path ~
with v(0) = p and (1) = p, for any

P e{(0y) lye[-11]}

there is a sequence (t,)nen With

lim ¢, =0,
n—oo

such that

lim y(t,) =p.

n— oo

This contradicts to the fact that v is continuous.

Similar to the local connectedness, we also have a notion of local path connectedness which
defined in a similar fashion.

Definition 2.4.30

The space X is said to be locally path connected if for any point z € X, for any
neighborhood U of z, there is a path connected neighborhood V' of z satisfying V C U.

Similar to the case for the locally connected property, we have the following proposition for the
locally path connected property.

Proposition 2.4.31

The space X is locally connected if every point x € X admits a neighborhood basis consisting
of path connected sets.
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Similar to the relation between connectedness and local connectedness, there is no implication
between path connectedness and local path connectedness in either way. One direction is easy
to understand. The local path connectedness only require conditions in neighborhoods at each
point. Hence it cannot not implies the path connectedness. To see the other direction does not
hold either, we may consider the following example.

Consider the following subset of R2:

X = {(t,0) 1€ 0,1} UJt©5) s € 0,1} (U {(L)

neN

(See Figure for an illustration.)

Figure 2.4.5: Being path connected but not locally path connected

We consider the Euclidean metric topology on R?, and consider the subspace topology on X.
Notice that X is not locally path connected in any point on the vertical segment

{(0,5) [ s € [0,1]}

other than (0,0).

Remark 2.4.33.
Manifolds are nice topological spaces in the sense that they are at the same time connected, path
connected, locally connected and locally path connected.

2.5 Compactness

One fact familiar to us is that a continuous map from an interval [a, b] to R is uniformly continuous,
which means as along as z and y are closed enough (< §), so do their f-value (< ¢€) and this
constant d is uniform, i.e. independent of choices of x and y.

In the proof of this fact, we use one properties of [a,b] which is that any of its open cover
contain a subcover which is finite. Here a cover is a collection of subsets whose union is the entire
space. The notion related to this property is the compactness of a space.
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Compact space

Definition 2.5.1

Let X be a topological space. A family A = (A, )acq of open subsets of X is called an
open cover of X if
X = 4o

a€e)

If a subfamily A’ C A is also an open cover of X, we call A" a subcover of a cover A.

Remark 2.5.2.
In some references, the equality

X=J 4

ae)

is replaced by
X c U Aa,

[61<19)

which has some advantage when we discuss compact subsets.

Definition 2.5.3

A topological space X is said to be compact if every open cover of X admits a finite
subcover.

A subset of a topological space X is compact if it is a compact space with respect to
the subspace topology.

Remark 2.5.4.
By considering the relation between open sets and closed sets, we can also define the compactness
by the following condition:

e given any collection of closed sets in X with empty intersection, it has a finite subcollection
with empty intersection.
We first give some properties of a compact space.

Proposition 2.5.5

1) A closed subset of a compact space X is compact.
2) If a space X is Hausdorff, then any compact subset of X is closed.
Proof. 1) Let A be a closed subset in X. Hence its complement A€ is open. Given any open cover
{Uqa}acq of A, for each «, there is an open set V,, of X, such that
U, =V,NA.

Then the following collection
{Va}aEQ U {Ac}a
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is a open cover of X. Since X is compact, it contains a finite subcover of X denoted by
{Wi, ... uWo} C{Vataca U {A}.
Then by removing empty intersections if exist, the collection
{WinA,. .. ,W,n A}
is an open cover on A. Notice that A°N A is empty set, hence we have
{WinA, ..., W,NA} C{Us}aca-

This implies that A is compact.

2) Let K be a compact subset of X. We would like to show that its complement is open.
Since X is Hausdorff, for any x € K¢, for any y € K, there are open neighborhood U, of x and
open neighborhood Vj, of y in Y, such that

Unv =4.

Notice that
Kc V.

yeK

By the compactness of K, there is a finite collection
Vi, ...V}

associated to points y1, ..., y, € K, such that

K= O(WQK).

i=1

We denote by Uy, ..., U, the open neighborhoods of z associated to yi, ..., y,. Then we find a
open neighborhood
n
A
i=1

of z and an open neighborhood

Vi
1

n

J

of K which are disjoint.
The above construction shows that K¢ is a neighborhood of x. Since x is chosen arbitrarily,
the set K€ is a neighborhood of any of its points, hence is open. Therefore K is closed. O

Compactness is also a property preserved by a continuous map.

Proposition 2.5.6

Let X and Y be two spaces and
f: X =Y,

be a continuous and surjective map. If X is compact, then Y is compact.
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Proof. Given any open cover
{v&}aeﬁ

of Y, we consider the collection of their preimages

{U = fﬁl(Va)}aeﬂa

which is an open cover of X. Since X is compact, there is a finite subcover

{Uy,..., U},

whose images
Vi, Vi

form an open cover of Y which is a subcover of

{v&}aeﬂ-
Hence Y is also compact. L

This means that similar to the connectedness, the compactness is also preserved by continuous
maps.

One thing that we have seen in analysis course is that any non constant sequence contained in
a compact subset of R has a convergence subsequence. This holds for a general second countable
space, i.e. a topological space with a countable basis.

Proposition 2.5.7

Let X be a second countable topological space. Then X is compact if and only if any
sequence (Z,)nen in X admits a convergent subsequence.

Proof. Notice that if (z,,),en has a constant subsequence, we may always choose this subsequence
which is convergent. Hence we will assume from now on that for any m,n € N, we have x,, # z,.

Assume that X is compact. If the sequence has no convergent subsequence, then for any
x € X, there is an open neighborhood of & whose intersection with (z,)nen has only finitely
many elements. Then such open sets form an open cover of X. Since X is compact, there is a
finite subcover of X denoted by

associated to points 1, ..., x,. Since

there must be one of Uy, ..., U, whose intersection with (z,),en has infinitely many elements,
which is a contradiction.

Conversely, if X is not compact, then there is a infinite cover C of X which does not admit
any finite subcover of X.

Since X is second countable which admits a countable basis

B={U,|neN},

we consider

By={UeB|3aVecC,UcV}

Then By is an infinite cover, since B is a basis and C is a cover of X. We denote

BOZZ{U£|7LGIN}
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By assumption, C does not admit a finite subcover, hence By does not admit a finite subcover.
(for otherwise, if U7,...,U] in By form a cover of X, denote by Vi, ..., V,, their corresponding
elements in C, then V1, ...,V also form a cover of X.)

Therefore for any n € N, we can find a point
x, @ U U---UU).

Notice that since By is a cover, for each n € N, there must be a index N € N, for any m > N, we
have
x, €U U---UU..

Consider this sequence, and we would like to show that this does not have a convergent subsequence
by contradiction. Assume this is the case. Then (z,),en has not constant subsequence. By
taking a subsequence of (z,)nen and taking unions of the first several U/’s if necessary, we may
assume that (2, )n,en are pairwise distinct, and is convergent.

We denote by z a limit point of this sequence. Hence for any neighborhood U of = contains
all but finitely many points in (x,)nen. Since x € X, there is an open set U]{ € By, such that
zeU j' Notice that U ]’ is a neighborhood of x, hence contains all but finitely many elements in
(Zn)nen, or more equivalently, there is an Ny € N, such that for any n > Ny, we have

T, €Uy U---UU;.

This contradicts to the construction of x,, with n > j.

Remark 2.5.8.

The property that any sequence admits a convergent subsequence is called the sequential compact-
ness. Notice that a separated metric space equipped with the metric topology is always second
countable. Hence the above equivalence between compactness and the sequential compactness
holds in these cases. In particular, it holds for R"™ and any n-manifolds with n € N*.

Now we consider Hausdorff spaces.

Proposition 2.5.9

Consider X and Y two Hausdorff topological spaces, and a map
f: X-=>Y

Assume that Y is compact. Consider a non-empty subset A of X and assume that a € A.
Then f admits at least a limit value y € Y when z tends to a in A. If moreover such y is
unique, then f has y as the limit when z tends to a in A.

Proof. See Definition [2.1.38] for precise definitions.
Let V(a) denote the set of all neighborhood of a, then we consider the following subset of Y:

Lim(A)= () fUNA).
UeV(a)

By definition, if y € Y is a limit value of f when x tends to a in A, then for any neighborhood V'
of y and any neighborhood U of a, we have

FUNA)NV £,
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This is equivalent to y € Lim(A).

The firs part of the proposition is equivalent to say that Lim(A) is not empty. We prove it by
contradiction. Assume that it is empty. Since Y is compact, since f(U N'V)’s are closed, there
are finitely many of them whose intersection is empty:

fOinA)n---n fUxNA) =0.
Hence, we have
fUin--NUNA) CfUNAN---NFUNA) =0.
This implies that
Un---NnU,NA=0.
However, this is impossible, since U; N --- N Uy is a neighborhood of a and a € A.

Assume that such y is unique. Let V' be an open neighborhood of y. Hence V¢ is closed. On
the other hand, the above discussion shows that

{y} =Lim(4)= () f(UNA).
UeV(a)
Therefore
ven | () fTnA)] =0
UeV(a)
Since Y is compact, there is a finite collection of neighborhoods Uy, ..., Uy of a, such that
k e —
i=1

which implies that
venf(Upn---NUNA) =10,

This is equivalent to
fOLiN---NU,NA) CV.

Notice that Uy N --- N Uy is a neighborhood of a. Hence y is the limit of f when z tends to a in
A. O

Here is a corollary discuss the same problem as in Proposition 2.5.7]
Corollary 2.5.10

In a compact Hausdorff space, any sequence admits a limit point. If this point is unique,
then the sequence converges to this point.

Proof. Consider X = {(n+1)~' | n € N} U{0} as a subspace of R. Given any sequence (y,)nen
in a compact Hausdorff space Y, define

f: X—=Y
with f(n) = y, for any n € N. Then the corollary can be deduced from the above proposition. [
Remark 2.5.11.

Having a limit point (need infinitely many sequence points in any neighborhood) is not exactly the
same as converging to a point (need all but finitely many sequence points in any neighborhood).
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Next we would like to show that the compactness is preserved when taking products among
topological spaces.

Theorem 2.5.12 (Tychonov Theorem)
Any product of compact spaces is compact.

Proof. Let {X,}acq be a collection of compact topological spaces. We denote by

X:HXa

a€eQ

their product space (equipped with the product topology). The goal is to show that this is a
compact space.
By the definition of product topology, it is generated by the following subbasis

A= {pr, (V)| V open in X,}.

Lemma 2.5.13

If a topological space Y is not compact, then any subbases covering Y admits a subcover
with no finite subcovers.

Remark 2.5.14.
Here the requirement on a subbasis of covering Y is due to Definition [2.1.19| used previously,
where we do not require a subbasis cover the whole space.

In other words, the above tries to say that if Y is not compact, then given any subbasis B
covering Y, it has a subset C C B which covers Y and has no finite subcover.

Proof of Lemma[2.5.13. We consider the collection © of all open covers of Y with no finite
subcover which form a subset of P(P(Y)):

©:={C CcP(Y) |C is a cover of Y with no finite subcover}.

Since Y is not compact, the set © is no empty. Now we consider the partial order induced
by inclusion in P(P(Y)). Notice that each chain has a maximal element. Hence by Zorn lemma
there is a maximal element in © denoted by C,qz-

Consider any subbasis B which covers Y. For any y € Y, there is V € C,j,42, such that

yeV.
By the definition of a subbasis, there are finitely many elements
Uy,...,U, € B,

such that
reUnN---NU,CV.

By the maximality, we have Uy, ..., Ux € Cpnqe- For otherwise, without loss of generality, we may
assume that Uy € Cpuaq- Then since Cpnq, is maximal, the cover

{Ul} U Cma:m
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has a finite cover of Y, denoted by
U17 ‘/17 cey ‘/l .

Since U; C V, the collection
{‘/7 V17 sy ‘/2} C Cmaz

is a finite cover of Y which is a contradiction.
Now we consider B N Cyqz, this is a subset of B which covers Y. Moreover it has no finite
subcover. O

Now we go back to the proof of Tychonov Theorem. We consider the subbasis A describe
above. We would like to show that this subbasis has no subcover of X with no finite subcover.
More precisely, given any subcover C in A, there is af2, such that there are

{pr; (V)| VeLcT.}Cc,

where 7T, is the topology on X,, £ is a subset of proper open sets in 7, such that UL = X,,.
Such an « does exists, otherwise C is not a covering of X.
Notice that £ is an open cover of X, since X, is compact, there is a finite subcover

{Vla ey Vk}

of X,. This moreover implies that their preimages under pr, form an open cover of X, which is
a finite subcover of C. Hence X is compact. O

Remark 2.5.15.
The proof of Tychonov Theorem uses the Zorn Lemma which is equivalent to the Axiom of
Choice.

Locally compact spaces

There is also notion of local compactness, however the way with which we define it is different
from what is used previously for local (path) connectedness.

Definition 2.5.16

A space X is locally compact at a point x € X if there is a compact neighborhood U of
x. A space is locally compact if it is locally compact at every point x € X.

If the space X is equipped with the discrete, topology, then every point z in X is a compact
subset. This is not difficult to see. The subspace topology of {z} has only two open sets: §) and
{z}. Hence {x} is compact. At the same time {z} is a neighborhood of z. Hence X is locally
compact.

Notice the first half argument works in any topological space. A single point subset in any
topological space is compact. However such a subset is not always open in an arbitrary topological
space.

Here is another extremal case. If X is a compact topological space, then X is locally compact,
since X is a neighborhood of any of its points. Moreover, any closed subset in X is compact (See
2.5.5)).
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Let X be the n-dimensional Euclidean space with n € N*; and consider its metric topology. Then
it is locally compact, since any closed ball is compact in R”, and it contains an open ball which is
open, hence it is a neighborhood of its center. We may show that every sequence in a closed ball
has a converges subsequence. Then Proposition shows that a closed ball in R™ is compact.

Proposition 2.5.20

In fact, if X is Hausdorff and locally compact at = € X, then it has a compact neighborhood
basis of x.

Proof. Since X is locally compact at z, there is a compact neighborhood K of x. Let U be an
open subset in x contained in K, we would like to show that there is a compact neighborhood of
x contained in U.

Notice that X is Hausdorff. Let y be a different from z in K, then there are open neighborhoods
U, and V,, of x and y respectively, such that

U, NV, =0.
Figure

Notice that
m Uy = {z}.
yeK\{z}
We denote .
W, = Ug.
Notice that y € W, for any y € K \ {z}. Hence
{Uyu{Wy, NK |y e K\ {z}}

is an open cover of K. Since K is compact, hence there is a finite subcover. Hence there is a
subcover of K:

(U, W,, NK,..,W, NK}.

Then
W=W,U---UW, )NK

is open in K, whose complement is closed in K. Since X is Hausdorff, so is K. Hence K \ W is
also compact. Moreover
WuU =K

implies that
K\W CU.

Notice that we have

K\W=(U, U---UU,)NK

hence it is a neighborhood of z, since Uy, is a neighborhood of x. O

Corollary 2.5.21

Any open subset of a locally compact Hausdorff space is locally compact.
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Compactness and continuous maps

In this part, we discuss the relation between compactness and continuous maps.

Proposition 2.5.22

Let X and Y be compact Hausdorff topological spaces, and f : X — Y be a continuous
map. If f is bijective, then f is a homeomorphism.

Proof. 1t is enough to show that f~! is also continuous. We can show that f sends closed subsets
in X to closed subsets in Y. Since both spaces are Hausdorff and compact, a closed subset in X
is compact, hence f(X) is also compact and hence closed in Y. (See Proposition [2.5.5)) O

2.6 Topological properties/Topological invariants

When f is a homeomorphism from X to Y, its inverse f~! is a homeomorphism from Y to X.
Given any set 2 of topological spaces, we can verify that "being homeomorphic" satisfies the
reflexivity, the symmetry and the transitivity, therefore induces an equivalence relation in 2.

Definition 2.6.1

A property P of a topological space X is said to be a topological property if it is satisfied
by any other topological space Y which is homeomorphic to X.

Remark 2.6.2.
In the study of topology, we mainly consider topological properties of a topological space.
Therefore, if two spaces are homeomorphic, they cannot be distinguished from the topological
point of view.



Chapter 3

Homotopy and Fundamental
Groups

From this chapter, we begin to study spaces from the topological point of view. In the other
words, we consider topological spaces and study what are not changed (also called topological
invariants) when we modify the space globally or locally in a continuous way. The first topological
invariant that we would like to introduce in this chapter is the fundamental group.

3.1 Homotopy

Continuous deformations are everywhere either in our daily life or in various areas of mathematics.
For example, folding a piece of paper and blowing up a balloon are continous deformations of a
piece of paper and balloon respectively. On the other hand, neither tearing a piece of paper into
small prices nor puncturing a balloon is a continuous deformation.

Since we are going to considering spaces under continuous deformations, we start this chapter
by making a mathematical description, which relates to the notion of homotopy.

Definition 3.1.1

Two continuous maps f and g from the space X to the space Y are said to be homotopic

if there is a continuous map
H:Xx[0,1] =Y,

(x,1) = H(,1),

such that for each x € X, we have
H($70) :f(x)’ H(x,l):g(x).

We call such a map H a homotopy between f and g, and for each t € [0, 1], we have the

map
H : X —Y,

x> H(x,t).

Let X = {z} be a single point set. Then any point y € Y can be consider as the image of the map

f:A{z} =Y
Ty

69
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Notice that such maps are always continuous.
Given two points p and ¢ in Y, we consider the map f and g from {x} to Y, such that

f(z) =pand g(z) = q.
Consider the map
¢:[0,1] = {z} x [0,1]

t— (z,t)

This is a homeomorphism.
If f and g are homotopic to each other, we have a continuous map

H:{z}yx[0,1] =Y,

such that H(z,0) = f(x) and H(z,1) = g(x) (hence for any z’ € {x}).
If we define
~v:[0,1] =Y

tsy(t) = H(x,t)

then v = H o ¢ is continuous with v(0) = p and (1) = ¢. Hence it is a path in Y connecting p
and gq.

>~<

{z}e

Figure 3.1.1: A path as a homotopy

Conversely, if p and ¢ can be connected by a path
7:[0,1] =Y,
such that v(0) = p and (1) = ¢, then we can define a map
H:{z}x[0,1] =Y
(z,t) = H(x,t) == (t).

Hence H = o0 ¢! is continuous with H(z,0) = p = f(z) and H(x,1) = q = g(z) (hence for any
a’ € {z}). Therefore H is a homotopy between f and g continuous maps from X to Y. (See
Figure for an illustration of the above discussions.)

Informally speaking, a homotopy between two maps f and g from X to Y can be understood
in the following way. Instead of two points (end points of a path) in Y, we consider two subsets
f(X) and g(X) of Y "parametrized" E| by a model space X. Instead of moving a point from one

LAlthough the maps f and g may not be injective, we borrow the terminology here.
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place to another, we now move the all points in f(X) to points in g(X) at the same time in a
continuous way.
Notice that for any point  in X, we have a continuous map

H,:[0,1] =Y,
t— H(z,t).

In other words, the point f(z) is moved in ¥ continuously as time passing and stop at g(x) at
time 1. (See Figure for an illustration.)

Figure 3.1.2: An illustration of a homotopy between f and g

Of course, for the map H, being continuous is a stronger condition than having all maps H,’s
continuous, (or every point f(x) being moved in a continuous way). Notice that the homotopy
produces, at each moment ¢, a subspace H;(X) of Y, which is again "parametrized" by X. When
we deform f(X) = Hy(X) to g(X) = Hy(X), there are certain properties should also be preserved.
For example, if X is connected, then all H;(X) should be connected. There are other things that
should be considered as well.

To be more precise, we may consider the set of all continuous maps from X to Y, associate to
it a topology and talk about path in it. The topology is called the open compact topology, and its
precise description will be given below. The rough idea is that we want not only to moving points
continuously, but also to move any compact subset of X continuously (a single point subset is
always compact).

Open-compact topology

More precisely, assume that X is locally compact, and let
C(X,Y) := {continuous maps from X to Y},

denote the set of all continuous maps from X to Y. Let K be any compact subset of X, and U
be any open subset of Y. We consider the following subset of C(X,Y):

V(K,U):={feCX,)Y)| f(K)CU}.
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The open compact topology on C(X,Y") is generated by the following subset (as a subbasis)
{V(K,U) | K C X is compact and U C Y is open}.
We now try to understand why

:[0,1] = C(X,Y)
tHHt '

is a path in C(X,Y). Let us assume that X and Y are both Hausdorff for simplicity. We consider
an open set V(K,U) in the subbasis for some compact subset K C X and some open subset
U C Y. Now we would like to show that ®~(V (K, U)) is open in [0,1]. In the other words, for
any t € @~ 1(V(K,U)), there is an € > 0, such that

{se€[0,1]]|s —t| < e} c @YV (K, U)).

This is not difficult to understand if K = {z} for some = € X. Now consider the general case and
we will discuss by contradiction. Assume the above fact is not true. Then for any €, there is an
s € [0,1], such that |s —t| < e and s ¢ ®~1(V(K,U)). In particular, we consider € = (n + 1)~*
and denote s,, € [0,1] associated to it. Notice that

S ={s, | neN}U{t}

is compact. For any s,, we have
H, (K)NnU®# 0.

Hence we have (z,,s,) € K x S, such that

Figure 3.1.3: Not continuous (Left); Continuous (Right)

Now since K and S are compact, the sequence (z,, s, )nen has a limit point (x,t) € K x S.
On the other hand, by the continuity of H, we have

H(K xS)CY,

compact. Since H is continuous at (z,t), for any neighborhood Z of H(x,t) € Y, there is a
neighborhood W of (z,t) in K x S, such that

H(W)cCZ.
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Since (z,t) is a limit point of {(z¢,s:) € K x S | n € N}, we have
ZN{H(zp,sn) | n €N} £

This shows that H(z,t) is a limit point of {H (2, s,) | n € N} which is contained in U¢. On the
other hand U*¢ is closed, hence

H(x,t) = Hy(x) € Hy(K)NU*CcUNU* =10,
which is impossible (See Figure for an illustration).

Examples

We give some elementary examples of homotopies between maps.

Example 3.1.3 (Constant homotopy).
An immediate observation from the definition of homotopy is that any continuous map is homotopic
to itself. More precisely, let X and Y be two spaces and

f:X->Y
be a continuous map. We consider the map
H:Xx[0,1] =Y
(z,t) = f(z)

which is continuous with H(z,0) = f(z) and H(z,1) = f(z) for any x € X. We call it a constant
homotopy (See Figure for an illustration).

H, = f,¥te[0,1]

Figure 3.1.4: An illustration of a constant homotopy

Example 3.1.4 (Cylinder in R3).
Now let us consider an example where S! is not a single point set. Consider the following cylinder
in R3 described using the coordinates of R3:

C={(z,y,2) eR®|2? +9°=1,0< 2 <1}
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Consider the unit circle S' in R?:
St={(z,y) eR? | 2? +y* =1}.
We can define two continuous maps

f:8t=c
(z,y) = (2,9,0)

and
g:St—=C

(z,y) = (z,y,1)

4

H

RN

Sl

\\\—// {(x,9,0) eR® [ 2> + ¢y* =1}

Figure 3.1.5: Moving S! from the bottom of the cylinder to the top.

Moving the circle from one boundary of C' to another in a parallel way gives a homotopy
between f and g. More precisely, we consider the map

H:S'x[0,1] = C
((z,y),1) = (z,9,1)

Notice that this is a continuous map (in fact a homeomorphism) with
H((x,y),0) = f(z,y) and H((z,y),1) = g(z,y)
for any (z,y) € S*.

So far in all examples all maps H;’s are homeomorphisms which is not necessary for a homotopy.
Let us see one simple example.

Consider the closed unit disk in R?:
D? = {(x,y) e R* | 2* +y* < 1}.

We consider the identity map:
id: D* — D?
(z,y) = (z,y)
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and the constant map:
Const : D? — D?

(z,y) = (0,0)
Both of them are continuous maps, which is true for any topological spaces. We can define the

following maps
H:D?*x[0,1] — D?

((z,9),t) = t(z,y)

This is a continuous map with H((x,y),0) = id(z,y) and H((x,y),1) = Const for any (x,y) € D
Hence we have a homotopy between id and Const (See Figure|3.1.6).

Sl

Figure 3.1.6: A disk shrinks to a point.

Example 3.1.6 (Homotopy of a path).
Take one rubber rope and fix two ends on the ground. The rope gives a path on the ground. We
may move the rope without moving the two ends on the grounds. This gives homotopies between
paths.

More precisely, consider vy and 7, are two path in R? such that

70(0) = 1(0) = p and 7o(0) = 71(0) = g.
We can define a homotopy in the following way:
H:[0,1] x [0,1] — R?
(s,8) = 0(s) + (71 (s) = 70(5))

(See Figure for an illustration.)

Notice that by the definition we have in particular

H(0,t) =pand H(1,t) =g,

for any ¢ € [0,1], which means that the end points are fixed during the homotopy process.

Remark 3.1.7.
In the above examples, the constructions of the homotopies uses the linear structure of R™ which
may not exist in other topological spaces.

A homotopy between two continuous maps is not unique

The key point in the definition of being homotopic is the existence of the homotopy map H,
rather than the map H itself. Normally such a homotopy map H is never unique for several
reasons.
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Figure 3.1.7: A homotopy between two paths with end points fixed.

-Reparametrization of a homotopy The maps H;’s changes as the time ¢ passes. Consider
the following map
®:[0,1] = [0, 1],

which is continuous and increasing with ¢(0) = 0 and ¢(1) = 1. Then the following map

DX x[0,1] = X x[0,1]
(@) = (z, (1))

is continuous with ®(z,0) = (z,0) and ®(z,1) = (z,1). We call it a reparametrization map.
Given f and g two homotopic continuous maps from X to Y, and denote by H a homotopy
between them, the composition H = H o ® is again a homotopy between f and g. In this case,
for any ¢ € [0,1], we have _
Ht == Hip(t)'
For example, we consider
v :[0,1] — [0, 1]
t — max{0,2t — 1}

0 3 1 t

Figure 3.1.8: A reparametrization of a homotopy.
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Then the new homotopy map H can be given as follows: for any (z,t) € X x [0,1], we have

f[(x,t) ) flx) te {0, %]
H(z,2t—1) te {%1]

Roughly speaking, for ¢ € [0,1/2], the map f is not changed, while for ¢ € [1/2, 1], the map f is
changed to the map ¢ according to the homotopy H, but with double speed (See Figure for
an illustration).

-Different choices of homotopy Another reason is that the collection of maps {H;}icjo,1)
could be different. This is not difficult to understand, if we check Example [3.1.6] The set
{H¢}iej0,1) used to pass from g and 71 could be quite random and far from being unique (See
Figure @ for an illustration).

« | QU

o
\ [~ '
| |
v

1

g

||
/|

/ '1\

7

Y

. \ o, 7 \ ;" ‘
([ Il |

* | |
NP2 a2

Figure 3.1.9: A different homotopy between two maps.

Inverse of a homotopy

Another thing that one may notice is that although the definition of a homotopy between maps
from X to Y relies on a time parameter which seems to give an direction for the homotopy
process, the notion of being homotopic is symmetric.

To be more precise, let f and g be two continuous maps from a space X to a space Y homotopic
to each other, and let H be a homotopy between them as in the above definition. We can define
another map

H:X x[0,1] =Y,
(x,t) — H(z,1—1).

Roughly speaking the map H gives a deformation which is given by backward playing the
deformation given by H (See Figure [3.1.10| for an illustration).

Definition 3.1.8

The map H is called the inverse of H.



|
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o
V)
N =
—

I
»
—_

Figure 3.1.10: The inverse of a homotopy.

Induced equivalence relation on the set of continuous maps

We consider the set of all continuous maps from X to Y, denoted by

C(X,Y) := {Continuous maps from X to Y} C P(X xY).

Proposition 3.1.9

The following relation on C(X,Y) is an equivalence relation: for any f,g € C(X,Y),

f ~g< fand g are homotopic.

Proof. We have to verify the three properties: reflexivity, symmetry and transitivity. We will
omit the verification of the continuity of all homotopies appearing below.
Firstly, given any f € C(X,Y), we consider the constant homotopy (see Example |3.1.3)

H:Xx[0,1] =Y,
(x,) = f(x)

and have f ~ f.

Secondly, by considering the inverse of a homotopy (see Definition , if two maps f and g
in C(X,Y) satisfy f ~ g, then g ~ f.

Finally, let f, g and h be three maps in C(X,Y"). Assume that f ~ g and g ~ h. We denote
by F' be the homotopy between f and g and G be the homotopy between g and h, then we can
define the following map H: for any (z,t) € X x [0, 1]

o) — F(x,2t) te [(1, %}
G(z,2t—1) te [5, 1}

and this is a homotopy between f and h (see Figure[3.1.11] for an illustration).
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Figure 3.1.11: A composition between two homotopies.

Remark 3.1.10.

In the proof, we construct a homotopy H from the homotopy F' and G. Informally speaking, if
we can modify f to g in a continuous way and modify g to h in a continuous way, then we modify
f to h in a continuous way through g. We denote the homotopy H constructed in the proof by

H=Fx@G,

(first F, then G) and call it the composition between F and G.

Definition 3.1.11

A space X is said to be contractible, if the identity map

idxlX—)X
=

is homotopic to a constant map
Const, : X - X

T —C

where c € X.

Example 3.1.12 (Star-like subsets in R?).
A subset D in R? is star-like if there is a point ¢ € D, such that for which p € D, we have

{c+tp—c)|te0,1]} C D.

We call such a point ¢ a center of D (see Figure [3.1.12)).
A convex subset of R? is in particular is a star-like subset. In a convex subset, we may choose

any point as the center.
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Figure 3.1.12: A convex (also star-like) set (left); a non-convex star-like set (right).

Not every star-like region is convex. For example, if we consider the union D of any three
distinct rays issued from (0,0). Then D is not convex, but (0,0) could be the center to make D
star-like.

Similar to the connectedness property, we also have a local version of this notion.

Definition 3.1.13

A space X is said to be locally contractible if every point € X admits a neighborhood
basis consisting of only contractible set.

Remark 3.1.14.
All manifolds are locally contractible.

3.2 Homotopy equivalence

We know that two homeomorphic spaces are topologically equivalent, meaning that we cannot
distinguish them by any topological method. However, for some topological properties, being
homeomorphic is too strong. Using homotopy we can given a weaker equivalence relation among
topological spaces which are more suitable for studying certain topological properties or topological
invariants.

Definition 3.2.1

Two spaces X and Y are said to be homotopy equivalent if there exists continuous maps
f:X=Y, g¢g:Y—>X,

such that fog ~idy and go f ~idx.

Example 3.2.2.
If X and Y are homeomorphic to each other, we have a homeomorphism

f: X—=>Y
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This means that there is a continuous map
g:Y — X,

such that
fog=idy and go f =idx.

Considering the constant homotopy (See Example [3.1.3), given any continuous map h from a
topological space W to itself, we have h homotopic to h. Therefore, two homeomorphic topological
spaces are homotopy equivalent to each other.

The two examples below show that being homotopy equivalent is a condition strictly weaker
than being homeomorphic.

Let X be the closed unit disk in R? and Y be {O} with O the origin. Since X is uncountable
and Y is finite, they cannot be homeomorphic to each other. Consider the following two maps

f: X—=Y g:Y —+X
and

p— O O~ 0

Then
fog:idy,
and
gof=Ff

which is homotopic to idx as shown in Example (see Figure [3.2.1). Hence X and Y are
homotopy equivalent.

Figure 3.2.1: Homotopy equivalence between the unit disk and its center.

Similar, we consider X to be whole space R? and Y be {O} the origin. Consider the following

two maps

f: X—>Y g:Y =X
an

p— O O~ 0

Then same as in the previous example, we have

fog:idya
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and
gof=1f
which is homotopic to idx by the following homotopy:
H:Xx[0,1] =X
(p,t) = tp’

If we examine the topological properties of these spaces, we have the following table:

’ \ connected \ path connected \ compact | contractible ‘

{0} Yes Yes Yes Yes
D? Yes Yes Yes Yes
R2 Yes Yes No Yes

Let X be the annulus in C defined by
X :={zeC|1< |z <2},

and Y be the unit circle.

First we would like show that X and Y are not homeomorphic to each other. This follows
from the following facts: a restriction of a bijection is bijective to its image, and a restriction of a
continuous map is continuous. Hence a restriction of a homeomorphism is a homeomorphism to
its image.

We can remove a pair of antipodal points on Y and the resulting space is no longer connected.
On the other hand, removing two points in X will not disconnect the space. Since being connected
is preserved by continuous maps and in particular by homeomorphisms, we conclude that there is
no homeomorphism between X and Y.

Secondly, we show that X and Y are homotopy equivalent to each other. Let f be the following
map

f: X—=Y
P
pl’
where |p| is the Euclidean distance between p and the origin, and g be the inclusion map

p =

g:Y =X
p—=p
See Figure [3.2.2
‘We have on one hand
f o0g= idy.

At the same time, we can define the homotopy
H:X x[0,1 — X,
(Tew,t) = (t+(1— t)r)ew7

between g o f and idx (see Figure [3.2.3). Hence X and Y are homotopy equivalent.

Similar to homeomorphisms, just as its name suggests, in any set of topological spaces,
homotopy equivalence induces an equivalence relation.
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-0-C
o

X Y X
Y X Y

Figure 3.2.2: Homotopy equivalence between an annulus and the unit circle.

Figure 3.2.3: Homotopy between g o f and idx.

Proposition 3.2.6

Given any non empty set X of topological spaces, the following relation is an equivalent
relation: for any X,Y € X

X ~Y & X and Y are homotopy equivalent.

Proof. For any X € X, we consider the identity map on X. Using the constant homotopy, we
have X ~ X.

By the symmetry of the definition of the homotopy equivalence, for any X, Y € X, if X ~ Y,
then Y ~ X.

Let X, Y and Z be three topological spaces in X. Assume that X and Y are homotopy
equivalent, at the same time Y and Z are homotopy equivalent. By definition, there are continuous
maps

fliX—>K g1:Y = X,
ngY—)Z, QQIZ—>K
such that
Jiogr ~idy, giof1~idx,
Jaoga ~idz, g2o fo~idy.

Now we consider the following continuous maps

foofi: X = Z,
giogs: 24— X.
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Here we need the following technical lemma.

Lemma 3.2.7

Let W, W’ and W" be three topological spaces. If h and h are two continuous map from
W to W’ homotopic to each other, and A’ and I’ be two continuous maps from W’ to W”
homotopic to each other, then we have

B oh~h oh.

Proof of Lemma[3.2.7 Since a composition of continuous maps is still continuous, we have
W oh, h'oheC(W,W")
Let H be a homotopy between h and k', and H be a homotopy between h and h/. We now

construct the following map
F:W x[0,1] - W"

by defining

Fa,t) = (W0 H)(a,2t) 1€ [(1 ﬂ
H(h(a),2t—1) te [2’1}

It is a continuous map, such that for any a € W, we have
F(a,0) = (k' o h)(a) and F(a,1) = (K o h)(a).
See Figure [3:2.4] for an illustration. Hence the lemma.

F1 %IOTL

C(W, W)

Fo=Hhoh Fi=hoh

Figure 3.2.4: Homotopy in C(W, W) given by F.

By this lemma, in C(X, X) we have
(gro92) 0 (f20 f1) =g1o(g20 f2) o fu
~gy1 oidy o f1
=g10 f1
~idx.
Similarly, in C(Z, Z) we have
(fzo fi)o(g1og2) =f20(f1091)092
~fo 0idy o go
=f2002
~idz.

Hence X and Y are homotopy equivalent. O
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Definition 3.2.8

If a space Y is homotopy equivalent to a space X, we say that Y is of the homotopy type
X.

To have an idea of properties preserved under homotopy equivalence, we give several non-
examples to see what is preserved under the homotopy equivalence.

Consider the following subspaces of C
X ={1,-1} and Y = {0}.

We would like to show that X and Y are not homotopy equivalent.

Since Y has a single point, the only map f from X to Y is defined by sending both 1 and —1
to 0. On the other hand, a map from Y to X is determined by the image of 0. Without loss of
generality, we may consider the map

g:Y = X,

with g(0) = 1.
Notice that f o g =idy. Now we turn to study g o f and we will show that the composition
g o f is not homotopic to idyx. To see this, we assume that there is a homotopy

H:Xx[0,1 — X,

between g o f and idx, and see what would go wrong.
Consider the restriction H' of H on {—1} x [0, 1]. Notice that this is a connected subspace of
the product space X x [0, 1]. Moreover, by the definition of H, we have

H(-1,0)=1, H(-1,1)=-1.

Hence the map
H' :{-1} x[0,1] = X,

is continuous and surjective. However X is a not connected, which is a contradiction. (See Figure

for an illustration.)

t
1L
0+ [}
-1 1

Ho=gof

Figure 3.2.5: Where should the orange point go, if H is continuous?
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In fact here we can use either {—1} x [0,1] is connected or path connected to get the
contradiction. Now if we consider the point is a connected component or a path connected
component, we can generalize this arguments to show that the connectedness and the path
connectedness are both preserved by the homotopy equivalence.

Proposition 3.2.10
If two spaces X and Y are homotopy equivalent and X is connected, then Y is connected.

It can be considered as a corollary of the following proposition.

Proposition 3.2.11

If two spaces X and Y are homotopy equivalent, then they have the same number of
connected components.

Proof. By definition of homotopy equivalence, there are continuous maps
f:X=Y ¢g:YVY—=>X

such that fog~idy and go f ~idx.
The decomposition of connected components of X and Y are denoted respectively by

X = |_| X,, Y= |_|Y5.
acA BeEB

Since f is continuous, for any « € A, the image f(X,) is connected hence is contained in some
connected component Yg of Y. This gives a map

qi)f:.A—)B.

We would like to show that this map is injective by contradiction. Assume that two distinct
induces o and o’ in A are mapped to 8.
Since ¢ is continuous, the image

(9 o f)(Xa UXo/) C g(Yﬁ)

is contained in the connected component X,~. Notice that we have either a # o or o # o”.
Without loss of generality, we may assume that o # o”.
Let H denote the homotopy between g o f and idx. Since

H(X, x {0}) C X!, H(Xqx{1}) = Xa,

we have

H(Xo x [0,1) N Xa #0, H(Xo x[0,1]) N X" #0.

Hence H(X, X [0,1]) is not connected. On the other hand, the product space X, x [0,1] is
connected. This contradict to the fact that H is continuous. Hence ¢ is injective.

Now we would like to show that ¢y is surjective. Assume that [ is not in the image ¢;(.A).
Let o € A and ' € B, such that

g(Yg) C X, and f(Xa) = Yg/.

Notice that 8’ # 8 by the hypothesis. Now we consider the homotopy F between f o g and idy.
Then since Y x [0, 1] is connected, we have F'(Yg x [0, 1]) connected. Notice that

F(YB X {O}) C YB/ and F(Yg X {1}) = Yﬂ’
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which is a contradiction. Hence 3’ = 3.
As a conclusion, the map ¢y is a bijective between A and B. In particular, we have

|Al = |B].

Remark 3.2.12.
In fact, we can consider
¢g:B— A
constructed in a similar way as for ¢;. By a similar discussion, we can show that ¢, is a injective.
Hence we have
|A| = [B].

In the above proof, we show a stronger result that the map ¢y is bijective. In fact, we can
work more to show that ¢ and ¢, are inverse to each other.

In particular, when X is connected, we have Y connected.

We also have a similar result for path connectedness and its generalization. They can be proved
in an exact same way, by considering path connectedness instead of connectedness in the proof.

Proposition 3.2.13

If two spaces X and Y are homotopy equivalent and X is path connected, then Y is path
connected.

Proposition 3.2.14

If two spaces X and Y are homotopy equivalent, they have the same number of path
connected components.

Remark 3.2.15.
We have a remark for the path connectedness similar to Remark [3.2.12] for the connectedness.

Remark 3.2.16.

The above discussion shows that there are certain topological properties which are not only
preserved by homeomorphisms, but also preserved by homotopy equivalence. Later we will see
that the main object introduced in this chapter so called the fundamental group is also preserved
under homotopy equivalence, up to isomorphism.

Remark 3.2.17.
We should mention that not all topological properties are preserved by homotopy equivalence.
For example, the compactness is not always preserved by a homotopy equivalence. The real line
and a single point are homotopic equivalent, yet the real line is not compact, while any space of a
single point is.

Recall the topologist’s sine curve. Let f defined on I = (0, 1] by

f(z) =sin (E) )

T



88 CHAPTER 3. HOMOTOPY AND FUNDAMENTAL GROUPS

We consider the following subspaces of R?
X = Graph(f), Y =X.

Notice that X is path connected, while Y is not. By Proposition [3.:2.13] they are not homotopy
equivalent.

3.3 Relative homotopy

Sometimes, we do not require a deformation globally on a space but only locally. Here comes the
notion of relative homotopy.

Definition 3.3.1

Let X and Y be two topological spaces and A be a subspace of X. We say that maps
f:X—=>Yandg: X =Y,
are homotopic relative to A, if there is a continuous map
H:Xx[0,1] =Y,
such that for any x € X, we have
H(z,0) = f(z) and H(z,1) = g(),

moreover for any x € A, for any t € [0, 1], we have H(z,t) = f(z).

Remark 3.5.2.
Informally speaking, the map g is obtained from f by changing f-image of points in X \ A in a
continuous way.

One application of such homotopy is to simplify the space that we would like to discuss. In
particular, we have the following several definition.

Definition 3.3.3

Let A ba a subspace of a topological space X, and
t: A= X

be the inclusion map. We say that A is a retraction of X, if there is a continuous map
r: X — A,

such that r o =id4. With the above notation,

1) if tor ~idx, then we say that A is a deformation retraction of X;

2) if Lor ~ idx relative to A, then we say that A is a strong deformation retraction
of X;
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Let X be a two point subset of R?

X ={p.a},
and A = {p}. Then we consider
r: X —A
p—=p
q—p

and A is a retraction of X.

For any n € N*, we consider the Euclidean space R"*1. Let X be the subspace R"*!\ {O} and
its subspace the n-sphere S™. Consider the map

r: X — A,
x
T —,
|z
where || is the Euclidean norm in R™*1,
Notice that t or = id 4, and we can verify that the following map:

H:Xx[0,1]—-X
(2,8) 5 (1 — t)a + t—,
||
is a homotopy relative to A between ¢ or and idx. Hence A is a strong deformation retraction of
X.

The difference between retraction and deformation retraction is easy to tell. In particular, if A
is a deformation retraction of X, then X is of the homotopy type of A, which is not always then
case when A is only a retraction of X, as we can see in the above examples. Informally speaking,
a retraction only care about the result, while a deformation retraction also care about how space
retracts. In particular, when we focus on any point € X, its trace under this homotopy will be
a path in X.

The difference between a deformation retraction and a strong deformation retraction is more
difficult to tell.

We consider the topological space X in Example 2:4:32%}

X =10,1] x {0} J{o} x [0,1] | J {i} x [0,1] € R2.

neN*

There is a strong deformation retraction of X to {(0,0)}. This can be realized by first taking a
strong deformation retraction from X to

[0,1] x {0},

then applying a strong deformation retraction of this horizontal segment to (0,0) (see Figure
for an illustration). In fact this also shows that there is a strong deformation retraction
from X to any point on

[0,1] x {0}.
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- > @ —re——— > @

Figure 3.3.1: A strong deformation retraction to (0, 0).

Using this strong deformation retraction, we can moreover show that the space X has a
deformation retraction to any of its point.

Let A ={(0,1)}. Now we would like to show that A is not a strong deformation retraction of
X. For any n € N*, we denote by p,, the point (1/n,1) and denote by ps, the point (0, 1).

Notice that the sequence (p,,)nen+ converges to poo as n goes to infinity in X.

Assume that the deformation retraction of X to A is given by some map r, and H is the
homotopy between ¢ o r and idx. If this is a homotopy relative to A, then we should have

H(pooat) = P

for all ¢ € [0,1]. We will show that this is impossible.
For each n € N*, consider the subset

{pn} X [Ov 1}7

whose image under H is path connected. Notice that

H(pnao) = DPn,
and
H(pna 1) = Peo-

Hence there is a time t,, € [0, 1], such that
H (pnatn) = (0a0)7

since every path connecting p,, and p., must pass (0,0) (see Figure|3.3.2]). Now we consider the
sequence

(pnv tn)neN* .

Since X is a compact subspace of R? (hence is sequential compact), there is a convergent
subsequence whose limit point is

(Poo, 8) € X x [0,1],

such that H(ps,s) = (0,0) by the continuity of H. Hence H is not a homotopy relative to
A ={ps}, and A is not a strong deformation retraction of X.
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P PsP4 P3 P2 P
® 0 o [ ] [ ]

Figure 3.3.2: A deformation retraction to {p.o} is not strong.

3.4 Path homotopy

Given one topological space, it is easy to tell that there is a difference between a (path) connected
space and a space which is not (path) connected. However, only knowing a space is (path)
connected is still not enough to characterize (even roughly) a space.

From now on, we will focus on the path connectedness. Let D? be the unit disk in R2. Notice
that it is path connected. Even when we remove the center, the rest part denoted by X is still
path connected. However, there is some difference between D? and X. For example, we consider
p and g two points in D? different from the center. Notice that given any path in a space, it
always has a strong deformation retraction to one of its end point. Hence either in D? or X, two
paths from p to ¢ are always homotopic to each other.

Figure 3.4.1: Different "path connected spaces".

However, if we fix endpoints when we perform a homotopy on a path, things are different. In
D?, we can still deform one path form p to g to another one in a continuous way. This is no long
the case when we consider paths in X. There are certain pair of path from p to ¢, such that when
we try to deform one to the other continuously, we must pass the center which has been removed.

This observation gives us a way to have a next level classification in the category of path
connected spaces. Notice that when we deform a path fixing its endpoints, we actually perform a
relative homotopy. To be more precise, recall that given any topological space X, a path in X is
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a continuous map
a:[0,1] = X.

Definition 3.4.1

Consider two paths a and 8 in X with

A path homotopy between « and f is a continuous map
H:[0,1] x[0,1] = X,

such that for any s,t € [0, 1], we have

Remark 3.4.2.
In other words, a path homotopy between a and S is a homotopy relative to {0,1}. In Example
the two paths ¢ and 7, are path homotopic.

Yo

7

Figure 3.4.2: The paths 7 and ~; are path homotopic.

From now on, unless specified, when we say that two paths with the same endpoints are
homotopic, we mean that they are path homotopic, and we denote this by a ~ (.

Since the path homotopy is a special kind of homotopy, most of the discussions made before
for homotopy still work here.

First notice that for each time parameter ¢ € [0, 1], the map H; is also a path from p to gq.
Secondly, given two paths in X homotopic to each other, the homotopy is not unique for the
same reasons as before.

Reparametrizations give new homotopies between two given paths.
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Definition 3.4.3

A reparametrization of « is given by « o ¢, where
¢ :[0,1] = [0,1]

is a increasing continuous map with ¢(0) =0 and (1) = 1.

Figure [3.:4.3]is an illustration of a reparametrization.

T T
e b e £ 2 L
=

N[

Figure 3.4.3: A reparametrization of a homotopy between two paths.

Two homotopies between two given paths can also be completely different, meaning that the
collection of path {H;}c(o,1) are different. See Figure for an illustration.

=

. NN

N

Figure 3.4.4: A "completely different” homotopy between two paths.

Inverse of a path homotopy

We can also define the inverse of a path homotopy.
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Definition 3.4.4

The inverse of the path « is defined to be the following path

@:[0,1] — X,
t— ol —1).

Figure [3:4.5] is an illustration of the inverse of a path homotopy.

HYYMN\m

D=

Figure 3.4.5: The inverse of a homotopy between two paths with end points fixed.

Induced equivalence relation on the set of path with same endpoints

Given any pair of points p and ¢ in a path connected space X, we denote
P(X,p,q) := {paths in X going p to ¢}.

As a special case of Proposition [3.1.9] we have

Corollary 3.4.5

The following relation on P(X,p, q) is an equivalence relation: for any paths a and

a ~ < «a and 8 are homotopic.

For any « € P(X,p,q), we denote by [a] the equivalence class of «, and call it the homotopy
class of a.

Composition between (the homotopy classes of) paths

Let X be a path connected space and p, p’ and p” be three points in it. Let « be a path going
from p to p’ and o' be a path going from p’ to p”, then we can construct the following path in X
going from p to p”.

axa :[0,1] = X,

defined by
a(2t) te [O,

|

o2t —1) te [; 1}

| —

(axa)(t) =
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Roughly speaking, to get the path « * o/, we first go along «a, then go along a’.

Definition 3.4.6
We call the path a * o’ the composition of a and «’.

Using the composition of paths, we can define the following map

«: P(X,p,p') x P(X,p,p") — P(X,p,p")

(a, &) —oaxal.

Moreover, if we have paths a, 8 € P(X,p,p’) and o', 8 € P(X,p’,p"”), such that o ~ 3 and
o' ~ ', we denote by H and H’ the two homotopy respectively.

Figure 3.4.6: Composition of paths.

Then we have

axao ~ Bxf3,

for which a homotopy H satisfies

/ 1
Hoot) = i) = (Hyxa')(s) te [o, 2]

) e |5]

where s is the path parameter, and ¢ is the time parameter for the homotopy.

«Q « Q
\JBV W
; i i ;

Figure 3.4.7: The homotopy H.

We call this homotopy the composition of H and H'

H=HxH.
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Remark 3.4.7.
The homotopy between « * o’ and 8 * 8’ here can also be chosen to be the one such that for any
t € [0, 1], we have:

ﬁt = Ht*Hé

In other words, we apply the homotopies H and H' at the same time, instead of first H, then H’'.

Using the composition between two homotopy classes of two paths, we have the following map
well-define:
- P(X,p,p")/ ~

— [ax O]

w: P(X,p,p")) ~xP(X,pp")) ~
(lo], [B])

Definition 3.4.8

We call the class [a * (] the composition of [«] and [3].

For any point p € X, we call a constant map

¢ 1 [0,1] = X
t—0p

a constant path.
Using reparametrizations of paths, we have the following facts.

Proposition 3.4.9

Let o, o and o’ be three paths in X.
1) If o(1) = &¢/(0) and /(1) = &”(0), then we have

!/ //N !/ "
)
(axa)*xa” ~ax(a *xa")

2) If p = a(0) and g = (1), we have

(a) cprxa~an~a*cy,
(b) axa ~ cp,

() axan~cy.

Proof. 1) The path (a* ') *x @” comes from taking first the composition « * o', then the
composition (a*a’)*a’”, while the path a* (o' «a’) comes from taking first the composition
o/ o then the composition « * (o’ * o). Therefore for any s € [0, 1], we have

1

a(4s), s € _O, 4}

11

((axa)xa”)(s)=<a'(4s—1), se€ 4,2}
1 -1

a'(2s—1), se€ 2,1}
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and
(29) € _0 1]
a(2s), s 03
! 1 ! -1 3
(ax(a xa"))(s) =< a'(4s—2), s€ 31
12 _3 1
o'(4s —3), se€ 1,1

(See Figure for an illustration)

e

a o
5 1 t

0 1 1 3
1 2 1
Figure 3.4.8: The paths (a % o’) x a” (top) and «a * (o’ * &) (bottom).
We consider the following continuous map H (illustrated in Figure [3.4.9)) defined by
4s 1+¢
0<s< ——
“ (1 ¥ t> ’ ==
1+1¢ 241
H(s,t)=qa (4s—1-1), %gsg%
4 2+t 2+t
mf = a4t LR
a<2_t<s 1 )), 1 <s<1
for any (s,t) € [0, 1] x [0, 1], which is a homotopy between (a * o) *x o’ and a * (o’ * o)
A t
1
a/
o a//
H
; °
. s
0 3 1
1

NI
N[ =

Figure 3.4.9: A homotopy between (a * a') x o’ and a * (o * o).

2) We consider the path «. By the definition of the composition, we first give the maps involved
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in these relations: for any s € [0, 1], we have

conas) =] 6{?;}
a(2s — 1), S€{2J}
(cx cy)(s) = o e [i ;]
Y, ERS [2,1]
E
D ? 2|
a(2s—1), se _571_
a(2s—1), SG_Q%-
(@xa)s) = -
a(2s), s e _5’1_

We consider the following homotopies.

(a) a homotopy between « and ¢, * « (see Figure [3.4.10] spending more and more time in
the beginning staying at p):

¢
'z 0S5§§
H(s,t) = 2 Lt 5
_ ! P os<i
a<2—ﬁs 20’ g =7 =
At
1
Q
1 o q
_ ‘S
0 1 1
2

Figure 3.4.10: A homotopy between a and ¢, * a.

(b) a homotopy between « and « * ¢, (see Figure [3.4.11] spending more and more time in
the end staying at q):

P
a(2i),0§3§1—;
H(s,t) = o . :
q, 17§S5§1
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=

v

99

Figure 3.4.11: A homotopy between o and « * ¢q.

(c) a homotopy between a * @ and ¢, (see Figure [3.4.13] turning back earlier and earlier):

a(2s(1—1)), 0<s<
H(s,t) 1
w(2s(1 1)), §<s<
A t
1 Hl
H,
Hy
S
0 1 1
2

Figure 3.4.12: A homotopy between o * & and cp.

— N

(d) a homotopy between @& * o and ¢, (see Figure [3.4.13] turning back earlier and earlier):

O

This proposition can also be written as follows by considering homotopy classes of paths and

their compositions.
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A t
[ ]
H, N\
Hy
S
0 1

SIS

Figure 3.4.13: A homotopy between @ * o and c¢q.

Corollary 3.4.10

Let o, B and  be three paths in X.
1) If a(1) = B(0) and (1) = 7(0), then we have
(la] = [B]) * [7] = la] = ([B] * [7]) ,
2) If z = a(0) and y = a(1), we have

(a) [es] ¥ [a] = [o] = [a] x [¢y],

Remark 3.4.11.

With first point in the above proposition, when we taking a composition of finitely many paths,
the order for which composition is done first is no longer important. Hence let n > 1 be a natural
number, and aq, ..., @, be n paths in X satisfying that for any 1 <i <mn — 1, we have

Oéz(l) = Oéi+1(0).
Then we denote their composition by
[an] - - o]

omitting the parentheses.

3.5 Fundamental Group

Now we are ready to introduce the fundamental group of a path connected space, which is
constructed by studying loops based at a same point up to path homotopy.

Let X be a path connected space.
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Definition 3.5.1

If a path « in X satisfies
a(0) = a(l) = p,
then we say that « is a loop based at p € X.

Figure 3.5.1: A loop in a disk based at its center.

We denote the space of loops in X based at p € X by
L(X,p) := {loops in X based at p}.

As special paths, the path homotopy induces an equivalence relation in £(X,p): for any loops
a and o in L(X,p), we define

o~ o < o and o are homotopic.
Given any loop a € L(X,p), the equivalence class containing « is given by
o] i= {o € £(X,p) | o ~ a}
and is called the homotopy class of «, and any loop in [a] is a representative of [a]. In particular,

the loop « is a representative of [a].

Remark 3.5.2.

By its definition, if we have a path homotopy H of loops in a topological space X, all maps
H,’s are loops in X based at a same point. In other words, when we deform a loop with a path
homotopy, not only we have a loop at each time ¢, we also never move the base point.

We denote the space of homotopy classes of loops by

m(X,p) = L(X,p)/ ~.

The composition between paths introduced previously then induces a binary operator on the
L(X,p), then a binary operator on m (X, p). We then have an immediate corollary of Corollary
B410

Corollary 3.5.3

The set 71 (X, p) with the composition operator is a group.
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Proof. By 1) of Corollary the composition operator satisfies the associativity.
By 2.a) of Corollary the homotopy class [c,] is an identity element.
By 2.b) and 2.c) of Corollary for any loop a based at p, the homotopy class [@] is the
inverse of [a].
O

Definition 3.5.4

The group 71(X,p) is called the fundamental group of X based at p.

Remark 3.5.5.
This group is also called the Poincaré group or the first homotopy group of X based at p.

One important application of the fundamental group is to classifies topological spaces. In
general, as we will see later that if two path connected spaces have non isomorphic fundamental
groups, they are not homeomorphic, neither homotopy equivalent. The other direction is not
true, two homotopy non-equivalent spaces may have isomorphic fundamental groups. As an
elementary example, we can compare the 2-disk D? and the 2-sphere S2. Both spaces have trivial
fundamental groups based at any point. More information needs to be considered in order to
distinguish them.

In fact the "first" stands for the dimension 1. We can also think a loop in X as the image
of a continuous map from S! to X. The construction of 7;(X,p) can also be generalized by
considering continuous maps from n-sphere S™ to X and their maps. The resulting group is
called the n-th homotopy group of X and denoted by 7, (X, p).

Consider the above example where we compare D? amd S2. Notice that their second homotopy
groups are different. Any continuous map from S? to D? is homotopic to a constant map, which
is not true for any continuous map from S? to S? (for example, the identity map). Even when we
consider 7, (X, p) for all n € N*, we still cannot tell if two path connected spaces are homotopy
equivalent. There are still more information needed.

Cousider I = [0,1] the closed interval in R. We consider the fundamental group of I based at
p=0.
m1(I,p) := {Loops in I based at p}/ ~ .

In the previous sections, we have seen that I is a contractible space. In particular, there is a
strong deformation retraction of I to {p}. We denote a homotopy between id; and ¢, by H.
Given any loop a € L(I,p), we consider the following map

H:[0,1]x[0,1] = I
which is continuous, such that Hy = a and H; = ¢p and for any t € [0, 1]
ﬁ(07t) = ﬁ(Lt) =D
thus a path homotopy between o and c,. Therefore we have

m (1, p) = {lepl}

The fundamental group of I based at p is trivial.
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Informally speaking, when we apply the strong deformation retraction of I to p, we retract
the whole space to p, including the image of «. By slightly modifying the discussion, we can show
that this also holds for any contractible space.

Proposition 3.5.7

If a topological space X is contractible, then for any p € X, the fundamental group m (X, p)
is trivial.

Proof. The space X is contractible, by definition there is a homotopy H
H:Xx[0,1]—=X

between the identity map idx and the constant map Const,, for some py € X. By considering
the restriction of H to {q} x [0,1] for any ¢ € X, we have a path in X connecting ¢ to py. Hence
X is path connected.

Since X is path connected, for any p,q € X, the constant maps Const, and Const, are
homotopic to each other. By taking composition of homotopies, for any p € X, the identity map
idx is homotopic to Const,,.

Therefore to show the proposition, it is enough to show that w1 (X, pg) is trivial. We first
consider the path

6:10,1] - X
t— H(po,t)

For each t € [0, 1], we denote
By :10,1] = X
5+ B(st)

Figure 3.5.2: Deform a loop to a constant loop via a general homotopy.

Let a be any loop in X based at pg. Consider the following map
F:[0,1] x[0,1] = X
(5,t) = (Bs * Hy % B¢)(s)
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We can verify that this is a path homotopy between c,, * o * €, and 8 * cp, * B, where Cp, is the
constant path with image {po}. Hence we have

Qa~ Cpg.

This shows that 1 (X, po) is trivial. O

Remark 3.5.8.
This shows that although there could be many loops based at py in X which look quite different
from each other, their homotopy classes could be quite few.

Fundamental group of S!

Now we consider the space S' as the next example, which is at the same time elementary and
important in the whole story of fundamental groups.

For our convenience, we consider
St ={(x,y) e R? | 2? +¢* =1}

Let p = (1,0). We would like to study loops in S! based at p.

The fundamental group m;(S?, p) is cyclic.

Notice that a loop in S! could be quite arbitrary. For example, if as the time parameter ¢ moves
0 to 1, the moving direction of the point «(t) can switch between counterclockwise and clockwise
infinitely many times (See Figure for an illustration).

Figure 3.5.3: A loop with infinite backtracks in the shadowed area.

The first step is to show that all loops are homotopic to some loops standard in certain way.
The compactness of [0, 1] plays an essential role here.

Let « be such a loop. For any ¢ € [0, 1], we consider € > 0 such that the neighborhood
Up = (t_eat_'—e)m[ovl}

of t is contained in a half circle in S*. Since [0,1] is compact, there are finitely many of these
open sets in [0, 1] forming an open cover of [0,1]. We denote them by

{U17 ey UTL}
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Consider their end points
O=to<ti1 <..<t,=1

Hence the restriction of « to [t;,¢;41] is contained in a half circle for any integer 0 < j <m —1,
since each (¢;,¢;11) is contained in some Uy.

Figure 3.5.4: A partition of [0, 1] with the desired property.

For each integer 0 < 7 < m — 1, we denote the restriction of a by
aj = aff

tirtital

Denote
a;(ty) = ¥,

Then for any ¢ € [t;,t;41], there is a s € [s; —1/2,s; + 1/2], such that
; (t) _ eZTris,
moreover, since the image of o is contained in a half circle, the map

wj ity tiv1]) = [s5 —1/2, 85 + 1/2]

e2is 1y g
is continuous. We consider the composition
Vi =pjoay:[tj,tjx] = R,
and perform a homotopy relative to {t;,t;+1} using linear maps in R to get the following one

pj [t tiva] — (05,05 +1]

t—1t;
e y(ty) + (P (ti1) — ¥i(ty))
tit1 — 1
Consider the map
d:R— S
PN 6257ri'

Now we consider the following map o such that for any j and any ¢ € [t;,;],

a'(t) = @ o pj;(t).
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Notice that for any 0 < j < m — 1, we have
P o pj(tj+1) = P o pjta(tjs),
hence o is well defined and is a loop based at p. Now we consider
a7H({a (to), s {0 (tn)}),

and denote it by
O0=s9<81<...<sy=1.

By our construction, for each 1 < j < N — 1, the images
a'(sj-1,57) and a'(s;, 5j41)

are either same or disjoint.

OO0

Figure 3.5.5: Pull the loop tight locally.

Now we start by comparing o/(sg, s1) and o’(s1, s2). If
o/ (s9,81) = a'(s1, 82)

then we can apply a homotopy to get a new loop

o) = {p, t € [0, 5]

o (t), t e [sg1]

Otherwise, let of = o’ and we consider s; and compare o/(s1, s2) and o/(sz, s3). If they are the
same, we can apply a homotopy to get a new loop

ol (t) t €10, 5]
ay(t) = < o (s1), t€[s1,s3]

aj(t), telss,1]

We repeat this process for all 1 < j < N — 1, then we have a path o such that in each interval
(85,5;+1), it either stays at o’ (s;) or moving to a fixed direction as parameter ¢ increases. Then
after a reparametrization, the loop o’ is homotopic to the following standard one

Vi - [0,1]*)51

t ertﬂ'z
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for some integer k € Z, such that |k| is the times that o/’ passes p and the sign of k is determined
by how o passes p (clockwise or counterclockwise). This is the end of the first step.

From the first step, we can see that

m(S',p) = {In] | k € Z}.

Notice that for any integers k1 and ko, we can define an explicit path homotopy to show that

Viey * Vo ™~ Vhkq+ka-

Hence this shows that
m(S',p) = (m).

The fundamental group 7 (S*,p) is isomorphic to Z.

After the previous discussion, there is one last problem whose answer is unclear. Is it possible
that there is a k € N* such that 4 ~ ¢p, or equivalently is the generator [y] of finite order?
Notice that the above construction depends on the choice of representative « in a homotopy
class of loops in £(S*, p) and the choice of finite covers of [0, 1] associated to .. Hence we cannot
get the answer directly.
To study this problem, we consider the continuous map

®:R— St

0 — 6297ri'

Notice that for any ¢ € S!, there is a unique point g € [0,1) such that ®(q) = ¢, and
> Ng)={@h=q+k|keZ}

Moreover the map ® has the following property:

Observation 3.5.9
Given any point ¢ € S*, it has a neighborhood V such that for any @ € ®7'(q) it has a
neighborhood Uy, such that

(i) for any k € Z, the restriction
(P‘Uk U, =V

is a homeomorphism;

(ii) for different integers ki and ko, we have Uy, N U, = 0.

Remark 3.5.10.
Later we will see that with this property, the space R is called a covering space of S', and the
map P is called a covering map.

For any point ¢ € S', we call a neighborhood of ¢ satisfying the property in the definition a
covering neighborhood of q (See Figure for an illustration).

The following two facts are applications of two general results for covering maps to our case.
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Figure 3.5.6: A covering neighborhood V of q.

Observation 3.5.11
Let « be any loop in S based at p. Let p € ®~1(p). Then there is a unique path

a:[0,1] = R,

such that a(0) = p and the following diagram commutes:

[0,1] ——R

N

Sl

Observation 3.5.12
Let H be any path homotopy between loops in S based at p. Let p € ®~L(p). Then there is a
unique path homotopy N

H:[0,1] x [0,1] = R,

such that EI(O7O) = p and the following diagram commutes:

0,1] x [0,1] -2 R

b

Sl

Remark 3.5.15. B
The objects ¢, p, & and H are called lifts of p, q, & and H respectively.

The proof of these facts are constructive, and we skip them for the moment and only provide
some rough idea of the proof for Observation The complete proof for general cases will be
given in the later sections.

The rough idea is to use ®~! to construct a map & from [0, 1] to R which is a lift of a path
a in S'. However, since ® is not injective, taking ®-preimage is not a map. Hence we cannot
obtain & by just taking ®-preimage.

To get over this problem, we use the property satisfied by the covering map & listed in
Observation [3.5.9] Instead of lifting «v directly as a whole, we may consider lifting restriction of «
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on subintervals of [0,1], and then show that all these lifts can be "glued" together and gives a lift
a of a.

More precisely, for any ¢ € [0, 1], let ¢ = «(t), from Observation there is V' a covering
neighborhood of q. Then by the continuity of «, the parameter ¢ has a path connected open
neighborhood I; such that

a(l) C V.

The collection {I; | t € I} of such open subsets in [0,1] is an open cover of [0,1]. By the
compactness of [0, 1], there is a finite subcover

Tis ey I

We denote by Vi, ..., V,, the associated open covering neighborhood.
To simplify the argument, up to taking subinterval of J;’s and relabeling the indices, we can
moreover assume that for any 1 < j < m — 1, we have

Jj ﬂJj+1 #@
and for any 1 < j, k < m with |j — k| > 2, we have
JiNnJy = 0.

At same time, we may assume that 0 € J; and 1 € J,,,.
To construct &, we start from t; = 0. Let p is a chosen lift of «(0). Then we have a unique
liftt Uy of V;. Consider the map
(I)|U1 UL =W

which is a homeomorphism. Then we consider the following composition
ay = ((b‘Ul)il o a‘Jl‘

Then consider a point to € J; N Ja. There is a unique lift &1 (¢2) of a(t2) in U;. Now we consider
the lifts of V4, there is a unique one containing &;(¢2) and we denote it by Us. We have a
homeomorphism

q)|U2 : U2 — ‘/2
We define
Qg = ((b‘Uzr)il o O“Jz'
P
| | | | ! R
U,
((I)|Uz)_l
ol V2
oS )

a|J1

Figure 3.5.7: Construct a piece by piece.
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Repeating this process, we have a collection of maps a; for 1 < j < 'm. Then we define

al(t), teJi

ag(t), te JQ
a(t) =

am(t), te Jny

By the construction of &;’s, the map & is well-defined and continuous, and satisfies the desired
commutative diagram. The uniqueness is obtained by the uniqueness of each ;.

The proof for the existence and uniqueness of homotopy lifting is similar. The difference is that
instead of considering decomposing [0, 1] into subinterval, we have to consider the square [0, 1]2
and decompose it into subsquares. Using the compactness of [0, 1]%, by a similar construction as
above, we obtain a unique lift of a homotopy for a given lift of the base point.

By the definition of ® and p = 1 € C, we have ®~!(p) = Z. We choose p = 0. By Observation
we have a well defined map

f:L(SYp) — ”P(R,fo’).

o=

By Observation we have
f:L(Sp)) ~— PR,p)/ ~

[o] = [a]

Here we consider the path homotopy (relative to {0,1}). Hence the starting and the ending
points of & will be fixed during the homotopy. We consider the endpoint &(1), and have a map

g:L(SYp))~—= 17
a—a(l)

0= 7(0) 2= 5(1)

e | I

Figure 3.5.8: Lifting v, to R.
Now we consider the lift 7y of 4 with 7 (0) = 0. Then we have
(1) =k € Z.
Therefore for different integers ki # ko, we have

Yh1 ™ Vkas
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for otherwise we should have k1 = g, (1) = Y%, (1) = ko, which is a contradiction.
Hence the generator [y;] of 71 (S1, p) is of infinite order, and

m(S',p) = Z.

Change the base point

From its construction, the group 71 (X, p) depends on the choice of p. One may continue to ask
what happens when we change the base point p to a different point, say ¢ € X, and if there is
any relation between 71 (X, x) and 7 (X, y). To answer these questions, we consider the following
construction to relate loops based at p and those based at q.

Let « be a path in X with «(0) = ¢ and «(1) = p, which is chosen once and for all. For any
loop v in £(X,p), we consider the composition a * vy * @ which is a loop based at ¢ (See Figure

for an illustration).

Figure 3.5.9: Change the base point from p to q.

This induces a map
va : L(X,p) = L(X, q),
v Qok Yk Q

which in turn induces a map
(I)a : Wl(Xap) — 7-‘—1()(7(1)a
[v] =[xy *xal.

Proposition 3.5.14

The map @, is an isomorphism.

Proof. 1t is enough to show that ®, is bijective and it is a group homomorphism.
We first show that the map ®,, is bijective. We consider another map constructed in a similar
way
‘I)a : 7T1(X, q) — 7T1(X,p)

[n] = [@*n*a]
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For any [y] € m1(X,p), we have
(@ 0 @a)([7]) = Palla* v +al)
= [ax* (a*xy*a)*a]
= [epxyxcp] =l
Hence
(DE o (I’a - idﬂ'l (X,p)'
Similarly, we have
(ba o q)a = idTrl(X,q)'
Therefore @, is bijective.

To show that it is a group homomorphism, we consider any pair [y] and [y] in 71 (X, p) and

have
Do (7] = [V]) = Cally*7])
= [a * 7y % fy' *E]
=la*xy*c,xvy xa
=[axy*xa*xaxy xaq]
=[axy*alx*[axy *a
= @4 (1)) * @a (7))
Hence @, is a group homomorphism. O

Remark 3.5.15.
By this proposition, up to isomorphism, the fundamental group of X based at a point is
independent of choice of the base point. Hence we may omit the base point and call it the
fundamental group of X, denote it by m (X).

However, when we try to do computation in details with loops, we have to choose a base point
p € X and consider the corresponding fundamental group 71 (X, p) based at p.

Notice the above construction of ®, seems to depend on the choice of « or at least the
homotopy class of [a]. If we choose another path 8 in X with 8(0) = ¢ and 8(1) = p, by the
same construction, we have the map (g and the isomorphism ®3.

Proposition 3.5.16

For any [v], we have
D3([7]) = [B*a) * @u([y]) * [B*a] .

In another word, the two group homomorphisms ®, and ®3 are different by a conjugation
in m (X, q) given by [0 * @].

Proof. The proof is a direct computation.
Notice that

[6 *a] € T‘-l(qu)'
Given any v € L(X,p), we have

%0 * [y x @ * [a x ]

[
[
= [Bl*[@xa]x[y]  [@*a] «[B]
[
[8 @] * @a(ly]) * [B+a] "
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Hence the two isomorphisms are different by a global conjugacy by [8 *a] € m1 (X, q).

As a corollary, we have

Corollary 3.5.17

If 71 (X, p) is abelian, the isomorphism between 71 (X, p) and 71 (X, ¢) given by changing
the base point is canonical, i.e. for any paths a and g in X going from ¢ to p, we have

o, = B

Both circle S' and torus 72 have abelian fundamental groups. On the other hand, the fundamental
group of a disk with more than 1 holes is not abelian. For example, let X be a disk with 2
holes. Let p and ¢ be two points in X. Consider two paths o and 3 going from g to p as in the
picture, such that 8 x @ is a loop based at ¢ going around another hole counterclockwise once.
We consider the change of base point induced by « and that induced by S (See Figure for
an illustration).

Figure 3.5.10: Different ways of change the base point from p to gq.

Informally speaking to have a path homotopy between a * v * @ and 3 * v * 3, we should be
able to go over the hole on the left which is impossible. After we discuss the Seifert-Van-Kampen
Theorem, we will be able to compute the fundamental group of X in a simple way. Then we will

see the two elements [« * v x @] and [« * 5] do not commute with each other, hence

Bry*B]=[axB]  x[axy*a]*[axp]#[axy*al

3.6 Fundamental groups and continuous maps

From the topological point of view, different spaces can be related through continuous maps. In
this part, we would like to discuss this kind of relation in the fundamental group level.

Let X and Y be two path connected topological spaces. Denote by f a continuous map from
X to Y. Since the composition of any pair of continuous maps (if possible) is still a continuous
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map, we have a natural way to relate paths in X to paths in Y which can be described by the
following map (See Figure for an illustration)

[ P(X,p.q) = P, f(p), f(a)),
a— foa.

Figure 3.6.1: The continuous map f "sends" a path in X to a path in Y.

Moreover, if a and 8 are homotopic in X through the homotopy H, then foa and fo g
are homotopic in Y through the homotopy f o H. Therefore, the map f. can descend to a map
between the two spaces of the homotopy classes of paths which we will still denote by f:

fe: P(X7p7 Q)/ ~ = P(Y7f(p>7f(Q))/ ~
[a] = [f o al.

In particular, if f is a homeomorphism, then f, should be a bijective map between P(X,p,q)/ ~

and P(Y, f(p), f(q))/ ~.

Figure 3.6.2: The continuous map f "sends" a path homotopy in X to a path homotopy in Y.

In particular, we consider loops in X and in Y, and have the following map between fundamental
groups:
f* : Wl(Xap) — ﬂ-l(}/a f(p))7
(Y] = [f ol

Moreover we can verify the following fact.

Proposition 3.6.1

The map
feormi(X,z) = m (Y, f(2))

is a group homomorphism.
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Proof. Given any loops a and 8 in £(X,p), we have
folaxpB)=(foa)x(fop).

Now let ay, as, 51, 82 be loops in L(X, p), such that oy ~ ag and 1 ~ B2. We denote by H; the
homotopy between o and as, and by Hs the homotopy between $; and 2. Then since we have

fo(Hy*Hy) = (foH)x(foHa),

we have
felloa] = [B1]) = fu([ea]) * [ ([Ba])-

Hence f, is a group homomorphism. O
Let X, Y and Z be three path connected spaces, and
f+X=Y g¢g:Y—>Z

be two continuous maps. Let = be a point in X, then by the previous proposition, we have three
group homomorphisms
foim(X,z) = m(Y, f(2)),
g« :m (Y, f(z)) = m(Z, g(f(x)),
(g0 fe:m(X,2) = m(Z, g(f(x))).

We can verify the following fact.

Proposition 3.6.2

The three homomorphisms satisfy the following relation:

(gOf)*Zg*Of*.

Proof. Let a7 and ay be two homotopic loops in £(X, x), and H be the path homotopy between
them. Then consider the composition of maps, we have

(gof)oeH =go(foH),

which is a path homotopy between go f oa; and go f o as.
Hence, we have

(g« © fo)([ea]) = gu(fu([en])).
O

Now we consider a simple case where X =Y and f is the identity map. As a first guess, the
corresponding homomorphism f, should be an isomorphism, since nothing is changed under an
identity map.

Lemma 3.6.3

For any path connected topological space X with a base point p, the identity map idx
induces the identity isomorphism

idﬂ'l(X,p) = (ldX)* : WI(X7p) — 771(va)'
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Proof of Lemma[3.6.3 Let a be a loop in £(X,p), we have
idxy oa=a.
Hence for any [a] € m1(X,p), we have

(idx )+ ([a]) = ([a])-

In fact, we have the following more general statement.

Proposition 3.6.4

If the map
f: X =Y,

is a homeomorphism, then

feim(X,p) = (Y, f(p)),

is an isomorphism.

Proof. Since f is a homeomorphism, it admits an inverse
7y = X,

which is also a homeomorphism. In the following, we will show that f. and (f~1). are inverse to
each other.
Since we have
foft=idy, f'of=idx.
Combining Proposition and Lemma we have
feo (f_l)* = (f o f_l)* = (idy)* = idm(Y,f(m))-
(F Do fe=(fof)=(idx)« = idn, (x.0)-

this implies that the homomorphism f, is both injective and surjective, hence an isomorphism. [J

Invariance of fundamental group under homotopy

The fact that the fundamental group is invariant by an homeomorphism is not surprising, since
two homeomorphic spaces are considered the same in the topological point of view and the
fundamental group is an topological invariant.

In fact, the fundamental group is invariant under a homotopy equivalence which is strictly
weaker than a homeomorphism. (Here by being invariant, we mean that up to isomorphism it is
the same.)

Let X and Y be two path connected topological spaces. Assume that there are two continuous
maps

f:X—=>Yandg: X Y.

Choose p € X as a base point. We consider the homomorphisms induced by them

ferm(X,p) = m (Y, f(p)),
gx 71—1()(ap) — ﬂ_l(Y: g(p))

We assume that f and g are homotopic to each other, and denote by H the homotopy between
them. Then we have the following path in Y by considering the trace of p:

8:0,1] =Y
t H(p,t)

With these notation, we have the following proposition.
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Proposition 3.6.5

If f and g are homotopic, then f. = [8] * g« * [5].

Proof. For any t € [0, 1], we consider the path

Bt : [O, 1] —Y
s»—>5(st)'

Let « be a loop in £(X,p). The homotopy H between f and g induces a general homotopy
between f o a and g o «, denoted by H’. For each ¢ € [0, 1], we have

H,=H;oa.
Then we define the following map
F:[0,1]x[0,1] =Y
(s,t) = (Be * H{ * Br)(s)

This is a path homotopy between f o o and 3 * (g o @) * 3 (See Figure for an illustration).

goo

foa foa

Figure 3.6.3: The homotopy between f o« and 8 x (g o «) x (.

If o’ € L(X,p) be a loop homotopic to «, and 5’ be a path from f(p) to g(p) homotopic to 3,
then we have the following sequences of homotopic loops in Y:

fod ~foan~pBx(goa)xB~p x(goa)xp.
Therefore, we have the desired identity

fe([a]) = [B] * g«([a]) * [B],
which holds for any [a] € 71 (X, p). Hence

fe = 1Bl * g« % [B].
O

The above proposition tells us that the two maps f, and g, are different by a change of base
point given by 3. Using the same notation as in previous section, we denote by ®4 the change of
base point isomorphism between 71 (Y, f(p)) and 71 (Y, g(p)) induced by 8. The above proposition
is equivalence to the existence of the following commutative diagram.
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Proposition 3.6.6

With the notation introduced above, we have the following commutative diagram

(X, p) —I5 1 (Y, F(p))

S

(Y, 9(p))

Applying the above proposition to maps in C(X) and maps in C(Y'), we have the following
invariance of fundamental groups under homotopy.

Theorem 3.6.7

If X and Y are two homotopy equivalent path connected topological spaces, we have
(X, z) =m(Y,y),

forany xr € X andy € Y.

Proof. By the definition of homotopy equivalence, we have maps
f:X—>Yandg:Y — X.

satisfying
ngNidy andgofwidX.

By considering the isomorphism induced by a change of base point, it is enough to prove the
statement for a special choice of x and y. For our convenience, we choose x to be in the image of
g, and we denote by y € Y with g(y) = x. We would like to show that

[ im(X,z) = m(Y, f(z))

is an isomorphism.
Let H denote the hotomopy between g o f and idx. Let 8 denote the path

B:10,1] = X
t— H(z,t)

which is the trace of 2 under the homotopy H. Then by Proposition [3.6.6] we have
Pgo(gofle = (idx)s =idr, (x.2)s

and the following commutative diagram

(X, ) —25 1 (Y, f(@) —25 m(X, g(f(x))
k lq),e
T (X, x)

Hence we have
(CI)ﬁ 0gs)o fu= idm(X,z)-

which implies that f, is injective.
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Let H' denote the homotopy between f o g and idy. Let 3’ denote the path

B 0,1 =Y
t— H'(y,t)

which is the trace of y = f(z) under the homotopy H’. Then by Proposition we have
Ppr o (fog)s = (dy)s =idr (v,y),

and the following commutative diagram

(Y, y) =2 m(X, ) —Ls 7 (Y, f(2)

Py
M J/ﬁ

1 (Yv y)
Therefore, we have
(@B/ o fu)og. = (idy). = idm(y’y).

This implies that
(I)B/ o f* : 7Tl(X, 1‘) — 771(Y7 y)7

is surjective. Notice that ®g is an isomorphism, hence if f, is not surjective, then neither is
®g o f, which is a contradiction. Hence we have f, is surjective. Together with the injectivity of
f+, we may conclude that f, is an isomorphism, hence the theorem. O

As discussed before, applying deformation retraction is a special way to get two spaces which are
homotopy equivalent to each other. We first consider certain examples of this kind.

Let D denote the closed unit disk in C, and O denote its center. Then {O} is a deformation
retraction of D. Hence for any point z € D, we have

7Tl(]D)v Z) = 71—1({0}7 O) = {6}

Hence the fundamental group of D is trivial.

This example is in fact a special case for a more general fact.
Proposition 3.6.9

Let X be a path connected topological space. If X is contractible, then for any x € X, we
have 7y (X, x) is trivial.

Proof. By Definition [3.1.11] the space X is contractible if and only if there is a homotopy between
the identity map idx and the constant map ¢, for some point x. Consider the inclusion map

L {x} = X,
T .

On one hand, we have
Cyp Oly = Cyg,

at the same time, by definition, we have

Ly O Cyp ~ idx.
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Hence X and {z} are homotopy equivalent. Therefore, their fundamental groups are isomorphic
to each other. Hence for any z € X, we have

m (X, z) = {e}.

Remark 3.6.10.

The converse is not true. For example, the 2-sphere has trivial fundamental group, but is not
contractible. In fact two homotopy equivalent space have isomorphic nth homotopy group for
any n € N. We can see that m2(S5?) is not trivial and a single point has trivial nth homotopy
group for any n € N. One may continue to ask if having isomorphic nth homotopy group for any
n € N can tell the homotopy equivalence. The answer is not true. One counter-example is given
by 5% x RP? and S2 x RP?. Notice that one is orientable while the other is not. All these will be
explained in details in the future.

Definition 3.6.11

A path connected topological space X is said to be simply connected if its fundamental
group is trivial.
By the Proposition [3.6.9] we have the following fact.

Corollary 3.6.12
If a path connected topological space X is contractible, then it is simply connected.

Previously, we introduce the construction of a cone based on a space. Notice that topologically
the disk can be consider as a cone based on S'. With this observation, we have the following
criteria to detect which loop in £(X,x) has trivial homotopy class.

Proposition 3.6.13
A loop
a: St X,
is homotopic to a point in X if and only if o can be extended to a continuous map

a:D— X.

Proof. A loop « is homotopic to the constant loop

ey St = X,
t—x,

if and only if there is a homotopy
H:S'"x[0,1] — X,
between « and ¢, for some x € X, or equivalently there is a homotopy

H:S'"x[0,1] — X,
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such that
H(S1 x {1}) = «.

This moreover is equivalent to the existence of the following commutative diagram

Stx o, 1] — x

F 4

Cone(S1)

Hence we have the proposition. O

Consider the region in C defined as follows:
A={zeC|1<|z| <2}

Notice that
St:={zeC|l|z|=1}

is a strong deformation retraction of A. With the retraction map

r:A— St
z

P
E

The homotopy between ¢ o r and id4 can be given as follows:
H:Ax[0,1]] - A
z .
t - @@
@8 = T

Hence A and S' are homotopy equivalent. We have

7T1(A) = 7T1(Sl) = 7.

3.7 First glance on Seifert-Van-Kampen’s Theorem

As we can see from the previous discussion, the fundamental group is a both elementary and
important invariant of a topological space. Once it is defined, an immediate question is how we
can compute it.

Previously, we have computed fundamental groups of some spaces such as single point sets,
disks, which are topologically simple. We also introduce the homotopy invariance of fundamental
groups. With this property, we can deform th space without changing the isomorphic type of the
fundamental group.

But we still have the problem: how to compute the fundamental group of a topologically
complicated space. In the following, we will introduce an important tool for studying fundamental
groups of complicated spaces which is called the Seifert van Kampen Theorem.

To study the fundamental group, we have to consider loops in a space up to homotopy, which,
as one could imagine, is difficult in general. For example, in the previous part, we have spent
quite some time to compute even the fundamental group of S*.

When studying a complicated space, one natural ideal is to decompose it into simple pieces.
Then we study the fundamental group of each piece. Finally, we study how to glue the fundamental
groups of all pieces back to that for the entire space. The Seifert van Kampen Theorem (the
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SVK Theorem) serves as a tool for the last step, i.e telling us how to glue fundamental groups of

pieces together.

In this part, we will have a first glance to get a rough idea about the SVK theorem. The
statement for general cases will be given after introducing some necessary background in the
group theory. We start by discussing a simple case.

Proposition 3.7.1

Let X be a path connected topological space. Let U and V be two path connected open
subset such that

s UUV =X,
e UNYV is non-empty and path connected,
e all U, V are simply connected.

Then X is simply connected.

Proof. The rough idea is to rewrite any path in X (after a homotopy) into a composition of
finitely many paths, each one of which is in either U or V. Then we use the simple connectivity
in either U, V or U NV to show the path in X is homotopic to a point. A key property used
here is the compactness of [0, 1].

Since X is path connected, we will choose p € U NV to be a base point and consider the
associated fundamental group with base point 71 (X, p). With this choice, all fundamental groups
71 (U, p), m1(V,p), m1 (U NV, p) and m1 (X, p) are well defined.

Figure 3.7.1: An open covering of the loop.

Let a be any loop in £(X,p). We consider a=!(U) and a~!(V) which are unions of intervals
in [0, 1], each of which is open in [0,1]. These intervals form an open cover of [0,1]. By the
compactness of [0, 1], there is a finite cover of [0, 1] denote by

{I;.... I},
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with k& € N*, such that for any 1 < i < k, we have «(I;) C U or «(I;) C V. Denote by a; and b;
the end points of I; with a; < b; (See Figure for an illustration).

We will find finitely many points to cut [0, 1] into finitely many pieces. The cutting points are
constructed inductively as follows. Assume that 0 € I;,. Let ¢y = a;, = 0. Let ¢; be the index
such that b;, € I;,. Then the intersection I;, N I;, is non empty. Choose

t; € I’io Nn1I.
with t1 > tg.

If we determine ¢; € I;;, then consider the I;
t;4+1 = 1, otherwise, choose

;41 such that b, € I;,, . Then if b;,,, =1, let

Ifj+1 S IzJ NI

J+17

with tj+1 > tj.
In this inductive way, we find a sequence of parameters

O:t()<lfl<"'<lf,;:17
with 0 < s < k+ 1. Moreover, we have

a([tj, tj+1]) C U or a([t;, tjt]) C V.

Figure 3.7.2: A partition of the loop.

For any 0 < j < s — 1, we denote by J; the closed interval [¢;,¢;4+1], and by «; the restriction
of a on J;. Next we would like to connect a(t;11) to p by a path fj11 of X. We choose the path
in the following way.

e if o; and o1 are both in U, then f; is a path in U;
e if o; and ;41 are both in V, then f; is a path in V;

e if a;isin U and a4 isin V, or if o5 isin V or 41 is in U, then o4 isin UNV, and
we choose f; to bein UNV.
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U unv |4

Figure 3.7.3: Decompose the loop.

Let fo and fs be the constant path c,. Then for any 0 < j < s—1, we consider the composition
Bj = Fit1xa;*fj.

(See Figure for an illustration.)

From the construction, we have §; either in £(U,p) or in L(V,p). Since both U and V are
simply connected, we have 3; is homotopic to p.

On the other hand, in X, we know that « is homotopic to the path

53—1 koeee ok ﬂO
:(.fs * Qlg—1 * fs—l) * (fs—l * Qg2 * fs—2) Koeee ok (fl * Qg *%) ~ o
Hence o is homotopic to c,. We then can conclude that X is simply connected. O

The construction in the above proof can be used to show something more. Let X be a path
connected topological space. For any path connected subset A C X, we have the inclusion map

LA:A—>X,
y—=y,

which induces a group homomorphism:

(ta)s s (A, p) = m (X, p),
[a]a = [a]x,

where p € A, a € L(A,p) C L(X,p), [a]a the homotopy class of « in A, and [«]x the homotopy
class of a in X. Since A is a subset of X, and any path homotopy in A is also a path homotopy
in X, the above homomorphism is well defined. (Also, one may notice that the inclusion map is a
continuous map.)

With these notation, we have the following fact.
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Proposition 3.7.2

Let U and V be two path connected open subsets of X such that
e UUV =X,
e UNYV is non-empty and path connected,

Let p € UNV. Then the fundamental group 7 (X, p) is generated by
(t0)«(m1 (U, p)) U (v )« (2 (V, p)).

Proof. Given any loop « in £(X,p), as in the proof of the previous proposition, it is homotopic
to a composition

Bs—1 % -+ x fo,
where fore each 0 < j < s—1, we have 3; either in L(U, p) or in L(V,p), hence [Bs_1] is contained
in

(0)«(m1 (U, p)) U (v )« (11 (V, p)).-

Therefore, we have the proposition. O

A presentation of a group is in general a way of describing a group using generators. In order
to know how to compute group operations, a presentation of a group also involves the information
satisfied by the generators, which will be called relations.

With this being said, the SVK theorem is all about giving a presentation of m (X, p) using
m1(U, p) and 71 (V, p). The above proposition gives a generating set of w1 (X, p), hence only half of
the actual SVK Theorem (for an open cover of two subsets). Another half is about the relation
satisfied by the elements in (tp)« (71 (U, p)) U (1)« (m1(V, p)).

In order to be able to talk about this, we have to introduce first some necessary background
in group theory on amalgamations and HNN extensions of groups. Before that, let us first see
how to use these baby versions of SVK theorem to study some topological spaces.

Corollary 3.7.3

For any n > 2, the n-sphere S™ is simply connected.

Proof. We would like to find a suitable pair of open subsets U and V for S™. Recall that
S ={(1, s Tpy1) €ER™ [ 2f 4+ af =1}
The topology on S™ is the subspace topology induced by the Euclidean metric topology on R™*1.
Let p=(1,0,...,0) and ¢ = (0, ...,0,1), and let

U=5"\1{p}, V=5"\{qh

Both U and V are open subsets and form an open cover of S™.
We consider the stereographic projection Pr, from U to

Pp = {(xlax% ,(En) € R ‘ T = 0}

Notice that P, is homeomorphic to R™ which is simply connected.
Since Pr, is a homeomorphism from U to P,, we have U is simply connected. By considering
the stereographic projection from ¢, we prove in the same way that V is simply connected.
The intersection U NV is path connected. To see this, we consider its image under Pr, which
is
PA\A{(0,...,0)} = {(z1, 22, ..., x,) € R"™ | 2y =0} \ {(O0,...,0)}.
By Proposition [3.7.1] we have S™ is simply connected. O
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Now we consider the wedge sum between spheres.

Corollary 3.7.4

For any k > 2, for any natural numbers nq, ..., n; all greater or equal to 2, the space
STV ey ST

is simply connected.

Proof. Exercise. O

3.8 SVK Theorem

As mentioned in the previous section, the whole SVK theorem is about how to glue fundamental
groups of pieces of a space together to get the fundamental group of the entire space. More
precisely, Let X be a path connected space. Let U and V be two path connected open subset of
X which form a cover of X. Moreover, assume that U NV is path connected. Let p be a point in
U NV. The inclusion maps among these sets form a commutative diagram:

U
5
jv
\%4

S

nv
N

Since all inclusions are continuous map which induce homomorphisms between fundamental
groups, we have another commutative diagram in the fundamental group level:

\Y‘X
s

71—I(Uvm’p)
V (v0)-
T (UNV,p) 71 (X, p)
7T1(V7P)

Previously, we have shown that the fundamental group 7 (X, p) is generated by
(tv)«(m (U, p)) U (v )« (m1(V; p))
In this section, we will discuss the following general statement.

Theorem 3.8.1

We have the following group isomorphism

X.p) = (U 1%
(X, p) = mi( ,p)m(UTW’p)m( \D)s

where the amalgamation through (jy ). and (jv)«.
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Remark 3.8.2.
Some necessary background in group theory can be found in Appendix [A] and Appendix

Proof. By the definition of an amalgamated free product between two groups, we have the
following relation

71—1(U7 p) 7T1(V,p) = 7T1(U7 p) * 7-‘—1(‘/7 p)/N

*
71 (UNV,p)

where
N = {(j0)«(M(Gv)«()) " |y € m(UNV,p))).

Consider the above commutative diagram about fundamental groups. First, there is a natural
group homomorphism

o '/Tl(va) *Wl(‘/ap) — 7T1(X7p)'

From the above discussion, to prove the theorem, it is enough to show that the kernel of ® is V.
We denote by

[an]e, -+ % [an]e,

an element in 71 (U, p) * 71 (V, p), where for any 1 < j <mn,
€5 € {U, V}

is a symbol to show where this element belongs to.

Notice that if a loop o € L(U,p) has image in U NV, then it can also be considered as a
loop in L(V,p). We denote by [a]y its associated element in 71 (U, p) and by [a]y its associated
element in w1 (V,p). Since we have

[a]u * [o]y", [a]v = ol € N,

then
[a]uN = [a]vN.

From the commutative diagram above the theorem, we have N C ker ®. In order to show the
equality, it is enough to show that any element [a]e, * - - - * [ ]e, € ker @ will be trivial in

m (U, p) * m(V,p)/N.

In the other words, up to changing the "identity" of a component (belongs to w1 (U,p) or to
m1(V,p)), and computation in 71 (U, p) and that in 71 (V| p), it can be transformed to an element
in N.
It would be easier to discuss on the side of 71 (X, p). Notice that the ®-image of [a]¢, * - - - *
[an]e, is
[ag * -+ % ] = [¢p] € m(X,p).

Hence there is a homotopy between ay * --- * a,, and ¢, in X. We would like to show that
this homotopy can be realized by a sequence of homotopy in U, homotopy in V and change of
"identity" (from a U-loop to a V-loop, or the other way around).

Assume that

H:[0,1] % [0,1] = X

be a homotopy between ay * - - % o, and ¢,. (Reminder: all homotopies are path homotopies).
Assume that the bottom side of this square corresponds to cp, while the top side of this square
corresponds to aq * - -+ *x . Since H is a path homotopy, the left and right sides of the square
are sent to p by H.
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Some preparation

Similar to the previous discussion on loop, since [0, 1] x [0, 1] is compact, we can decompose it
into small rectangles such that the H-image of each closed rectangle is either entirely in U or
entirely in V.
To be more precise, assume that the rectangle partition of the square is given by the partition
of the first interval
O=sp<s1< - <sp=1

and the following partition of the second interval

O=to<t1i <--- <ty =1

S1 So  S3 Sy 1

Figure 3.8.1: Partition of a square.

For each 0 <i <k and 0 < j <[, we denote

vl = (i, 15)-

Each closed rectangle is in the form of

R} = [si, 8i41] % [t7,41]
for some 0 <4 < k and 0 < j < [, with vertices v}, v/ " v 41 and ’ufill . Since the image of each
R} is in U or V, we can label them with U or V depends on where they belong. If the image of a

rectangle belongs to both U and V', we may choose one to label this rectangle.
We also label each v/ in the following way:

o if all rectangles adjacent to it are labeled by U, we label it by U;
« if all rectangles adjacent to it are labeled by V', we label it by V;
o otherwise, we label it by UNV.

For each vf (i # 0,1 or j # 0), we choose a path going from p to pf = H(vf) and denote by ﬁf,
such that, if v} is labeled by U, 3/ is a path in U; if v] is labeled by V, ] is a path in V; if v] is
labeled by UNV, B! isa pathin UNV.
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Figure 3.8.2: A small rectangle and its vertices.

Let Jr, and Jg be the vertical sides of the square on the left and on the right respectively.
Any path n in the square going from Jr to Jgr along sides of rectangles corresponds to a loop

in X based at p.

y=Hon

Figure 3.8.3: A path in the square from Jy, to Jr and the loop in X associated to it.

Each such path 7 is a concatenation of a sequence of sides of rectangle R{ ’s. This decomposition
of 7 induces a decomposition of v into paths with endpoints in

{Hw!) |0<i<k0<j<I}
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By inserting ﬁf * ﬁg , te path ~ is homotopic to a composition of a sequence of loops each of which
isin U orin V.

Another observation is that for any rectangle Rf and any two of its vertices, there are two
ways to go from one vertex to another along the sides of R{ . Their H-image are two path in X
homotopic to each other where the homotopy can be given by considering the restriction of H.
Moreover this homotopy is either in U or in V' depending on the label of R{ . Without loss of
generality, we may assume that Rg is labeled by U. As mentioned above, by taking composition
with Bg ’s and their inverse, these paths in X can be completed into loops in U, and the homotopy
between paths can induce a homotopy between loops in U.

Figure 3.8.4: A homotopy associated to a small rectangle.

Main discussion

Let 19 be the path with image the top side of the square corresponding to the parameter set for
Qp * -k QU

[0,1] x {1}.

Now we would like to modify it step by step. At step m, we obtain a path 7,, going from Jy,
to Jr along the sides of rectangles in the partition. By inserting 3/ * 3/ for each v}, the path
Ym = H o 1y, is homotopic to a composition of loops in U or in V:

NN GOSN )

Tm

This gives us an element in 71 (U, p) * m(V, p):

brm] = [0 e+ - [l e -

We first describe how 7, changes in the parameter square. For a pair of adjacent vertices v
and v" (endpoints of a same side of some R!), we will denote by vv’ to denote the path from v to
v’ along the side between them. Hence 79 can be expressed as

1 I l 1 {
Uovl koooee 3k Uk_QUk_l * v]s‘,—l?)k‘,'
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We start from the upper right corner Rﬁ;ll, modify 79 to a new path

_ .l Lol N
M= VaUY * -+ K Uy _oUp_q VU kU Uy

Then we consider RL__B, and modify 7; to

l 2 l l l -1 -1, 1-1 -1, 1-1

M2 = VgUy * * % Up_ 3Up o ¥ Up_oUp ok Up_9Up 4 *Vp_ Uy

Figure 3.8.5: Modify a path step by step.

By applying this for all rectangle on the top first row, we move the path with image
[0, 1] > {1}

to a path with image
0,1) % {te-1}.

We repeat this process, until we meet the bottom line
[0,1] x {0}.

Notice that when we go from step m to step m + 1, we modify the elements associated to
one rectangle R/. By our assumption, we have H (ng) C U or H(RJ) C V. Without loss of
generality, we may assume that it is the former.

Then by our choice of ,Bf ’s, those paths associated to vertices of RZ;’ are either in U NV or in
U, hence all of them are path in U. Hence all loops associated to the sides of RZ[‘)’ are all in U.
Moreover when we change from a pair of these loops to another pair through a homotopy, the
homotopy can be chosen in U. To simplify the discussion, let us denote by o, o, o and o the
loops associated to the upper, right, left and lower sides of ng respectively.

Now we consider change the element in 71 (U, p) 71 (V, p) associated to 7, and that associated
t0 Yim+1, the last thing we have to be careful is to which fundamental group each letter in those
elements belongs to. When we try to write

[04/1}61 * [0/2]62 = [0/3]63 * [0421]54
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we should have all these elements are in a same group, hence all markings €1, €2, €3 and €4 should
be the same.

However [a]]¢, and [ab]e, are obtained from the previous steps. Notice that each side of Rzg
has another adjacent rectangle which could possible labeled with V. Without loss of generality,
we may assume that this happens for [a]].,, hence we have e; = V. In this case, we have U'ZS’H
and vfg_tll both in U NV, hence the loop of is in L(U NV, p). So we can change [o)]v to [o]]u
in the quotient group m1 (U, p) * 71 (V,p)/N.

Hence we can make the whole homotopy happen by only using homotopies in U, homotopies
in V and change the "identity" (between U-loops and V-loops). This tells us the whole kernel is

in N. Hence the theorem. O

3.9 Application of the SVK Theorem

In this part, we use the SVK theorem to compute the fundamental groups of some spaces.

Wedge sum among circles

We first consider a wedge sum between two circles.

Figure 3.9.1: S'v St

Let Ry denote the whole space. We denote by A and B the two circles in X, which share a
same point p € X. Let I be an open circular arc containing p in A and J be an open circular arc
containing p in B. We consider

U=AUJ and V =BUI.

(O

Figure 3.9.2: The open subsets U and V, and their intersection for Rs.

Now we check if U can V satisfy the hypothesis of the SVK theorem. Notice that both U and
V' are open and path connected. Their intersection

UNnv=I1uUJ
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is also path connected. In fact it is simply connected, since {p} is its deformation retraction.
Now we consider the fundamental group of each piece. Notice that A (resp. B) is a deformation
retraction of U (resp. V'), hence we have

(U, p) 2 m(V,p) = m (A, p) 2 7.
Since U NV is simply connected, it has trivial fundamental group, hence
m1(Ra,p) 2 w1 (U,p) 1 (V,p) 2 Z+Z

which is a rank 2 free group.

Now we consider taking the wedge sum between Ry and one more circle C' at p. We denote
by R3 the whole space.

Figure 3.9.3: The 3-rose.
Let K be an open circular arc containing p in C. We consider

U =R,UK and V' =CUIU..

Now we check if U’ and V' satisfy the hypothesis of the SVK theorem. Notice that both U’ and
V' are open and path connected. Their intersection

UnNnV =IUJUK.

is also path connected. In fact it is simply connected, since {p} is its deformation retraction.

ST *

Figure 3.9.4: The open subsets U and V, and their intersection for R3.
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Now we consider the fundamental group of each piece. Notice that Ry (resp. C) is a
deformation retraction of U (resp. V'), hence we have

Wl(U/ap) = ’/Tl(Rva) =7 Za
and
m(V',p) = m(C,p) = Z.

Since U’ NV’ is simply connected, it has trivial fundamental group, hence
m1(Rs,p) = mi (R, p) x m(C,p) = L+ Zx L.

which is a rank 3 free group.
We call the wedge sum of n circle the n-rose. Its fundamental group is rank n free group.

Graphs

One way of consider graph is to a result of identification of endpoints of several closed compact
interval. We can consider it as a quotient space, and in this way we can easily understand its
topology. The image of endpoints are called vertices and the image of each interval is called an
edge. A graph is finite if it has finitely many vertices and edges. In this part, we assume that all
graphs are finite and connected.

Figure 3.9.5: A graph.

Let G be a graph. We denote G = (V, E) where V is the set of vertices and F is the set of
edges. A subgroup of G is a graph whose vertices and edges are also vertices and edges of G. A
graph is a tree if it is simply connected, i.e. there is no loop in it which is homotopically non
trivial. A subgroup of G is called a mazimal subtree if it is a tree and it is maximal with respect
to the partial order induced by inclusion of subsets. Notice that maximal subtrees of a graph are
not unique.

Figure 3.9.6: Collapse a maximal tree of a graph to get a rose.

Let T C G be a maximal subtree. Let n denote the number edges in G \ T'. We can collapse
T to a point, then each edge which is in G \ T becomes a loop, hence we obtain an n-rose R,,.
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From this, we can show that G and R,, are homotopy equivalent and has the same fundamental
group isomorphic to Fj,.

Torus

We consider torus T obtained from the unit square by identify its opposite sides. Let R denote
the unit square determined by (0,0), (1,0), (0,1) and (1,1). Let p denote the middle point of R.
Let D denote a radius 1/2 open disk neighborhood of p.

Let 7 : R — T be the quotient map. Then we set

U=n(R\{p}) and V =nx(D).

Figure 3.9.7: The open sets U and V, and their intersection for a torus.

Notice that OR is a strong deformation retraction of R\ {p}, moreover, this retraction can be
realized on T'. Hence

m(R\{p}) = m(OR).

The image m(OR) is a 2-rose (figure eight), hence has fundamental group Z * Z. Moreover, We
denote by qg the m-image of vertices of R. Then each pair of opposite sides of R induces a
generator of 71 (OR) by choosing one orientation. We denote them by a and b.

Figure 3.9.8: The fundamental group of U.

Since V' is a topologically a disk, hence has trivial fundamental group. Hence by the SVK
theorem

m(T,q) = m (U, q)/{(Gv)«(0]) [ Y] € m(U NV, q))).

Hence all we have to study is the (jy)«(m1(U NV,q)). By changing the base point to qg, the
generator of the fundamental group of the punctured disk is then aba='b~1.
Hence a presentation of the fundamental group of (T, qo) is then

(a,b]aba™ b7 1).

One may prove moreover that this group is isomorphic to Z? the free abelian group of 2 generators.



136 CHAPTER 3. HOMOTOPY AND FUNDAMENTAL GROUPS

Figure 3.9.9: A generator of (ju)«(m1(U NV, p)).

Connected sums among torus

Now we consider connected sums among torus. We only discuss a connected sum of two torus as
an example. Let T and T” be two torus. By make a connected sum, we remove an open disk in T
and an open disk in 7", then glue the boundary with certain choice of orientation.

(=) X2

Figure 3.9.10: The connected sum 35 between two torus.

We denote by T and T] be the resulting surfaces after removing disks from T and T’
respectively. Let A (resp. A’) be an open cylinder neighborhood of 877 (resp. 977) in T (resp.

7).
D) -

Figure 3.9.11: The connected sum X5 between two torus.

Let Yo = T#T’'. We choose
U=TyUA" and V =T|UA.

Then
UNV=AuA

is homeomorphic to a cylinder. Let p € U N V. By well choosing presentations of 7 (U, p) and
71(V,p), The generator of 71 (U N V,p) has a presentation a~tbab=! in 7 (U,p) and has the
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presentation ¢~ !ded~! in 71 (V, p). Hence the presentation of 71 (22, p) can be given as follows:

{a,b,c,d | a™ babted e d).

Figure 3.9.12: Identification of boundary elements.
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Chapter 4

Covering spaces

Consider the map

f:C—=C,

2 22,

If we look at its restriction on the unit circle S*, the map f winds the circle around itself twice.
Topologically, a loop going around S once is not homotopic to a loop going around S twice.
But they still have certain things in common. For example, locally we cannot distinguish them,
the homomorphism between fundamental groups induces by f is injective, etc. Such phenomenon
relates to a notion called "covering". In fact we see this a lot in daily life. For example, we may
consider what happens when we try to roll a paper into a straw. We may consider a straw as
a cylinder. When we cut either a disk or a disk with center removed out of the straw, we get
several pieces of paper homeomorphic to the part of the straw being cut out. In this chapter, we
would like to study covering maps and covering spaces in details.

4.1 Covering maps

Intuitively, if a space X covers another one Y, locally they looks like each other.
Definition 4.1.1
Let X and Y be two topological spaces. A continuous map

fX Y,

is a local homeomorphism, if for any x € X, it has an open neighborhood U C X such
that

(i) f(U) CY is open;

(ii) the restriction f|y is a homeomorphism to its image.

As we will see later, this definition is weaker than what we need for discussing "covering'. Let us
first give the formal definition of a covering map.

139
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Definition 4.1.2

Let X and Y be two topological spaces. A continuous map
f: X—=Y

is a covering map, if it is surjective and for any p € Y, it has a neighborhood V C Y such
that

1. f7Y(V) can be written as a disjoint union of sets

71 V) = | U

[e119)

2. for each a € 2, we have
flu, : Ua =V,

is a homeomorphism.

In this case, we call X is a covering space of Y (or simply a cover of V) with covering
map f.

Remark 4.1.3.

For our convenience, for any p € Y, we will call any neighborhood V satisfying the condition in
the definition a covering neighborhood of p. We remark that a point p may have many covering
neighborhoods. For any example, if V' is a covering neighborhood of p, then any neighborhood of
p contained in V' is again a covering neighborhood of p. Another remark is that if V' is a covering
neighborhood of p € Y, then V is also a covering neighborhood of any p’ € V.

Consider the covering map f : X — Y, given any point p € Y, if V' is a covering neighborhood
of p, then its intersection with any neighborhood U of p is still a covering neighborhood of p.
Hence, we have the following observation.

Proposition 4.1.4

Let f : X — Y be a covering map, then the open covering neighborhoods of points in Y
form a basis of the topology of Y. The connected components of preimages of open covering
neighborhoods of points in Y form a basis of the topology of X.

We first see several example to see what this definition requires.

We consider the example given in the beginning of this chapter. Consider S' the unit circle in C
and the map from S! to S! given by

f:C—>C

z 22
For any 0 € R, let

V::{eit651’t€ (9—%,9—1—%)}.
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The its preimage under f can be written as Uy Ll Uy, where

) 06 w© 0
o it 1 s 07 7
Ul.{e €S|t€<2 4,2+4)},

) 0 37 0 5w
. 1t 1 7 -z
U%_{665h6<2+4,2+4>}

UiNnUy =0.

Notice that

Moreover
flo, : Ui =V and  fly, : U2 =V,

are both homeomorphisms. Therefore V is a covering neighborhood of e? (See Figure for
an illustration).

i(0+2m)
e~ 2

Figure 4.1.1: A covering neighborhood V of €.

Therefore f is a covering map from S* to S*.

The discussion in this example can be used to discuss any map
fn:C—>C
z = 2"

with n € N*. The differences between the case n = 2 and other cases are the choice of the covering

neighborhood V for each 6 and the number of U,’s. See Figure [£.1.2] for an illustration for f,’s
with n = 2,4,7.

This is an example which is local homeomorphism, but not a covering map. We consider
f:(0,47) — St
t > exp(it)’
Notice that given 1 € S*, we consider an open neighborhood V of 1 in S* which is an open
circular arc. It preimage will contain a connected component which is an interval U = (47 — ¢, 4)

for some € > 0. Notice that the restriction of f on U is not a homeomorphism to V' (See Figure

for un illustration).
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NN NN

Il
1
-

Figure 4.1.2: Covering maps for n = 2,4, 7.

iatil}

Figure 4.1.3: An illustration of f.

One thing that we may notice is that the number of f, l-preimage of each point in S* is the
same. In fact this is not a surprise.

Proposition 4.1.7

Let X be a cover of a topological space Y with covering map f. Assume that Y is connected,
and there is natural number n € N*, such that |f~!(pg)| = n for some py € Y. Then for
any p € Y, we have |f~1(p)| = n.

Proof. We consider the map
v:Y = NU{co}
p 1))

As a convention, if f~!(p) is not finite, we define its value under ¢ to be co. We consider the
discrete topology on NU {oo}.
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For any k € NU {co}, we consider its preimage
¢k ={peY [[f'(p)| =k}
For any p € ¢~ !(k), by the definition of a covering map, there is a neighborhood V' of p such
that
1. f7Y(V) can be written as a disjoint union of open sets

F V) = | Uas

ac)
2. for each a € 2, we have
flu, : Us =V,
is a homeomorphism.

For any ¢ € V', we have

FHa) c 1V,
and for any a € 2, we have

[ ) NUa| = 1.

Hence we have

Hence we have
V C o (k).

This implies that o~ (k) is open. Hence ¢ is a continuous map.
Since Y is connected, we have ¢(Y) C NU {oo} is connected. Hence ¢ is constant.
Since we have a point pg with ¢(pg) = n, for any p € Y, we have

1/~ (p)| = ¢(p) = n.

Remark 4.1.8.
Since path connectivity implies connectivity, the above proposition holds in particular for path
connected space Y.

Definition 4.1.9

Let X be a cover of a connected topological space Y with covering map f. If thereisp € Y,
such that
[f o) =ne N,

then we call X a finite cover of Y, and n is called the cover index or cover degree.

Remark 4.1.10.
A cover of a topological space is not always finite. Here is one example. Let S' be the unit circle
in C. We consider the map
f:R— St
6 — e,
This is a covering map. Notice that
f71(1) = 2nZ.

Hence with the covering map f, the space R is not a finite cover of S*.
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Remark 4.1.11.
A cover of a space Y need not to be different from Y. For example, for any n € N*, with the
covering map f,, the unit circle S! is a index n cover of itself.

Remark 4.1.12.
Recall that the definition of a covering space of a space Y includes two parts of information: the
space X and the covering map f.

Remark 4.1.15.

The above example reminds us that when we discuss the notion of quotient space we use exactly
the same example with R and S'. In fact, in some cases, instead of seeing Y and its covering
space X as two spaces with special relation, we can also consider Y as a quotient space of X and
the covering map can be consider as a quotient map. We will discuss this later in details.

Proposition 4.1.14
A degree 1 covering map is a homeomorphism.

Proof. If a covering map f from X to Y has degree 1, then it is bijective by the definition of
degree. The covering neighborhood of points in Y form a basis of the topology in Y. Hence f
is continuous. On the other hand, the connected components of preimage of a open covering
neighborhood of points in ¥ form a basis of X. Hence f~! is also continuous. Therefore f is a
homeomorphism. O

4.2 Lifting

Let X and Y be two path connected spaces. Assume that X is a cover of Y with covering map f.
For any p € Y, we call a point p € f~1(p) a lift of p. By the definition of a covering map, for
each p, we can have a covering neighborhood V' of p, such that

71 V) = | Uas

aEQ

such that for each o € 2, U, and V' are homeomorphic through f. We then call U, a lift of V.
We can also talk about lifts of continuous maps. Let

h:Z—=Y
be a continuous map. If we have a map
h:Z— X,

such that we have the following commutative diagram

we then call h a lift of h.
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Remark 4.2.1.

One possible advantage to lift a map is that it is possible that the topology of X is simpler than
that of Y. Then it would be easier to study maps to X than those to Y. For example, when we
compute the fundamental group of S*, we try to lift maps to R which is simply connected and
the linear structure in R can be use to construct homotopies which would be quite helpful.

Remark 4.2.2.

Later we will see that given a space Y and its cover X, not every continuous map to Y can be
lift to a map to X. We will also give a criterion to tell in which situation a continuous map to Y
is liftable.

Lifts of paths

We start by discussing lifts of paths. Let X and Y be two path connected spaces, and
f: X =Y,
be a covering map.

Definition 4.2.3

Let a be a path in Y, then a lift of @ in X is a path « in X satisfying the following

commutative diagram
v

0,1] %Y

We first show that lifts of any path do exists.
Proposition 4.2.4

Let a be a path in Y with a(0) = p. Then for each p € f~*(p), there is a unique lift @ of
such that a(0) = p.

Proof. The goal is to find a path
a:0,1] — X,
such that the following diagram commutes
X
[0,1] “—Y

For any t € [0, 1], by the definition of the covering map, the point «(¢) has a open covering

neighborhood V; in Y, such that each «(t) € f~1(¢) has a neighborhood U, satisfying that
f‘Ut : Ut — ‘/t
is a homeomorphism. For each t, we have a interval open neighborhood I; of ¢ such that

I, c a1 (V).
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These interval I;’s form an open cover of [0,1]. Since [0,1] is compact, we can choose finitely
many of them to cover [0,1]. Let n be the number of these intervals. The endpoints of these
intervals form a sequence

0=s50<81 < <8y <8pg1 =1

Choose
O=s0=tr<s1 <1 <82 <ta < -+ <lp1 <8y <ty <Spgp1=1lpp1 =1
Then we have a finite partition of [0, 1]:
O=to<t1 < - <ty <tpy1 =1,

such that for each 0 < i < n, a([t;,ti+1]) is contained in one of the covering neighborhood V;’s
chosen in the beginning of this construction, and we denote it by V;. In the following, for any
0 <1 <n, we will denote

Q; =

[tistit1]”

We will construct a piece by piece. Let p € f~!(p). Then we have a neighborhood of p
denoted by Uy homeomorphic to V| via f. Denote by

f():f‘UO ZU0—>‘/0.

Then we define

60 . [Oatl] — X,

by Bo = f5 o a.

Assume that we have BO, ey E with ¢;41 < 1. We consider «(t;41) and the covering neighbor-
hood V; 11 containing o([t;y1,tiy2]).

Let U; 11 be the neighborhood of 3;(¢;4+1) which is homeomorphic to V;4; via f. We denote by

firn=1

Uipr * Uir1 = Vig1.
Then we define _
Bit1 : [tit1stiya] = X,
by Biy1 = fiih o it B
In this way, we obtain a sequence of maps §; for 0 < i <n. Since for any 0 <i<n—1, we
have

Biltis1) = Bi1(tira),
we can "glue" all these maps together and define the following map

a:[0,1] - X,

such that for any ¢ € [0, 1], we have

Bn(t), tE [tn,1].

(See Figure for an illustration.)
From the continuity of each [3;, we may get the continuity of &. We can check the a-preimage
of any closed subset of X is closed in [0, 1], since it is a union of some closed subsets in each

[tistit]-
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Figure 4.2.1: Construct & piece by piece.

Next we would like to show the uniqueness of @. Assume that & is another lift «, such that
a'(0) = p.
Hence we have
foa=a=fod

We consider first the interval [0,¢;]. Since
a(0) =p=a'(0),

we have
&([07151]) c Uy and &’([O,tl]) c Uy.

Hence
~ 71 ~
Aljo,] = fo oo =& o4,

the two maps coincide on [0, t1].

Now assume that they coincide on [0, ¢;] with ¢; < 1. Then for a(t;) = &'(¢;). By a similar
argument as for [0,¢1], we can show that & and &' coincide on [t;, t;41]. Therefore by induction,
we have

~ _ ~

o=«

on [0,1]. This shows the uniqueness of the lift for a chosen lift of «(0).

A lift of a loop may not be a loop. Consider S' as the unit circle of C, and the covering map
from S to itself given by

[z 2%
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Consider p = 1, then it has two lifts 1 and —1. Consider the loop

a:[0,1] — S*
t 627rit
It has a lift
a:[0,1] — S*
t s e

with @&(0) =1 and &(1) = —1 which is not a loop.
On the other hand, a covering map always sends loops to loops.
Now we consider the path homotopy.

Proposition 4.2.6

Let « and 8 be two homotopic paths in Y and H be the homotopy between them. Denote

For any p € f~(y), there is a unique lift

H:[0,1 % [0,1] = X,

of H with H(0,0) =p. _ N
Moreover, the map H is a path homotopy between « and f lifts of a and 3 respectively
with

Proof. The goal is to find a continuous map

H:[0,1] x [0,1] = X,

2

0,1 x [0,1] -5V

such that the following diagram commutes

By the definition of a covering map, each point H(s,t) € Y has a covering neighborhood Vj ,
inY.

Notice that the topology of [0, 1] x [0, 1] has a basis consisting of only open rectangles. Hence
for any (s,t), there is a rectangle open neighborhood R;; of (s,t) with
Ry C H ' (Viy).

These rectangles R, ;’s form an open cover of [0,1] x [0,1]. Since [0,1] x [0,1] is compact, we can
choose finitely many of them to cover [0, 1] x [0, 1].

We consider the vertices of these rectangles. Their horizontal coordinates and their vertical
coordinates give partitions of [0,1] x {0} and {0} x [0, 1] respectively, denoted by

0=s50<81 < <8p <Sm+1 =1,
0=ty <ty <'~'<tn<tn+1:1.



4.2. LIFTING 149

We consider z;’s and y;’s in [0, 1], such that

O=sp=20<851 <21 < <8y < Ty < Smt1 = Tm41 = 1,
O=to=yo<t1 <wy1 <~--<tn<yn<tn+1:yn+1:1.

Then for each 0 <7 < m and 0 < j < n, the image
H([wi, mit1] X [y5,y541]) C Vi

where V; ; is the H-image of a rectangle in the finite rectangle cover of [0, 1] x [0,1] obtained
above.

We now construct the lift of H piece by piece in an inductive way. Let p € f~1(p). We have a
neighborhood of Uy ¢ of p homeomorphic to V; 9. Denote by

Jo.0 .= flue.o : Un,o — Vo,o-

Then we define _
Foo:[0,21] x [0,51] = X

by Fo,0 = fo © Hlo,e1)x[0,91]-

Assume that we have defined foﬂl with y;11 < 1, then we consider H(0,y;+1) and its covering
neighborhood Vj ;41 containing H ([0, z1] X [yi+1,¥i+2]). Let Up,i+1 be the neighborhood of
H(0, y;4+1) homeomorphic to Vp ;4+1. Denote by

foit1 = flugsr = Unjivr = Vot

Then we define Fp 41 = f(ii1+1 o H|[071’1]><[yi+luyi+2]'

For any 0 < 7 < m, if we have defined ﬁj,k for any (7, k) with 0 < j <dand 0 < k < 1. Assume
that 2,41 < 1. Then we consider H(z;4+1,0) and its covering neighborhood V;1; ¢ containing
H([zit1,Tit2] % [0,41]). Let U;11,0 be the neighborhood of H(z;11,0) homeomorphic to Vit1 0.
Denote by

frono = f

Then we define ﬁi+1,0 = fi7+11,0 © H|(z; zii1]x[0,51]"
For each (s,t) € [z, it1] X [Yj,Yj+1], we define

Uitr.0 - Uir1,0 = Vig10-

H(s,t) = F; ;(s,1).

By the construction of E j, for any two adjacent rectangles, the images of }?,-7 ;s on their common
part are the same. Hence H is well defined. Moreover, the union of closed subsets in each small
rectangles is a closed subset in [0,1] x [0, 1], by the continuity of F} ;’s (which are composition
between continuous maps), we have the continuity of H. Hence we have a lift of H.

_ The uniqueness of H with H (0,0) = p can also be proved in an inductive way. Assume that
H' is a lift of H with N N
H'(0,0) = p= H(0,0).
Therefore on [0,21] x [0, y1], we have
H([0,21] x [0,51]) € Uppy and  H'([0,21] x [0,1]) C Upo.
Hence _ N
H'lo2:)x(0.) = Jo.0 © Hlio.ax10.31] = Hlo.01)x 0,31

Now assume that H’ and H coincide on (@i, i11] X [y;, yj41] with y;41 < 1, then since

H/(':Eiayj-‘rl) = H($i7yj+1)7
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the two lifts H and H’ coincide over [z;,2;41] X [Yj+15 Yj+2]-
If H and H coincide on [x;, Z;11] X [ym, 1] with x;41 < 1, then since

ﬁ/(xi_l,_l, 0) = ﬁ(xi-‘rla 0),

the two lifts H and H’ coincide over [i41, Tit2] X [0,y1]. By induction, we conclude that we have

H=H
on [0, 1] x [0,1].
We denote N
a= Hy
and o
8 =Hi.

Then we have N
foa=foHy=Hy=q,

and B N
fof=foH =H =0

Hence a and E are lifts of @ and 3 respectively with

&(0) = B(0) = H(0,0) = p.

Moreover for any ¢ € Y, the preimage set f~'(q) has discrete topology as subspace of X, and
each point in f~1(g) is a connected component of f~1(q). Since H is a continuous map and

foH=H,
we have _
(f o H)({0} x [0,1]) = H({0} x [0,1]) = {p},
and
(fo H)Y({1} x [0,1]) = H({1} x [0,1]) = {a(1)},
Hence
H({0} % [0,1]) = 7,
and B
H({1} x [0,1]) = a(1).
As a conclusion, the map His a path homotopy between the paths & and B in X. O

Remark 4.2.7. N N
Same as preciously for lifts of paths, the lift H is determined by H(0, 0).

Remark 4.2.8.

When we have a continuous map ¢ from some topological space Z to Y, and X is a cover of Y,
we can also ask if we can lift ¢ to a map from Z to X. The story would be a little bit more
complicated, and we will come back to this question later (See Proposition .

4.3 Covers and fundamental groups

In this section, we would like to study the relation between the fundamental group of a path
connected space and that of its cover.
Let X and Y be two path connected spaces. Assume that X is a cover of Y with covering

map f.
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Embedding the fundamental group of X into that of Y

Let p € Y be a point and p be one of its lifts in X. A covering map f is in particular continuous,
hence there is a homomorphism

feim(X,p) = m(Y,p).

Proposition 4.3.1
The homomorphism f, is injective.

Proof. Since we can always lift a path homotopy map H in Y to one in X, if @ and o are two
loops in £(X,p) such that
foa=a~d =fod

in Y through the homotopy H, then by lifting H to
H:[0,1] x [0,1] = X,

with H (0, 0) = @(0). Since a’(0) = a(0) = p, by Proposition we have Hy = & and Hy = &.
The map H is a homotopy between & and &'.
O

Consider the circle

Sti={zeC]||z| =1}

and the covering map
f:8t = st

23 22

Here we have X =Y = S!. We consider z = 1. It has two lifts: 1 and —1. In the fundamental
group level, we have
e 7T1(Sl, 1) — 7T1(Sl, 1)
[a] = [o]?

where [a] is a generator of 71(St,1).

Consider S' v S'. We may identify one of the S* with the unit circle in C and the common point
with 1 € C. Then the covering map fa, f5 from S' to S' or more generally the covering map
from R to S' given by t — 2™ can be extended to the following covering maps

Action of the fundamental group of Y on f~1(p)

From the algebraic point of view, we can identify 71 (X, p) with a subgroup of 71 (Y, p). To make
this more precise, we consider the other direction and discuss lifts of a loop in Y.

First we consider the following observation. Assume that the cover from X to Y is not of index
1, i.e. not a homeomorphism. Let p’ be a lift of p different from p. Since X is path connected,
there is a path 77 with 77(0) = p and 77(1) = p’. When we project this path into Y, we notice that

f@(0) =f@) =p=f@) = f@Q1)).



152 CHAPTER 4. COVERING SPACES

AR
T O

Figure 4.3.1: 3 covering spaces of SV S1 (of degree 2, 5 and oo respectively).

Hence n = f o is aloop in Y. This suggest that the homomorphism f, may not be surjective,
and the lifts of base point p may play an important role in this study. In fact, the above discussion
can be use to construct a group action of (Y, p) on the set f~1(p).

Let us first recall what a group action is. Let G be a group and A be a set. A left group

action G on A is map
D:GxA— A,

(g,a) = g.a

satisfying the following properties:
1. for any a € A, for any g,¢" € G, we have ¢.(¢'.a) = (g99’).q;
2. for any a € A, we have e.a = a where e € G is the identity.
if the first condition is replaced by the following one

3. for any a € A, for any g,¢’ € G, we have g.(¢".a) = (¢'9).a.

we call it a right group action G on A.

We may consider walking along a path
n:[0,1] = X,

as pushing the point 7(0) along Im 7 until (1). Then given any lift p € f~1(p), the lifts of loops
in L(Y,p) to L(X,p) can be considered as different ways to move p to some lift p’ € f~1(g) in X
along paths.

More precisely, we choose a lift p € f~1(p) of p. Let a be a loop in Y based at p. Let & be
the lift of a with &(0) = p. We denote

a(l) =7,

which is also a lift of p. N
_ Let o' be another loop in Y based at p and homotopic to a. Let o’ be its lift in X with
a’(0) = p, then since any homotopy in Y can be lifted to a homotopy in X, we have
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Hence the following map is well defined

@ :m(Y,p)x f1p)— f1p)
(le],p) = a(1)

where @ is a lift of a representative « in [«] with &(0) = p.

Proposition 4.3.4

The map ® induces a right group action of 71 (Y, p) on the set f~1(p).

Proof. Let o and 3 be two loops in Y based at p. Their composition « * § is also a loop based at
p. For any p € f~1(p), consider a lift a * 3 of a* B with a * 3(0) = p. We have

folaxpB)=axp.

Hence for any ¢ € [0, 1], we define paths in X:

and

Then for any ¢ € [0,1], we have

om0 = (ro@in) (5) =5 (5) =a

(£od) 0= (ro@im) (57) =tarm (57 ) = o0
h @(0) = p and 5 is a lift of 8 with

and

From this we can conclude that « is a lift of o wit

and moreover

—~—

ax* B~ ax 57
Hence by the definition of ®, we have
[a* B].p = [B].([o] )
(See Figure for an illustration.) O

As we have seen previously, since X is path connected by assumption, for any p and p’ two lifts
of p, there is a path 1 connecting them whose composition with f as a path in Y is a loop nin YV
based at p. Hence we have

mlp="p.

Hence we have the following observation.

Proposition 4.3.5

The action of 71 (Y, p) on f~1(p) is transitive.

Now we consider the stabilizer of a lift p in f~!(p), and have the following proposition.



154 CHAPTER 4. COVERING SPACES

Figure 4.3.2: [a x 8].p = [B].([«].D)-

Proposition 4.3.6

For any p € f~1(p), the stabilizer of p satisfies
Stab(p) = f.(m1(X,p)).

Proof. For any [a] € f«(m1(X,P)), let a be a representative of [«]. Let & be the unique lift of «

with &(0) = p. _
Since [a] € f«(m1(X,p)), there is an element [3] € m1(X,p), such that
[f o B] = £o([B]) = [a.
Hence = fo 5 is homotopic to a and f is a representative of [a]. Therefore, we have
a5 = 5(1) = .

This shows the inclusion of one direction
Stab(F) > f.(m1 (X, 5))-

Let a be a loop in Y based at p such that
[a] € Stab(p).

Let & be the lift of @ in X with &(0) = p. Since [¢] is in the stabilizer of p, we have

a(l) =p.
Therefore & is a loop in X based at p, and we have
fu([a]) = [fod] = [a].

Hence we have

[ € fu(m(X,P)).
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An immediate corollary is as follows, which is the relation between the orbit and the stabilizer
when studying a group action.

Corollary 4.3.7

Let p € f~1(p) be a lift of p € Y. There is a bijection

¢ fu(m (X, p)\m (Y, p) = £ (p)

[a] = [o].p

where

[a] := fu(m (X, p))la]
is a right coset of fi.(7m1(X,p)) in 71 (Y, p).

Notice that |f~!(y)| is also the index of the cover.

Corollary 4.3.8

Let p € f~1(p) be a lift of p € Y. We have the following identity.

[m1(Y,p) : fu(mi(X,p))] = deg f.

The map f is homeomorphism if and only if |f~*(y)| = 1. Hence using Proposition [4.1.14] we
have the following corollary.

Corollary 4.3.9

The covering map
f: X =Y,

is an homeomorphism if and only if
f* : 7T1(X,.’E) — Wl(xy)a

is an isomorphism.

Remark 4.3.10.

If a covering map is not homeomorphism, we cannot say that 71 (X, z) and m (Y, y) are not
isomorphic. A group can be isomorphic to its proper subgroup. For example, when we consider
the 2-cover of S! to itself given by the map f : z — 22 on the complex plane, it is not isomorphism,
however, since both X and Y are S', hence they have the same fundamental group, which of
course are isomorphic. Here what we have is the following isomorphism: Z =2 27Z. Therefore what
the second condition really needs is the surjectivity of f. by considering Proposition [4.3.1

Now we consider a special case when Y is simply connected. In this case, we have (Y, p) is
trivial. Let X be any cover of Y with covering map f, and let p € f~!(p) be a lift of p. The map

feim(X,p) = m(Y,p),

is an isomorphism. With the above corollary, we have the following conclusion.
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Corollary 4.3.11

Any covering map over a simply connected space is a homeomorphism.

Remark 4.3.12.
This means that there is no non-trivial cover of a simply connected space.

Covers of a space

Given a space Y, there are several questions that one could ask regarding the covers of Y.
1) How many different covers of Y are there?
2) Is it possible to have a degree n cover of Y for any n € N*?
3) Is there any relation between different covers of Y'?
4) Ts there a biggest cover of Y'?

We know that a covering map from a space X to Y induces an embedding of fundamental group
of X to that of Y.

1) Can we read the information of covering map from the information of the fundamental
groups?

2) Is it possible to have a cover for any subgroup of the fundamental group of Y'?

In order to be able to compare different covers of a same space, we first introduce the notation
of morphism between covers.

Definition 4.3.13

Let X7 and X5 be two covering of Y with covering maps:
f12X1*>Y and fQIXQHYV.

A continuous map
g: X1 — X2

is said to be a morphism between the two covers X; and Xs, if we have the following
commutative diagram
Xo
/ sz
X —Y
f1

If moreover the morphism ¢ is a homeomorphism, we call it an isomorphism between
covers X; and Xs.

From the commutative diagram, it seems that the cover X; is bigger than X5 in some sense. Let
us make this clear in the following way.
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Proposition 4.3.14

If Y is locally connected, then a surjective morphism g between two covers of Y, if exists, is
a covering map.

Proof. We use the same notation. Since Y is locally connected, for any p € Y, it has an open
connected covering neighborhood V; for the covering map f; and am open connected covering
neighborhood of V5 for the covering map fs.

Let V C V1 N V4 be an open connected neighborhood of p. Then V is a connected covering
neighborhood of p for both f; and f;. From the definition of a covering neighborhood, we have

V) =1 o

i€Q
such that the restriction of f; to each U; is a homeomorphism to V', and

V)= | w,

j€EO

such that the restriction of fs to each W; is a homeomorphism to V. Notice that all U;’s and
W;’s are connected. Moreover for each i € Q, U; is a connected component of f; ' (V) and for
each j € ©, W; is a connected component of f5 (V).

Let p be a lift of p in X3, then there is a unique neighborhood U; such that

peU;.
We consider ¢g(p) € Xo, since f1 = fy 0 g, we have
9(p) € f3 ' (p),
hence a lift of p in X5. There is a unique W, such that
9(p) € Wj.
Now we would like to show that the restriction of g to U; is a homeomorphism to W;. Notice that

f1

v, = f204|u;.

Since f1(U;) =V, we have
9(Ui) C f5H(V).
Since U; is connected, so is g(U;), hence we have
g(Ui) - Wj.
Therefore, we have
filv, = falw; o glu,
which gives
g|U1L = (f2|Wj)71 o f1|U1L?

hence a homeomorphism. This shows that W, is a covering neighborhood of g(p).
Since g is surjective, it is a covering map. O

Remark 4.3.15.
When we consider manifolds, the locally path connectedness and the locally connectedness are
satisfied naturally, since locally a manifold is the same as the Euclidean space.
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Another observation is the following one. If we consider the definition of a lift of a map, then

a morphism g between
f13X1*>Y and fQIXQ*)Yv,

is a lift of f; with respect to the cover X, of Y. Therefore, to see which pair of covers have a
morphism between them is equivalent to ask when a covering map can be lifted with respect
to the other covering map. Here is a general statement for topological spaces which are path
connected an locally path connected. This can be considered as a generalization of Proposition

and Proposition [4.2.6

Proposition 4.3.16

Let X and Y be two topological space, and
f: X—=Y

be a covering map. Let Z be a topological space which is path connected and locally path

connected. Let
g:Z =Y

be a continuous map, then g has a lift g if and only if in 7 (X, p), we have
g*(ﬂl(zﬂjf)) - f*(ﬂ1(X,@)

where p €Y, p € X and u € Z such that g(u) = f(p) = p.

Proof. One direction is clear. If there exists a lift
g:7Z =X

of g, then we have g = fog.
Let pe Y, p e X and u € Z with g(u) = p, and f(p) = p. We have the following commutative
diagram
T (X,@

g- lf*
7T1(Zv U) g**> ’/Tl(Ya p)

The relation g, = f. o g yields

gx(m1(Z,u)) C fu(mi (X, D).

Conversely, let p € Y, p € X and u € Z with g(u) = f(p) = p and assume that

gx(m1(Z,u)) C fu(mi (X, D).

Now we would like to construct a lift g of g. Using covering neighborhoods of points in Y, we can
locally lift g. The problem left is whether all these lifts can be chosen so that they can be glued
to one continuous map from Z to X.

The precise construction is as follows. Since g(u) = f(p), we set
g(u) =p.
Now for any point v € Z, choose a path n in Z with 7(0) = w and n(1) = v. Then g o n is a path
in Y. We lift it to a path

gon:[0,1] = X,
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with gon(0) = p. Then we define

Notice that this indeed gives a map

g:7Z—X
v gon(l)

satisfies the condition g = fog.

We first show that for each v € Z, the image g(v) is independent of choice of 7.
Let v be a point in X. Let n and i’ be two path with

n(0) =7'(0)=u and n(1)=7'(1) =

We consider the lifts g on and g/g_ﬁ’ of gon and g o i’ respectively with

e

gon(0)=gon'(0)=p.
We would like to show that -
gon(l)=gon/(l).
Notice that 7 * 1’ is a loop in Z based at u, hence

(gom) *(gon)=go(n*n)
is also a loop in Y based at p.

We consider the lift of g o (1 * 1) which is a path in X. Since

[g o (nx* W)] € g*(ﬂ'l(Z, u)),
by the hypothesis, we have o

lgo(n*n')] € fu(m(X,D)).
Hence there is a loop & in X based at p with

f(la]) = [go (m=n)].
Denote a = f o a, we have
an~go(nxn).
let H be a path homotopy between o and g o (1 * /). Then we can lift it to a path homotopy H

between & and g o (1 *1'). Hence we have

—

a~gonxgon,

where
gon(0)=p
and o
gon'(0)=gon(1)
Since
a(1) = a(0),
we have

Hence the lift g o7/ of g o7’ with
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satisfies the condition L
gon'(1) =gomn(l).

With these discussion, we would like to show next that the map g is continuous. Let V be an

open subset of X. We consider its preimage g—1(V). For any v € g~ *(V), we denote
q=g(v).

Consider a covering neighborhood Vi of ¢ such that there is a neighborhood Vi of g(v) = q
contained in V' homeomorphic to V; through f.
Since g is continuous, we can take W a path connected neighborhood of v in Z, such that

g(W) Cc V.

Let 1 be a path in Z, such that n(0) = u and 7n(1) = v. For any w € W, there is a path ¢
with ¢(0) = v and (1) = w. Hence we have n % ( is a path in Z from u to w.

The map g sends all above paths to paths in Y. In particular, we have g on a path from
p=g(u) to ¢ = g(v). Then the path

gomx¢)=(gon)*(go()
is from ¢ to r = g(w).
We consider the lift of the above paths. Then gon is a path from p to g(v) = ¢ by the

definition of g. Let gf;/( be a lift of g o ¢ with

gxC0)=qg=gon.
Hence — —

go(nx¢)=gon*gog.

Notice that

(gom)([0,1]) C V3,
and -

fi1:= f‘Vl V-0
is a homeomorphism, we have -

goC=filo(goQ).

Therefore, we have

—_~—

gw) =gom*¢)(1)=goC(1) = (f'o(goQ))(1) €V C V.

Hence

wcgi(v),
and g~1(V) is a neighborhood of v. Since v can be chosen arbitrarily, we have g—*(V') open.
Therefore g is continuous. O

Regarding the uniqueness of a lift of a continuous map, we have the following statement.

Proposition 4.3.17

If X and Y are two topological space with
f: X =Y,

a covering map. Assume that Z is a topological space which is path connected and locally
path connected and
g:Z =Y

is a continuous map.
If g1 and g are two lifts of g with g;(u) = g2(u) for some u € Z, then g1 = go.
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Proof. Notice that the construction of lifts of g based on lifting paths in Y to paths in X. Hence
the uniqueness result of lifts of g is a consequence of the uniqueness result of lifts of paths in
Y. O

Remark 4.3.18.
The proofs of the above two proposition give a different way to describe the image of Z using
points and paths in Y. This of course works for Z = X, when we assume that X is path connected
and locally path connected (so is Y as an immediate consequence of the fact that the covering
map is in particular continuous).

In the next part, this will be the key idea in the construction of covering spaces, in particular
the universal cover, which shows that they do exist.

Universal cover

We consider topological spaces which are path connected and locally path connected in this
section. We will show that for any such space, there is a largest cover which is unique up to
morphism between covers.

For technical reason, other than path connected and locally path connected, we also assume
that the space will be studied is semilocally simply connected.

Definition 4.3.19

Let X be a topological space which is path connected and locally path connected. We say
that X is semilocally simply connected if for any p € X, there is a path connected
neighborhood U of p, such that the homomorphism between the fundamental groups

71 (U, p) = m1(X,p)

induced by the inclusion of U in X is trivial (all elements are sent to the identity of 7 (X, p)).

The unit disk D in C is a semilocally simply connected. Notice that D is contractible, and any
point in D is a strong deformation retraction of D. Hence given any neighborhood U of any
p € D, any loop in U based at p is homotopic to the constant loop based at p through a homotopy
in D.

For example, let U be the annulus defined by

U={z€C|0.2<|z] <0.5}.

Although m1 (U) = Z, and a loop in U may not be homotopically trivial in U, it is homotopically
trivial in D.

In the rest part of this section, let X denote a topological space which is path connected,
locally path connected and semilocally simply connected.
Let p € X be a point. We consider the following abstract set

X :={[] | 7 is a path in X with 7(0) = p}.

Remark 4.3.21.
Here the homotopy is path homotopy. Inspired by the proof of Proposition [4.3.16} by using [v],
we get not only a point (1) in X, but also the information about how we go to (1) from p.
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Figure 4.3.3: A loop in U can be deformed to a constant path in D through the linear homotopy
in D.

We can check the following example to get a more clear idea what this construction is about.
We consider the covering map

f:Rx[0,1] = S' x [0,1],
(5:8) = (€27, 1).

As shown in Figure let p be a base point in S* x [0,1] and ¢ be another point of it. Let v

_ q = 4o q1 q2
% L ] [ ]
= = - e
P = Do P1 D2
lf
q
=

Figure 4.3.4: A pair of non-homotopic paths connecting p to ¢ give different lifts of q.

and 7/ be two paths going from p to g, such that [y’ 7] is a generator of 71 (S* x [0,1],p). Then
by considering their lifts in R x [0, 1] starting at a same lift p of p, they end at different lifts of g.
Or alternatively, we may consider g and g; associated to [y] and [y'] respectively.

Now we would like to equip it with a topology. We first consider the topology 7 on X.



4.3. COVERS AND FUNDAMENTAL GROUPS 163
Proposition 4.3.22

The topology 7 has a basis B where each U € B is path connected and the homomorphism
of fundamental groups based at p € U

w1 (U, p) = m (X, p)

induced by the inclusion of U in X is trivial.

Proof. Since X is locally path connected, each point p € X has a open neighborhood basis C,
where every open set in C,, is path connected.

On the other hand, since X is semilocally simply connected, there is a path connected
neighborhood U, such that the homomorphism

7Tl(lj]mp) - 7Tl(*}(ap)

induced by the inclusion of U, in X is trivial.
For any open neighborhood W of p, we consider W N U which is again a neighborhood of p.
There is an open set V' € C,, such that

VCcU,NW.

Consider the inclusions
V—=U,— X,

we have
ﬂl(‘/vp) — ﬂ-l(Upvp) — ﬂ-l(X7p)

a trivial homomorphism.
Hence p has a neighborhood basis B, where each V' € B, is open and path connected, and the
homomorphism
m(V,p) = (X, p)

induced by the inclusion of V' to X is trivial.
Hence 7 has a basis
B:=J B,

peX
with the desired property. O
In the following, we will use the basis B of T constructed in the proof of Proposition [.3.22] to
construct a topology on X.

For any p € X, let B; be a neighborhood basis constructed in the proof of Proposition [4.3.22}
For any V € B,, and for any [y] € X with (1) = ¢, we define

U([7],V) :=={[y*n] | nis a path in V with n(0) = ~(1)}.

Notice that [y * ] is only depends on 7(1). If 7’ is another path in V such that 7’(0) = ¢ and
n(1) = n/(1), then n* 7’ is a loop in V based at ¢. Since

m(V,q) = m(X, q)

is trivial, we have
nxn ~cq,
in X. Hence we have
ne~cgxn~n x([@xn) ~n ke~
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Figure 4.3.5: A pair of non-homotopic paths connecting p to ¢ give different lifts of ¢.

from which we obtain
[y*m] =[y*n'].

Let 7 be the topology generated by
B:={U(W,V) |l € X, VeByy}

Proposition 4.3.23

The subbasis B is a basis of T
Proof. Let U([4], V) and U([y/], V') be two elements of B, such that

UWL,V)nU([v], V') #0.

Let [a] € U([y], V) NU([y'],V'). By definition, there are n and " paths in V and V” respectively
with n(0) = (1) and »’(0) = +4/(1), such that

a~yxn~v x7.
Since V and V' are open in X, the intersection V NV’ is also open in X with
a(lyevnv'.
Hence there is an open path connected set W in B, 1), such that
wWcvnVv'.
Now we would like to show that
U(la]. W) € U], V) N U], V).
For each [f] € U([a], W), there is a path ¢ in W with {(0) = (1), such that

B~ ax(.
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il e @ faxCl=[y*xn*l =[xy *(
U(la], W)

Figure 4.3.6: A pair of non-homotopic paths connecting p to ¢ give different lifts of q.

Hence we have
BraxCryx(mx() ~q"x(n *Q).
Notice that n * ( is a path in V' with
(nx¢)(0) =n(0) = (1),

hence we have
Similarly, we have

Hence
8] € UV, V)N U], V).

This shows that
U(la], W) cU(W,V)NU(Y], V).

We conclude that B is a basis of T O

Theorem 4.3.24

The topological space (X, T) is a cover of X with trivial fundamental group.

Proof. Notice that there is a natural way to define a map from X to X:

f:)?%X

[v] = ~(1)

The surjectivity is given by the fact that X is path connected.
We now try to show that it is a covering map. Consider the restriction f; of f to each
U([v],V). We would like to show that the following two facts

(i) The map f; is a homeomorphism.

(ii) For any " with y(1) =+/(1), if U([y], V) NU([+'], V) # 0, then we have [y] = [y/].
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With these two facts, for any ¢, we consider the V' in B, then we have
= L v
[v] with v(1) = ¢

Hence f is a covering map.

We first show that f; to U([v], V) is a homeomorphism. By the definition of f, it is surjective
on U([y], V). Now let [a] and [f] be two points in U([v], V). Hence there are n and ¢ paths in V'
such that

a~vyxn and [S~yx(.
Assume that
a(1) = fi([e)) = f1([8]) = B(1).

Then we have that 1(1) = ((1), hence 1 * ( is a loop based at (1). Since the homomorphism

m1(V,v(1)) = m1(X, (1))

is trivial, we have
n~ ¢
hence
[a] = [y *n] = [y (] = [4].
This shows that f; on U([v],V) is bijective.

Now we show that f; is continuous. For any W C V open set, for any [a] € ffl(W), hence
there is a path n in V' with n(0) = (1), such that

Qa~ k.
Consider a neighborhood W' € B,y with
W' c W.
Given any path ¢ in W’ with ¢(0) = «(1), we have
ax Gy (1% Q).

Hence we have
U(la], W) CU([7], V).

Since fi is bijective on U([v], V'), we have
U(la], W) = fH(W') C fH(W).

Hence f~1(W) is a neighborhood of [a] for any [a] € f~1(W) and f~1(W) is open. Hence f is
continuous.
On the other hand, U([y], V) has a basis

By = {U([o].W) | [a] € U(], V), W C V. W € Bany}
By the definition of fi, for any U([a], W) € By, we have
FU([ed, W) =W

which is open in V. Hence f~! is continuous. Therefore f; is a homeomorphism.

Now we show the second fact. Let 4" be a path in X with 4/(0) = p and 7/(1) = ¥(1). Assume
that
U], V)NnU(Y]L,V) #0,
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then there is
[a] € U(W, V)NU([Y], V).

Hence there are path n and n’ in V such that
a~yxn~v x7.
Notice that n(1) = 1’(1), hence 1 * 1’ is a loop in V based at «(1). By hypothesis on V, we have
the homomorphism
T (V,7(1)) = m(X,y(1))

is trivial. Hence n * 1/ is homotopic to ¢y(1) in X. Therefore, we have
Yy Eeyay ~yx )~y w0 )~y ey ~

Hence
U, v)=U(1.V).

We now show that the space X is path connected. Let 7 be a path in X with v(0) = p. For
any t € [0, 1], we define

v :[0,1] = X

s+ y(ts)
Then we can define the map B
7:00,1] - X

t [y

A direct verification shows that the map 7 is the lift of v with ¥(0) = [¢,], hence a path connecting
) with ). )

Therefore, the space X is path connected.

Now let ¥ be a loop in X based at ¢,:

where v = f o7 is a path in X.
Notice that 7 is a loop, hence we have
[ep] = [vol = [n] = Dl
or equivalently
vy~ Cp.
Let H be a homotopy in X with Hy = v and H; = cp, then its lift Hisa homotopy in X between
7 and ¢, = ¢[,], hence
(7 = lege,]-
Therefore, we have

and X is simply connected. O

Definition 4.3.25

A path connected cover Z of X with covering map g is called a universal cover if it satisfies
the following universal property: for any path connected cover X; of X with covering map
f, the map f has a lift

g AR )(17

such that g = fog.
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Remark 4.3.26.
We have the following commutative diagram:

By the proposition 4.3.16} the cover X of X constructed above is a universal cover, since its
fundamental group is trivial.

The universal cover of S can be identified with R. For each path « in S' starting at 1, there is a
natural number [ € R, such that we can find a standard path

v :10,1] — St

t = eZlﬂ'it’

homotopic to . Here 2{m can be considered as the total angle passed when we go from 1 to e2™

along . Then the identification between ST with R can be given as follows (See Figure m for
an illustration):

h:SU R,
’yp—)l.

Figure 4.3.7: The universal cover of S!.

The universal cover of the figure-8 graph can be identified with the 4-valence regular infinite tree
(See Figure for an illustration).

The universal cover of the torus T can be identified with the plane R? (See Figure for an
illustration).

Remark 4.3.30.
The above construction of universal cover does not work for Hawaii earring (See Example [2.3.4)).
Notice that it is not semilocally simply connected.

Classification of covers

Let X be a topological space which is path connected, locally path connected and semilocally
simply connected. In this part, we would like to give a classification of all path connected covers
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1
/’ \ /’ \ ///\ //\ H H
( ) | ) ( )\ ) 1 l l 1
N NS NS NS gi» »iy
TN N\ TN N\ :‘:)1 v 3 1):‘:
: ) | ) : ) | H l l b
NS NS NS NS T P
H—— H——
AN N AN N L 3
( )\ ) ( )\ ) 15 l l 1
NS NS NS NS H
+ H
—_— ‘) +
Stv st

Figure 4.3.8: The universal cover of SV S!.

Figure 4.3.9: The universal cover of 7'

of X.
Let p € X be a base point. We first show the existence result for every subgroup of 71 (X, p).

Proposition 4.3.31
For any subgroup H of 71(X, p), there is a path connected cover Xy of X with covering

map
thXH—)X,

such that (fg)«(m1(Xpg,pr)) = H where py is a lift of p in Xpg.

Proof. The proof is constructive. We consider the universal cover constructed previously:

X ={[4] | v is a path in X with (0) = p}.
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We then define the following equivalent relation on X: for any [y] and [y/] in X
VR[] & 2(1) =+'(1) and [y =] € H.

The reflexivity is trivial, since

and
[vy*7] = [Cp] € H.

If [y] and [y'] two points in X satisfy []R[y/], then

and
=l =l =y e H.
Hence we have 7' R~. N
If [v],[¥'] and [y"] three points in X satisfy

VR[] and  [YIR[Y],

then we have

and
[y*7") = [y *~]* [y *+"] € H.
Hence R is an equivalence relation on X.

We then define _
Xp:=X/R.

The path connectedness of Xz comes from the fact that X is path connected.
Now we would like to show that Xy is a cover of X. We consider the map
fH : XH — X
[y] = (1)

It is well defined due to the fact that for any [y|R[y'], we have

o~ o~

Hence the image of [y] is independent of choice of v in this R-equivalence class [7].
Consider any pair [7], [y'] € X with [y]R[']. Let n be a path in V € B,y with 5(0) = y(1).
Then we have
(vxm) (1) = (v *m)(1)

and
[(ysm)* (v *m)] = [y=~] € H.
Hence
[y * nIR[Y ).
We denote

The above discussion implies that
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Denote by pr the projection from X to Xz, we have

pr (U (]3], V) = U Uy, v).

[v'] with [v/]R[v]

Notice that the above discussion shows one inclusion

U U(Y1,V) cpr Y (U (]3], V).
[v'] with [v/]R[v]

To see the other inclusion, let [a] € X be in pr=1(U([4],V)), there is [3] € U([4], V), such that
[B1R[ad,

we have [§ @] € H. Notice that there is n path in V' with (0) = (1) such that

(B8] = [y *n].
This implies that
[+ 7 R[]
Let 4/ = a # 7, we have [y'|R[y] and
[o] € U(Y],V)

Hence we have the other inclusion

pr (U([7], V) C U o).

[v'] with [v/]R[7]

Hence U([4], V) is open.

Next denote pry a restriction on U([v],V), and we would like to show that pr; is a homeo-
morphism.

The map pry is surjective by its definition. On the other hand, for each [a] and [8] in U([y], V),
there is 7 and ¢ paths in V' with 1(0) = {(0) = (1) such that

ar~yxn, B~yxd,

If [a]R[B], then we have
n(1) = a(1) = B(1) = ¢(1),
hence 7  ( is a loop in V based at v(1). Since V € B, we have

[0 (] = [eq),
hence 1 ~ ¢, and moreover
[a] = [y*n] = [y*(] = [5].
Hence pr, is injective. Notice that for any ¢’ € V, and any W € B, such that W C V, we have
pr (U(fy =), W) = U(ly#nl, W), pry (U(ly =), W)) = U(ly *n, W).
Hence pr, is a homeomorphism between U([y % ], W) and U([y * ], W).

Now we would like to show that the map fg is a covering map. The continuity comes from
the fact that for any ¢ € X and for any V' € By, we have

fewvy=J UL

m with v(1)=¢q



172 CHAPTER 4. COVERING SPACES

Now we would like to show that for any v and 4’ path in X with y(0) = 4/(0) = p and
(1) =v'(1) =q, let V € By, if

then

—

Let [o] € U([7],V) NU([7],V), then there are paths 5 and 7' in V with 5(0) = ¢(0) = (1) and

[R[yx 7], [e]RY 1]
Hence
n(1) =7'(1).
Since V € By, we have n 1’ a loop based at ¢ and
[ 7] = [cg]-

Consider the following relation

vy =lyseq =y =y mxn)y] = [ysul« [0 «v] = ([y =0l = [@]) = ([a] = [/ =7']) € H.

Hence we have
MR[YT,
and
U, v)=T(, V).

As a conclusion, we show that the map fy is a covering map.

The last thing to show is that
(fH)*(’/Tl(XH)a@) =H.

Let 7 be a loop based at p. Then we consider its lift vy in Xy with v (0) = [/cp\]. If vg is a loop,
we have

Therefore we have
and this is equivalent to

by considering the definition of R. O

Remark 4.3.32.
In a path connected space, identifying points may creating loops which are homotopically non
trivial (See).

Hence for any subgroup H of 7 (X, p), there is a path connected cover of X associated to H.
Next we would like to show that such a cover is unique up to isomorphism between covers. More
precisely, we show
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Figure 4.3.10: Identifying points creates loops.

Proposition 4.3.33

Let X3 and X5 be two path connected covers of X with covering maps f1 and f, respectively.
Let u; and us be lifts of p € X in X; and X5 respectively. Then X; and X5 are isomorphic
as covers of X if and only if

(f1)«(m (X1, u1)) = (f2)«(m1(X2, uz)).

Proof. If two covers X7 and X5 are isomorphic to each other, then we have a homeomorphism
g: X1 — Xs
such that the following diagram commutes
Xo
/ sz
X1 — X

1

Let u; and ug be lifts of p in X; and Xs respectively, such that g(u1) = us, then since g is a
homeomorphism, we have

Gx (M1 (X1, u1)) = 71 (X2, u2).

Hence we have
(f1)«(m (X1, u1)) = ((f2)« 0 go) (M1 (X1, 1)) = (f2)x (71 (X2, u2)).
Conversely, assume that
(f1)«(m1(X1,u1)) = (f2)«(m1 (X2, u2)).
Using Proposition [£.3.16] there are maps
g1: X1 =Xy and ¢go: Xo— Xy

which are lift of f; and lift of f respectively with g1 (u1) = us and ga(uz) = u;. We have the

following commutative diagram:
>

X — X<+— X4
f1 f1
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Therefore g o g1 is a lift of f; with respect to fi:

X1
gZV lfl
X1 — X
f1
On the other hand, we have
X1
id
X — X
f1
By Proposition we have
g2 0 g1 =idy,.
Similarly, we have
g1 09z =idx,.
Hence ¢g; and g are homeomorphisms, and the two covers X; and X5 are isomorphic. O

As a corollary, we have the following relation between covers of X and subgroups of 71 (X, p).

Corollary 4.3.34

There are a bijection
{subgroups of 71 (X, p)} <> {covers of (X, p), up to base point preserving isomorphisms}.
and a bijection

{conjugacy class of subgroups of m1 (X, p)} +> {covers of (X, p), up to isomorphisms}.

Now we give some examples to illustrate these results.

Since S' has fundamental group isomorphic to Z, let p € S! be a base points, and

[’Y] € 7"-l(Slap)

be a generator. Then all subgroups of 71 (S, p) will have the form

(D,
for some k € N. In Figure [4.3.11] we show the covering spaces of S! for k = 0,1,2, 3, 4.

We have seen the universal cover of S' Vv S'. Since the fundamental group of S' Vv S! is a free
group of 2 letters, its subgroups are all free, and the rank could be any finite natural number or
infinite.

Let p denote the vertex and be the base point. Let o and 8 denote the loops based at p
associated to the two copies of S! respectively. Hence

a:=[a] and b:=[F]
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Q {lep]}
St P
H ([ (?]) (D) ()

Figure 4.3.11: Covering spaces of S*.

form a free basis of 71 (S! V S, p). Denote by e the identity element.
In the following figures, we show some covering spaces of S* Vv S! and their corresponding
subgroups of 71 (St Vv St p).

Figure 4.3.12: Covering space of S* v St for (a).

2) H= *kez<bkab_k>.

Figure 4.3.13: Covering space of S' Vv S for #pcz(bFab™F).

3) H = (a?b%).
4) H = (a,b?, bab).
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e R YL T
HH ! I~ # ™
el [+, o / X s
F [ 7/ . 0\ x
g ! I X
H I ///// o\
7+ L

Figure 4.3.14: Covering space of S v St for (a?,b?).

Figure 4.3.15: Covering space of S* v S for (a, b2, bab).

Notice that the first three subgroups are infinite index subgroups, while the last one is a subgroup
of index 2.

Deck transformations

In this part we consider a space X which is path connected locally path connected and semilocally
simply connected. We consider its universal cover

X :={[y] | v path in X with ~(0) = p},

and denote the covering map by

f:(X,p) = (X,p).

There is a natural action of 71 (X, p) on X induced by the following map
:m(X,p) x X — X,
(la], 7)) = [a*A].
We may directly check the following two facts to see that it is indeed a left action
D) ep) 7] = lep ¥4 = 1;
2) [o]-([81.[7]) = [a].[8 ¥ 7] = [a* B * 4] = [a* B].[7].
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For any [a] € m1(X,p), the map
Pla] - X=X
] = arxn]
is a homeomorphism. Notice that for any U([y], V) where V' € B, (1), we have

Pl U, V) = U@ =1, V),

which is still open by definition. It is an isomorphism between covers:

(X, [ep]) = (X,p)

We generalize this discussion for any cover of X and give the following definition.

Definition 4.3.37

Let X7 be a cover of X. We denote the covering map by
[+ (X1,p1) = (X, p).
A deck transformation on X is an isomorphism
g: X1 =Xy

between covers.
Notice that all deck transformations on X; form a group under the composition operation.
We denote by Deck(X;) the deck transformation group of X;.

From its definition, a deck transformation is in particular a lift of f with respect to f. By
the uniqueness of the lift of a continuous map, such a deck transformation is determined by
g(p1) € f~1(p). There is then an immediate question: given any lift p} of p in X, do we have a
deck transformation such that g(p;) = pj ?

Notice that if there is a deck transformation

g: X1 — Xy,
with g(p1) = p}. By Proposition we have
fulm (X1, p1)) = fu(m(X1, ).
Considering the change of base point in X7, we have a path «; such that
a(0)=p; and ay(1) =p).

Hence we have
m1(X1,p) = [a@] * (X1, p1) * [eu].
We then have

fe(mi(X1,p1)) = fu(mi(X1,p))) = fu(@@ (X1, p1) * a1) =[] ' fu(m1 (X1, p1)) * [,

where o = f o a; which is a loop based at p in X, since a3 starts and ends at lifts of p. If we
denote

H = fi(m(X1,p1)) < (X, p),



178 CHAPTER 4. COVERING SPACES

Q7 * Y1 ¥ Qo

X3 X

Figure 4.3.16: Deck transformations change an element in the f.-image by a conjugacy.

then
[a] € N(H),

the normalizer of H.
We can have another changes of base point in X; denoted by (7, and we have

[aa] = [oa * Ba] * (Bl

where [a % 81] € m1(X1,p1). If we consider 8 = f o 31, then since

[a* ] € H,

we have
[a] « H = [5] * H.

Therefore, [a] and [3] are representative of a same element in N(H)/H. From this observation,
we have the following proposition.

Proposition 4.3.38
There is an isomorphism from Deck(X;) to N(H)/H.

Proof. Denote the quotient map from N(H) to N(H)/H by
m:N(H)— N(H)/H.
Then we may construct the following map

U : Deck(X;) — N(H)/H
g~ 7([a])
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where « has a lift oy in X7 with
a(0)=p; and «(l) = g(p1).

By the previous discussion, ¢ is determined by ¢(p1), and all homotopy classes of paths in X;
from p; to g(p1) are mapped to N(H) by f. which are representatives of a same element in
N(H)/H. Hence this is a well-defined map.

Let g and h be two deck transformations on X;. Let p} and pY be lifts of p in X; with

g(p1) =p) and h(p)) =pY.

Let [a] and [B] be elements in N(H) corresponding to g and h respectively. Then we have the lift
h o «aq of o with

a1(0) =py and  a(1) = pf,
and the lift 5; of 8 with
B1(0)=p1 and  Bi(1) =p.

Hence 1 * a7 is a path in X; going from p; to
pY = h(g(p1)).
which is a lift of [8 * a]. Hence we have
U(hog)=m(laxp]) =n(a)«7([8]) = W(h) * ¥(g).

The surjectivity comes from Proposition [4.3.16] For any [a] € N(H), there is a lift a of v in
X1 with a1(0) = p;. We denote by pj = a1(1). Then since [a] € N(H), we have

[2] '« H * [o] = H.

This is equivalent to
folm(X1,p1)) = fu(mi (X1, 1))

Hence by Proposition [4.3.16] we have a deck transformation sending p; to p}. Hence we have

The injectivity comes from the uniqueness of the lift. If we have [a] € N(H), such that 7([c])
is trivial in N(H)/H, then we have
[a] € H.

Hence the lift oy of o in X with «;(0) = p; will have
0&1(1) = P1-

Hence any deck transformation corresponding to 7([«]) will satisfies g(p1) = p1. On the other
hand, the identity map idx, is a lift of f. By the uniqueness of the lift, we have g = idx;.
As a conclusion, the map ¥ is an group isomorphism. O

Given any lift p] of p; in X; and any path «; from p; to p} in X7, its projection
a=fod

is a loop based at p in X. On the other hand, given any loop « in X based at p, it can always be
lifted to ay a path in X; with aq(0) = p;. These two observations shows the following facts.
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Corollary 4.3.39

The group Deck(X;) acts on f~!(p) transitively, i.e.

Deck(X1).p1 = f~(p),

if and only if G = N(H), i.e. H<G.

Definition 4.3.40

A cover X, of X is called a normal cover if

Deck(X1).p1 = f_l(p).

By Corollary the index of the subgroup associated to any degree 2 cover is 2. Since in any
group, any index 2 subgroup is normal, we may conclude that any index 2 cover of S' Vv S! is a
normal cover. All index 2 covers are as follows (Figure4.3.17). Notice that the deck transformation

Figure 4.3.17: All degree 2 covers of S' Vv S*.

can be constructed by considering first how lifts of the vertex are mapped. Notice that this also
tells us all index 2 subgroup of F, up to conjugacy.

We list all degree 3 covers of S* vV S' below in Figure 4.3.18] Notice that the one on the left are
normal covers, while the ones on the right are not.
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Ao Aol

A6 Jooos

Normal Not Normal

Figure 4.3.18: All degree 3 covers of S* Vv S,



182 CHAPTER 4. COVERING SPACES



Chapter 5

Surface

The topological spaces familiar to everyone the most would be the Euclidean space R™. A
topological manifold can be consider as a generalization R™. Roughly speaking, a manifold of
dimension n, or simply an n-manifold, is a topological space which locally looks like R™. In
another words, one may consider a n-manifold is constructed by gluing open sets of R™ together.
For example, the circle can be considered as a result of gluing two intervals together. Hence it is
a 1-dimensional manifold.

In this chapter, we will focus on the dimension 2 case, i.e. the surface case. We would like
to consider this case as an example to review the content which was introduced previously. In
particular, we will give the classification of closed compact surfaces. Moreover, we will discuss
the triangulation of surfaces to give an idea of what are simplicial structures for a topological
space, and how to use them to obtain topological invariants such that Euler characteristics and
orientations.

5.1 Surfaces in various contents

Surfaces are elements objects studied in many area. In the following, we take the torus as an
example to illustrate this fact.

In the Euclidean space R3, the following formula define a torus

f:R? 5 R?,
(0,m) — (cos@(cosn + 2),cosf(sinn + 2),sin 9).

This formula gives a local charts on torus. We could use it to compute quantities such as area,
curvature etc.

We consider the algebraic equation in C2
w? = 2(z — 1)(z = \),

where A € C\ {0,1,00}. The solution set in C2 is topological a torus. Notice that given any
z € C, there are two distinct roots for w:

w=+/z(z—1)(z—=A)
w=—z(z—1)(z — )

183
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except when z = 0,1, A, co.

Consider the projection of C2 to the copy of C for z, and the above discussion shows that the
restriction of this map to the solution set is a 2-cover branched over {0, 1, A, co}.

If we take a circle path separate z = 0 from other three branched points, when we go around
once along this path, we change the root w = \/z(z — 1)(z — A) to w = —y/2z(z — 1)(z — A). On
the contrary, if we take a circle path separate z = 0,1 from z = A, 0o, then after going around
once along this path, we still get the same root for w.

One may roughly understand this phenomenon in the following way. Since we have a 2-cover,
there are two copies of C for w. If the 2 parameter walks along a path around 0 only, then the
w parameter goes from one copy of C to another copy. If the z parameter walks along a path
around 0 and 1, then the w parameter stays in the same copy of C for w.

{
|

The copy of z-plane for (z, w) The copy of z-plane for (z, —w)

Figure 5.1.1: Gluing two copies of C along two slices connecting 0 to 1 and oo to A respectively.

Hence one may consider cut a slip in C along the interval [0,1] in R and glue the two copies
of C along this slice. The same discussion works for co and A\, we may take a path with no
self-intersection going from A to oo and disjoint from [0, 1]. We cut a slice along it, and glue the
two copies of C along the slice. As a result, the solution set is a torus.

Notice that the above construction of torus depends on a choice of 4 point 0,1, A\, co. Using
fractional linear map, we can send any triple of distinct points in C to {0,1,0}. Hence up to
holomorphism, the complex structure on a torus is determined by .

Another way to describe a torus is by considering it as a quotient space of R? under a group
action. This has been described previously in Example [2.3:21]

Figure lists some surfaces that one may meet in various occasions.

5.2 Construction of surfaces using polygons

Before we start, it should be remark that all discussions from now on are based on a result which
we will admit and will not give a proof. It says that any surface can have a triangulation (which
we will introduce later). For the proof of this result, one may read.
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Figure 5.1.2: First row: triangle, pentagon, Mdébius band; second row: sphere, torus, Klein bottle.

Polygon

Recall that in the context of Euclidean geometry, a convex Fuclidean polygon is a compact
region, geometrically a intersection of finitely many half plans (see Figure [5.2.1]).

Figure 5.2.1: A polygon as the intersection of half planes in R2.

The boundary of a polygon is piecewise straight. Each straight piece is usually called an edge
of the polygon, and each pair of edges meet at a vertex of the polygon. One may notice that a
polygon is a topologically a disk, with some points on its boundary marked special.

A topological polygon is topologically a closed disk with finitely many marked points on its
boundary called vertices. The vertices separate the boundary into connected components, each
one of which is called an edge of the polygon.
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Labels

The goal is to obtain surfaces by sewing edges of a polygon together. To do this, we have to
clarify which edges are glued together in which way. For the first "which", we given each edge of a
polygon a letter. Then two edges labeled by a same letter will be glued. For the second "which",
we give each edge an orientation. Since each edge is an interval. Up to homotopy, there are two
homeomorphism between two intervals, corresponding two ways of identifying them. We use 1
and —1 to represent the two orientation, then we consider the map from one interval to another
preserving the chosen orientation.

More precisely, let P be a polygon with the set of vertices
V ={v1,...,on},

and the set of edges
E={e,...,en}.

We orient 0P with the counterclockwise direction, and the vertices and the edges are ordered
following this orientation.

Let S be a finite set of letters. A label on P with letters in .S is a map
L:E—Sx{l,-1}

e (z,€)

such that for each letter z € S, the preimage L~ ({(z,£1)}) contains are most 2 elements (See
the left figure in Figure for an illustration).

(da _1)

(a’ _1)

Figure 5.2.2: A labeled polygon.

Remark 5.2.1.

Since the edges labeled by a same letter will be glued together and our goal is to get a surface,
the last requirement is natural. Otherwise, if we identify three or more half disks along their
diameter, consider the point on the diameter and it has not neighborhood homeomorphic to a
disk.

Another observation is that in order to avoid the existence of boundary, all edges of P should
be paired, i.e. for any e € E labeled by (x,¢€), there should be another edge labeled by either
(x,1) or (z,-1).

In the rest of this chapter, we will not discuss surface with boundaries, hence all polygons will
have even number of edges. The orientation will be labeled using arrows (See the right polygon

in Figure [5.2.2]).
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In the following, starting from the edge ey, if the label is given following the counterclockwise
direction by
(a1,€1), (a2, €2), ..., (azn, €2n),

then the label for e; is denoted by a;’, and the label is denoted by a word

€1 €2n
al e a2n .

Moreover, if ¢; = 1, we omit it. As an example, in Figure the edge labels are
a7 c) b? a’_17 b7 6_1? d_17
and the label is written as
acbatbe 1d 1.

When a polygon P is given a label L, we call it a labeled polygon and denote it by (P, L). Two
edges of P are said to be paired if there is a letter a, such that the two labels of the two edges
are in

{a,a'}.

From polygon to surface

Counsider a polygon P with 2n edges with n € N\ {0,1}. We denote its vertices by vy, ..., va,
following a cyclic order induces by the counterclockwise direction of JP. As a convention, we
consider indices of vertices and edges up to mod 2n, and assume that the vertices of e; is v; and

Vi+1-

Vi __._ Vjt+1 CTTTTTT
= N ‘4,
A Y ’4
Y ’
AY
’
a a ! /
1
1 “
1
re
---------- ’ b
Vi4+1 Vj L A ..’
Ui o o2 Vi1 emmmmmmeeo
a a
Vi1 Uj S d_ -

Figure 5.2.3: Different identifications of paired sides associated to different ways of labeling.

Let L be a label of P using n letters. Hence all edges of P are paired. Assume that e; and e;
are labeled by a° and a¢ for some letter a € S.
If € = ¢/, we consider a homeomorphism

goa:eiﬁej,

such that ¢, (v;) = v; and @q(viy1) = vVjq1.
If € # ¢/, we consider a homeomorphism

@a:ei—>ej,
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such that e (vi) = vj11 and @q(vie1) = v;.

Notice that such homeomorphism is unique up to homeomorphism. For any edge v;v;41
labeled by z, we identify p € v;v;41 with ¢, (p), then we denote the associated quotient space by
Y. In this case, we call the labeled polygon (P, L) a polygonal presentation of ¥. We denote
by 7 the projection map (gluing map)

m: P — 3.

Quotient topology on X

The quotient topology on ¥ gives a 2-manifold structure on it, i.e. each point admits a neigh-
borhood which is homeomorphic to a disk in R2. More precisely, consider ¥ as a quotient space
of a labeled polygon (P, L), where P is a 2n-gon for some n € N\ {0, 1} and its edges are all
paired through L. There are three types points in P, interior points, edge points and vertices. To
describe the topology around each point in P, we may identity P with an Euclidean polygon for
the moment and consider the subspace topology. We still denote by vy, ..., v, the vertices and
ey, ..., ea, the edges following the counterclockwise direction on P, such that e; is adjacent to v;
for any i € {1, ...,2n}.

There is not much to say about interior points, since the restriction of 7 to P is a homeo-
morphism to its image. To be more precise, notice that the topology on P is Hausdorff, and for
any p € P, there is a neighborhood basis of p contained in P. Hence the restriction of 7 to each
such neighborhood is an homeomorphic to image and the image of these neighborhoods form a
neighborhoods of 7(p).

Now consider a point p € é; for some edge e;. It has a neighborhoods formed by half disks in
R2. If ¢; is labeled by a¢ and another edge e; is labeled by afl7 then there is a point ¢ € é; with
7(p) = w(q). We consider U a half disk neighborhood of p and V' a half disk neighborhood of ¢,
such that 7(U Ne;) = 7(V Ne;). Then a neighborhood of m(p) can be given by

r(UuWV)2UUV/(x~y & n(z) =7(y))

which is homeomorphic to a disk in R?. Notice that such neighborhoods form a neighborhood
basis of 7(p).

e

Figure 5.2.4: Glue neighborhoods of boundary points together. There are two vertex cycles:
urugusugus and wjububulul.

To see how neighborhoods of vertices are glued together, we consider the following process.
Let u; = v;, be a vertex of P, it has two adjacent edges e;, and e;, 1. We denote f; =e;,. Let
e;, be the edge paired with e;,, the we have

71'1(’(1,1):7'(1(’0@‘2) or 7T1(U1)=7T1(U,'2_1).
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We denote f] = e;, and by ug the vertex of e;, identified with w; through 7. If we have obtained
u;, then we consider fj’- be the edge adjacent to u; different from f; with which we obtained
u;. Denote by f;41 the edge paired with f]’», and by u;j41 the vertex of f;y; identified with u;
through 7. Notice that there are only 2n vertices, there will be a step k € N* such that for any
1<j <k, uj #up, and

U = Uq.

We call

Uy - Uk

a vertex cycle for (P, L) (See Figure for an example). Through 7, the neighborhoods of
u;’s in a vertex cycle are glued together to give a neighborhood of 7(u4) in 3. More precisely,
recall that we have identified P with an Euclidean polygon. Consider a sector neighborhood S
for each u; with a same radius, then we identify their radius sides together to get a space

k

k
T\ Usi | =S/ @~y e n@) = ).

j=1

Since sectors with different angles are homeomorphic and the homeomorphic can be given by
rescaling the central angles. Hence we can identify all S;’s with sectors of central angle 27 /k.
Then the resulting space

k
| |8i/(x ~y e n(x)=mn(y)),
j=1

is homeomorphic to an Euclidean disk, which gives a neighborhood of 7 (uy).
As a conclusion, the quotient space ¥ is a 2-manifold, i.e. a surface (See Figure for an
illustration).

Remark 5.2.2.

The whole story also works for a finite collection of polygons. Let Py, ..., Py be a collection of
polygons. Then we can define a label on it and obtained a surface from them by gluing according
the the label. The only difference is that the resulting surface may not be connected.

Some examples

We gives some examples to illustrate the above discussion.

1) The quadrilateral labeled by a~tab=!b is glued into the 2-sphere S? (see Figure for an
illustration):

| TS

Figure 5.2.5: A polygon labeled by a~!ab=1b is glued into the 2-phere.
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Figure 5.2.6: A polygon labeled by abab is glued into the projective plane.

2) The quadrilateral labeled by abab is glued into the projective plane RP? (see Figure
for an illustration):

3) The quadrilateral labeled by aba=b~1! is glued into the torus T' (see Figure for an
illustration):

Figure 5.2.7: A polygon labeled by aba~'b~1! is glued into the torus.

4) The quadrilateral labeled by abab~! is glued into the Klein bottle K (see Figure for
an illustration):

Figure 5.2.8: A polygon labeled by abab~! is glued into the Klein bottle.

Remark 5.2.5.

Klein bottles can only appear in dimension 4 and higher. The figure is a 2-dimension illustration
of its projection to R3. This is why it looks like intersecting itself. To understand this, one may
consider the projection of a non-trivial knot in R? to a plane to understand this (see Figure
for an illustration of a projection of a trefoil knot in R3 to a plane).
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=

|

=

Figure 5.2.9: Projection of a trefoil knot in R? to a plane.

5.3 Classification of closed surfaces

Equivalent labeled polygons

When trying to find polygonal presentation of a surface ¥, one may notice that such a presentation
may not be unique. For example, the following two labeled polygons are both presentation for

torus.

Figure 5.3.1: Two polygonal presentations of torus: abca™'b~'c™! and aba='b~".

Two labeled polygons are said to be equivalent if the surfaces induced by them are home-
omorphic to each other. We may consider a labeled polygon as a result of "cutting" a surface
along a graph in it whose edges are labeled. Hence if (Py, L) and (P, L2) are equivalent, then
we can consider first glue P; with respect to L; and obtain a surface X, then cut along a labeled
graph in ¥ to get (P», Lo). Hence intuitively, there should be a way to relate equivalent labeled
polygons through cutting and gluing, which will be precised in the following.

We now introduce geometrically the elementary operation which can be applied to a labeled

polygon (P, L):

1) Cut and Glue This is done in 3 steps:

(i) Add a diagonal to P. Associate to it a letter x different from all letters used in L and a
orientation.
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(ii) Cut P along the diagonal z. Rigorously speaking, consider the closure of each connected
component of the complement of this edge in P, and we obtain two polygons @; and Q.
The label on P and the letter with the orientation on the diagonal induces a label on ()
and a label on Q2. Hence we have a disjoint union (Q1, L1) U (Q2, L2).

iii) Assume that there is a paired edges e; and e; of P which are not both in @1 or in Q2. Let
J
o be a orientation preserving homeomorphism between them. Then we consider

P :=Qi1UQ2/(p~ ¢(p),Yp€e;)

Figure 5.3.2: Cut and glue.

2) Relabel Replace all copies of a letter by a letter which does not appear anywhere in the
label L.

Figure 5.3.3: Relabel letter a by x.

3) Flip Reverse the orientation on all edges of P at the same time.

4) Cancel If there are two successive edge which labeled by a same letter with different
orientation, we can glue them to get a polygon P’ with two edges less. The label L on the other
edges induces a label L' on P’.

5) Cut a slit Let a be an oriented segment in P with one end point at a vertex and the
other one in P, then we cut P along a. One may consider the complement of « in P. Tt is
homeomorphic to D the open disk. Then this map can be extends to a map from the closed
disk D to P. The preimages of vertices of P and the end points of a gives marked point on 9D,
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Figure 5.3.5: Cancel.

which make D a P’ polygon with 2 more sides than P. We associate to a a letter  different from
all letters appearing in L. Then the label L and the letter with the orientation associated to «
induce a label on P'.

Figure 5.3.6: Cut a slit.

Now we consider the words associated to a labeled polygon. Notice that if we cyclically
permute the word, we may consider this as choosing a different vertex to start writing the word.
Let w be the word associated to (P, L). Given any word subword of w

[y] = a1 - ayf,
we will denote by y~! the following word

—€x

[y = a4

e
~ag .

The elementary operation can be described as follows.

1) Cut and glue This is done in 3 steps:
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(i) Add a diagonal to P. Let u and @ be the two vertex of this diagonal. Since each vertex is
an end point of an edge, we consider the counterclockwise direction on dP. Let e and ¢’ be
the two edges with u and u’ as an end point respectively. Assume that the label of e is in
the end of a subword [y;] of w and the label of €’ is in the end of a subword [ys2] of w, such
that we have

w = [y1][ya][ya]-

We apply the permutation to get a new word w’
w' = [ys][y1][ye]

(if) Associated to this diagonal a letter x and an orientation, and cut P along the diagonal.
Here = does not appear in L. Up to reverse the chosen orientation on the diagonal, we get
two words

wy = [ys]ly]z,  we =2 [yl

They correspond to two labeled polygon (Q1, L1) and (Qs2, L2).

(iii) Assume that there is a letter b different from x, such that b€ and b¢" appearing w; and ws
respectively. If e = —¢’, up to a cyclic permutation on w; and wy respectively, we have

w) = [afelzlb’, wh =0 [zl [zl
We take the concatenation and get
wz = [z1]a[z2)[z3]™ " [z4],

which is the word associated to the labeled polygon (P’, L').

If e = €, up to a cyclic permutation on w; and wy respectively, we have
wy = [21]w[z]b,  wh = [z3]z z4]b".

We apply the flip (see 3) for more details) on (Q2, La) to get a new labeled polygon (Q%, L5)

corresponding to the word

wy = b~ [zy 'z
The take the concatenation and we get
ws = [21]x]zo][21 ez,

which is the word associated to the labeled polygon (P’, L').

2) Relabel Replace all copies of a letter by a letter which does not appear anywhere in the
label L. Assume that a is a letter appear in w:

w = [y1]a[y2]a [ys].
Then we take a letter x different from all letters appearing in w, and replace a by x
w' = [y1]a®[yalz [ys]
3) Flip Reverse the orientation on all edges of P at the same time. If
€2n

— 4€1
W= Gy - Ay s

then we flip it and get
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4) Cancel If there is a letter a such that
w = [yi]a‘a™[ya,

we cancel it and get
w' = [y1][ya]-

5) Cut a slit Let = be a letter different from all letters appearing in w. Insert zz~! in to w
between two successive letters in it and change it from

w = [y1][y2].

to
w' = [yr]zz ™ [ya].

An immediate observation is the following one.

Proposition 5.3.1
Two labeled polygons different by a sequence of elementary operations are equivalent.

Let (P, L) be a labeled polygon. We apply an elementary operation on it and obtain (P’, L’). Let
3 and ¥’ be the surfaces associated to them respectively. From the geometrical description of
each elementary operation, one can construct the homeomorphism between ¥ and Y’ directly.
Here we omit the details.

A less obvious fact is the following one.

Proposition 5.3.2

Any two equivalent labeled polygons can be transform from one to the other by a sequence
of elementary operations.

In the following, we are going to prove s stronger statement and show that all labeled polygons
can be transform to a standard one by a sequence of elementary operation. This can moreover
be used to give a classification of compact closed surfaces. We use words to represent labeled
polygons.

Theorem 5.3.3

All labeled polygons are equivalent to one of the following ones:

1010202 * - ApGp, N > 2;

—1,—1 e
arbiay byt - apbpantht, > 2.

Remark 5.3.4.
The word of type 1) is associated to the sphere. The word of type 2) is associated to the projective
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plane. The gluing pattern induced by the label is in fact the same as the one given by a antipodal
map. The word of type 3) is associated to a torus.

A word of type 4) or type 5) is a concatenation of several copies of type 2) word or type 3)
word. We will call a word of type 4) a word of the projective type and a word of type 5) a word
of the torus type.

Let w be the word associated to a labeled polygon (P, L). This theorem can be proved by showing
the following lemmas.

Lemma 5.3.5

If there is a letter a, such that
w = [y1]alyz]alys],

then it is equivalent to
w' = aalyi]lyz 'lys)-

Lemma 5.3.6

If there is a letter a, such that
w = [y1]alyz]alys],

then it is equivalent to
w' = aalyi]lyz 'lys)-

Proof. We consider the following cut and glue process (See Figure for an illustration).

[y1]alyz]alys]
—[yijab, b~ [ya]alys] cut
—blyi]a, a 'yy']blys '] cyclically permute and flip
[vllyz '1olys ) glue

[ ¢ Yyz b cyclically permute and cut
—c[yi][yz 1b, b 'ysle  cyclically permute and flip
—cclyi]ys M[ys] glue and cyclically permute

Figure 5.3.7
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Corollary 5.3.7

The word w is equivalent to
aray - apapw’,

such that if @ appears in w’, so is a™'.

Proof. By the previous lemma, if for some letter a;, we have aj' appears twice in w with

e1 € {1,—1}, then w is equivalent to a'a*w;. Then if for some letter az, we have a5? appears

twice in wy with e; € {1, —1}, then w is equivalent to aj'aj'a5’as*ws. We repeat this process,

and get wi, ws, ... in sequence.

Notice that there are finitely many letters in w, and for each ¢, there are two letters less in
w;41 than in w;. Hence the above process will stop in finitely many steps. Assume that it stops
at step k, then w is equivalent to

€ € € €
ai‘ai' - arfafwipg
Up to replace a;* by a; “, and denote w’ = w41, we have w equivalent to

aiay - - apapw’.

If w’ is not empty, then if a appears in w’, so is a™!. O
Lemma 5.3.8

If there are two distinct letters a and b, such that

w = [y1]alya2]blysla™ [ya]b™ " [ys],

then it is equivalent to
w' = aba b7 [2].

for some word z.

Proof. We consider the following cut and glue process (See Figure for an illustration).

[y2]
yilafyale, ¢ blysla [yalb" [ys] cut
y1la, a_l[y4]b_1[y5]c_1b[y3] cyclically permute
]

[y1]

(1]
—y2]c]
= [y2)e[y1][yalb™ " [ys]e ™ blys] glue
—[y1][yalb sl blys] [y2]c cyclically permute
= [llyaldb™ ysld,  d™em olys][ye]e  cut
—[ysld[yi][ya]d™",  blys][ya]ed tc™  cyclically permute
= [ysld[y1)[yallys][y2)ed ' e™! glue
—[y1][yal[ys][y2)ed L e ys]d cyclically permute
= [llyallysllyelee, et e ysld  cut

—e[yn][yallys)[y=le, ¢ yslde td™'  cyclically permute
ta! [ya][ya][y2][ys] glue and cyclically permute
[ya][ys][y2][ys] relabel



198 CHAPTER 5. SURFACE

Figure 5.3.8

Corollary 5.3.9

The word w is equivalent to

aiai --- akakcldlcfldfl e cndncgld,jl.

Proof. From the above two lemmas, the word w is equivalent to the following one:
aray - - - agaperdicy tdyt - epdne, Yy,
where [y] is a subword such that for any letter h, both h and h~! appear in [y], and moreover

given any two letters g and h, either there is no letter g between h and h~! or no h between g

and g~ 1.

Without loss of generality, we may assume that
[y] = [a1]Al2a] ™ [23).
Assume that [25] starts with h§, then we have
ly] = [a]hh [zal oy “[z5]h ™ [2s].

We repeat this process, since there are only finitely many letters in [z4], after finite steps, there
will be a letter g, such that g and g~! are adjacent to each other:

ly] = [21]hhS - g°g %+ hy “[e5]h ™ [z).

We may cancel g°¢g~?. Then we start over again the discussion. By out assumption, all letters in
[y] will be canceled out. Hence

-1 -1 151 -1 -1 -1 -1
ajay - - agagcrdicy “dy - epdpe, dy [y ~ arag - agakerdicy dy - epdne, dy
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Lemma 5.3.10

Let a,b, c be three distinct letters. The labeled polygon associated to the word aabbcc is
equivalent to the one associated to aabchb™te™ 1.

Proof. We consider the following cut and glue process (See Figure for an illustration).

aabbce
—abbcea cyclically permute
—abd, d 'beca cut

—a"td b7, becad™!  Aflip and cyclically permute

—a " td tecad™? glue

1

—d tecad ta” cyclically permute

—cad ta e, e 'd7le cut
—a tecad™t, dec!
1 1

flip and cyclically permute

—a” “ecaec” glue
—ecaec ta"? cyclically permute
—ecaef, flclat cut
—efeca, a tflet cyclically permute
—efecf te ! glue
—f e tefec cyclically permute

—f e tefg, g tec cut

—efgf e, cgle cyclically permute
—efgf g e glue
—aabchb™ et cyclically permute and relabel

Figure 5.3.9
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Hence given any word
—1 -1 —17-1
aiay - - -agagcidicy dy - epdpc,d,

if k=0 or n = 0, then we have the desired form
-1 ;-1 —1 ;-1
cidicy “dy - epdpc,d,
or
ajaq - - - agag.

If both k£ and n are not 0, then by induction the above lemma shows that it is equivalent to

a1a71 * - Ag4-2nAk4-2n -

Hence Theorem [5.3.3| is proved.

Connected sums and labeled polygons

Now we would like to see which surface is associated to each standard word, and this is enough
to describe all closed compact surfaces by Theorem [5.3.3] We will discuss the case for a standard
word w of the torus type, and the case for words of the projective type can be treated in a similar
way.

Given a polygon P whose label is given by a standard word

w = alblaflbl L. ~-anbna;1b;17 n> 2,

we denote by ¥, the resulting surface. The first observation is that all vertices of P are in one
vertex cycle. We still use 7 to denote the projection map. Then the m-image of each edge or
diagonal of P induces a loop in X.

We cut P along a labeled diagonal as done previously, such that we obtain

alblaflbflc, c*1a2b2a§1b51 . anbnaglbgl.
One may consider glue a triangle labeled by ¢='dd~" to aibya; 'b; *¢ and obtain
arbya; oy tdd !,

which is equivalent to
al blaflbf
Notice that the surface associated to ¢~'dd is a disk. In the other words, the surface associated
to ag blal_lbl_lc can be considered as being obtained by removing a disk from the torus associated
to arbray tbyt.
Similarly, the surface associated to c_lagbgaglbgl . anbnarjlbgl can be considered as being

obtained by removing a disk from the surface assocaited to ¢~ tagboas *by ' - - - anbya; bt
Hence the surface X, is a connected sum

T4, ..
where T' denote the torus (See Figure [5.3.10). By induction, for any n € N\ {0, 1}, we have the

homeomorphism

Yo, 2XTH--#T.

———
n
A similar discussion shows that the surface associated to the word of a projective type
(1010202 * ** Aplp, N 2> 2,

is homeomorphic to the connected sum

RP?4 - - - #RP?.

—_——

n

Hence as a corollary of Theorem [5.3.3] we have the following statement.
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Qn an Qn

a1

Figure 5.3.10: X, 2 T#X, 1.

Theorem 5.3.11

Any closed compact surface ¥ is homeomorphic to one of the following surfaces:

1) S%

2) RP?;

3) T;

4) RP?# - - #RP?, n > 2;

n

5) T# - #T,n > 2.
——

n

Classification theorem

Theorem shows that the list in the statement contains all closed compact surfaces up
to homeomorphism. The question left is if two surfaces in the list could be homeomorphic
to each other. To answer this question, we will use fundamental groups of surfaces and their
abelianizations.

Fundamental groups of surfaces

Theorem [5.3.3| also provides the information of fundamental groups of the surfaces associated
to the labeled polygons of each type. The key tool used in this discussion is of course the
Seifert-Van-Kampen Theorem.

Let P be a polygon labeled by one of the words w in the list in Theorem [5.3.3] Notice that P
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is topologically a disk. Denote D a closed disk contained in P. Let p € D, then we denote
U=P\{p} and V =D.

We still denote by ¥ the surface associated to P and by 7 the projection from P to 3. Notice
that U is homotopy equivalent to 9P, whose image under 7 is a graph. Moreover each edge
is sent to a loop by m. Hence the image of 0P under 7 is a rose whose fundamental group is
isomorphic to a free group generated by letters used in the label of P (See Figure for an
illustration for computing 1 (7(U)) for a torus type labeled polygon).

bn Ay, bn g, bn an b
an, a a K
Gnp
by b bn ba bn ba ay
a as a1 az a1 a2
by
b1 b1 b1 b2
al b2 ay b2 ay b2 as
by a2 by a2 by a2

Figure 5.3.11

Using SVK theorem, the fundamental group of ¥ is given by a free group quotient by the
subgroup normally generated by the word associated to the boundary. As a result, we have the
following presentations of fundamental groups for surfaces in the above list:

1) w=aa"tbb~! and ¥ = §2:

2) w = abab and ¥ = RP?: (let ¢ = ab)

() 2 (c]| ?) = Zy.

3) w=aa"tbb~! and ¥ = T;
m1(%) = (a,b | aa"bb™t)

4) w = ajaiasas - - apa, and X = RP?# - - - #RP? (n>2):
~—_——

n

(%) = (a1, ...,an | a}---a2).

5) w = ajbia; byt anbpa; byt and ¥ = T# - #T (n > 2):
—_———

n

ﬂ-l(z) = <a1;b17 "')a’rhbn | [alabl] U [an,an

First homology groups

Since fundamental groups are topological invariants, if two surfaces have non-isomorphic funda-
mental groups, then the two surfaces are not homeomorphic. However presentations of a group
are not unique. To overcome this difficulty, we consider their abelianizations and discuss in the
category of abelian groups. Notice that all fundamental groups are finitely generated, hence their
abelianizations are finitely generated abelian groups, for which we have the classification theorem.
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Definition 5.3.12

Let G be a group. Its abelianization is defined to be
G* .= G/[G,G).

Let F),, be a free group of n letters. Let N7 and N> be two normal subgroup of F,,. Then by

the fundamental theorem of group homomorphism, we have
(F/N1)/(N1Ny/Ny) & F,, /N1 Ns.
Therefore, if a group G has the following presentation
(a1, ...,ap | wy, ..., wp),
then G?" has the presentation
(a1, .oy ag | w1, oy wy, (a1, a2, ..., [ag—1, ag]),

By this discussion, we have the abelianizations of fundamental groups of surfaces

1) w=aa"'bb~! and ¥ = S%
(%)™ 0.

2) w = abab and ¥ = RP%:
T (2)P 2 Zy.

3) w=aba"'b! and ¥ 2 T;
m (8)* =2 Z°

4) w = ajaiasas - aza, and X = RP%4 - - - #RP? (n>2):
|

n

(D) = 2" @ Zy.

5) w=aibia; b7t - anbpa; byt and ¥ = T# - #T (n > 2):
—_———

n

T (E)ab [ ZZn.

Now we consider the classification of finitely generated abelian groups and have the following
classification of surfaces:

Theorem 5.3.13

Any closed compact surface 3 is homeomorphic to exact one of the following surfaces:

1) S%

2) RP?

3) T

4) RP*# .- #RP? n > 2;

n

5) T#---#T, n > 2.
———

n
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Remark 5.3.14.

After introducing the homology groups for a topological space, we will come back to the abelian-
ization of fundamental group of a surface and moreover for a path connected space. We will show
that the abelianization of the fundamental group is isomorphic to the first homology group.

5.4 Euler characteristic

As introduced in the introduction, Euler characteristic is a topological invariant for surfaces. In
this part, we will analysis it more closely still in a combinatorial way. A generalization of this
topological invariant for any CW-complex will be discussed later.

Triangulations and cellulations of a surface

The Euler characteristic of a surface can be computed by counting number of vertices, edges and
faces in a triangulation of the surface.

As suggested by its name, a triangulation of a surface is a decomposition of the surface into
triangles. More precisely, let T = (V, E) be a graph embedded in X, where V is the set of vertices
and F is the set of edges. If the closure of each connected component of the complement of T is a
triangle, then we call T a triangulation of the surface ¥. Notice that each connected component
A of ¥\ T is homeomorphic to an open disk D. We denote by

f:D—A.
Then the map f can be extends to a continuous map
f:D— A.

Hence f(OD) C T. By a triangle, we mean that fﬁl(aA N V) has three points. Each connected
component of the complement of T is called a face for T. We denote by F' the collection of all
faces for T

Another way to describe a triangulation is first marking a finite collection V of points in X
as vertices, then connect them by simple paths, i.e. paths such that the restriction to (0, 1) is
injective. Two paths are said to be disjoint if the images of their restriction to (0, 1) are disjoint.
Then a triangulation of ¥ is a maximal collection of simple paths connecting points in V' which
are pairwise non homotopic and pairwise disjoint. For example, given a n-gon with n > 3, we can
add diagonals to get a triangulation of the n-gon. This can be done in finite time.

Let T and 7" be two triangulations of X. If up to homotopy, there is an embedding of T into
T’, then we call T” a refinement of T'. In this case, all faces and edges of T” come from taking a
subdivision of those of T

If we require only the interior closure of each connected component of the complement of T is
simply a polygon, then we obtain a cellulation. A refinement of a cellulation can be defined in a
similar fashion.

Euler characteristic

Definition 5.4.1

The Euler characteristic x(X) of a surface ¥ is defined to be the following quantity:

X(X) = #V — #E + #F,

where V', E and F' are sets of vertices, edges and faces of a triangulation of 3.
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Proposition 5.4.2
The Euler characteristic of a surface ¥ is independent of choice of the triangulation.

There are two steps that should be completed to prove this proposition:
1) Euler characteristic is invariant under refinements;
2) Up to homotopy, any two triangulations of ¥ have a common refinement.

To see the point 2), we use the fact that the surface is compact, and locally homeomorphic to
R?, hence it has a finite cover consisting only closed subsets homeomorphic to closed disk in R2.
Moreover, since all edges are compact, we may assume that each edge is cut into finitely many
segments each of which is contained in one subset in the covering. By identifying each disk set
with an FEuclidean disk, we can pulling tight each segment, and get new triangulation Ty and
T}, such that Ty and T} intersect at finitely many points. Now we consider all these intersection
points, vertex in Ty and those in 7] and add edges if necessary to get a common refinement for
To and T} at the same time.

For the point 1), notice that a refinement can be obtained by adding one vertex a time. If we
add one vertex on an edge, then we have one more vertex, two more edges and one more face. If
we add one vertex in the interior of a face, then we have one more edge, three more edges and
two more face. As a conclusion, the Euler characteristic is invariant.

To compute the Euler characteristic, we use the formula
X(E#Y) = x(2) + x(X') - 2.

Then by the classification of closed compact surfaces, we have

X(8%) = 2;
X(RP?) = 1;
X(K) =0;
x(T) = 0;

[ m—

n

T#.-- #T | =2 —2n.
——

n

X(RPQ#---#RW =2—n;
X(

5.5 Orientation

The orientation is another object that we consider when studying manifolds. In R2, there are
precisely two orientations. We consider a frame in R? which is formed by two vectors. Consider
the matrix formed by these vectors. The sign of the determinant is called an orientation of R2.
Given an triangle, we can talk about its orientation.

For a general surface, we will use triangulation to study its orientability. Consider a collection
of triangles glued together to get a surface ¥. We start by choosing an orientation on one triangle,
then we may try to extend it to the entire . However, this is not always doable. For example,
one may consider the Mobius band.

To make this more precise, we give the following definitions. Let T be a triangulation of X.
To each face f, we associate to it an orientation Of. Let O be the collection of all O’s.
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Definition 5.5.1

The collection O is coherent if the two orientation on each edge induced by its adjacent
triangles are inverse to each other. In this case, we say that the triangulation is orientable.

Definition 5.5.2

A surface is orientable if it admits an orientable triangulation.

Proposition 5.5.3
If a surface admits an orientable triangulation, then all its triangulations are orientable.

The idea of the proof is the same as the one above for showing that the Euler characteristic is
independent of choice of the triangulation. We should show that if a triangulation is orientable,
so are all its refinements. This can be shown by observing that any refinement of 7" is obtained
by taking subdivision of T'.

Given any two triangulations T and T” of X, up to homotopy, they admits a common refinement
T”. Let O be collections of orientations chosen for faces of T. Denote by Op be the collection
of orientations on faces of T" induced by O. If O is coherent, so is Og. Since a face f' of T' is
subdivided into faces of T". The coherent collection Oy induces a collection O’ of orientations of
faces of T” which is coherent. Hence T” is also orientable.



Chapter 6

Simplicial and singular homology

In this chapter, we will give an elementary introduction to the homology theory for a general
topological space.

6.1 Rough idea of homology after Poincaré

Recall that a space is path connected if any two points can be connected by a path. Or in the
other words, any two points are boundary of some 1-submanifold, i.e. a subset of the space which
is a 1-manifold. For a general topological space X, we can try to use this as an equivalence relation
and the number of corresponding equivalence classes is exactly the number of path connected
components of X.

Topologically there are many different topological spaces which are path connected. In order
to have a finer classification, we have to considering a somewhat higher level "connectivity". In
the world of manifolds, there is a natural way to do this which is called "bordism". This is a
generalization of the above observation. More precisely, let M be a n-manifold. We consider 1-
submanifolds of M. If o and § are two 1-submanifolds, which form a boundary of a 2-submanifold
of M, we say that they are equivalent. Then we consider the spaces of equivalence classes of
1-submanifolds of M, which could give more information about the connectivity of M. We can
continue to study k-submanifolds of M, and define that two k-submanifolds are equivalent if and
only if they form the boundary of a (k + 1)-submanifold of M.

One observation made by Poincaré is that "the boundary of boundary of a manifold is empty."

(See Figure for an illustration.)

9

Figure 6.1.1: The boundary of a one-holed torus is homeomorphic to S* which has no boundary.

Instead of considering all k-submanifolds, we consider only those equivalence classes of closed
ones. In this way, we obtain a set which is topologically invariant by considering its definition.
This is the rough idea of the homology in the beginning.

We are going to introduce three homology for a space: simplicial homology, singular homology
and cellular homology. For a space where all of them are well defined, they are algebraically the
same.

207
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6.2 Simplicial homology

As suggested by its name, we consider a space which admits a decomposition into a collection of
"triangles" of different dimensions.

Euclidean simplices

For any n € N, a "triangle" of dimension n is usually called an n-simplex. We call the following
subset of R"*! the standard n-simplex

A" = {(20, ..., p) ER"™ g+ -+, =1, 29 >0, ..., 2,, > 0}.

(See Figure for an illustration.)

1 1

0 1 7 0 1

‘ 1—) 0 —_—
| 1 \\

Figure 6.2.1: From left to right: A% A and A2,

For any 0 < i < n, Let ¢; denote the point of R"*! with i-th coordinate 1 and all others 0.
Then we have

A" = {zoeq + -+ wpe, ER"™ 2o+ 42, =1, 29 >0, ..., 7, > 0}.

This construction can be done for any n + 1 points of R"*! in general position. When n = 0, any
point in R is in general position. When n > 0, let vy, ..., v, be n + 1 points in R"*!. We say that
they are in general position if the vectors

U1 — Vo, -+, Un — V0,

are linearly independent. An n-simplez in R™"*! determined by vy, ..., v, in general position is
the following subset

{zovo ++++ + Tpvy, € R |29 + -+ + 2, =1, 29 >0, ..., 2, > 0}.

Points vy, ..., v, are called vertices of this n-simplex. Notice that for any m > n, we can define
n-simplices in R™. If a simplex A; determined by all but one vertex of another simplex Ay with
positive dimension, we say that A; is a face of Ay (see Figure for an illustration). For any
simplex A determined by some vertices of another simplex A’, we denote A < A/,

Let n > 1. Consider the simplex in R™ determined by vertices vy, ..., v,. It can be associated
with an orientation by first giving an order among its vertices:

(V0 +eey Un),
then consider the sign of the determinant of the matrix
[v1 —vg -+ vy — V).

If the sign is positive, we say that the orientation is positive; if the sign is negative, we say the
orientation is negative. The simplex equipped with this orientation is denoted by [vg, ..., v,]. The
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U1
Vo =

Ay

U2

Figure 6.2.2: The simplex A; determined by vy, v; and vs is a face of Ay determined by vg, vy,
v9 and vs.

order among vy, ..., v, is not unique and there is a natural action of the permutation group of
Sp+1 on {vg, ..., v, } by permuting the index {0,...,n}. As a convention, we may use —[vg, ..., Up]
to denote the same simplex with the opposite orientation. For any 7 a permutation on {0,...,n},
we denote.

[V0, oy Un] = SEO(T) [Ur(0)s oy Ur(m)]-

A simplicial complex is a finite collection K of simplices in some Euclidean space R™, such
that

(i) if a simplex A € K, so are all its faces;

(ii) if two simplices A and A’ in K have non empty intersection, then A N A’ < A and
ANA <A

The union of simplices in K will be denoted by UK and equipped with the subspace topology
from R™.

Figure 6.2.3: The left is a simplicial complex formed by one 3-simplex, six 2-simplices, twelve
1-simplices and eight 0-simplices, while the right is not a simplicial complex.

Simplicial chain complex and simplicial homology groups

Let X be a topological space. A simplicial complex structure on X is a homeomorphism
f:UK = X,

where K is a simplicial complex in an Euclidean space R™ for some m € N* (see Figure [6.2.4

and for illustrations).
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A @

Figure 6.2.4: A simplicial complex structure on a 3 dimensional ball.

(A
-

Figure 6.2.5: A simplicial complex structure on a torus.

A simplicial complex structure on X can also be defined to be a collection of compatible
continuous maps from standard simplices to X. More precisely, consider the standard n-simplex
A™. There are orientation preserving affine maps to identity faces of A™ with standard simplices
of same dimensions. We choose once for all such identification. A simplicial complex structure is
then defined to be a collection of maps indexed by €:

A={o,: A" = X | a € Q, A" is a standard simplex of dimension n,, and o, is continuous},
such that
1) The restriction of each o, € A to Ana s injective.
2) Each p € X belongs to the image of an unique map oq|zn, -
3) The restriction of each o, to a face of A™ is one map
og: A" = X
in A.

4) For any A C X, the subset A is open if and only if for any o, € A, the preimage o, 1(A) is
open in A™e,
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Remark 6.2.1.
Roughly speaking, the space X can be considered as a result of gluing of a collection of simplies.
Moreover the topology on X is induced by the topology on each simplies.

We call the image of each o, an n,-simplex in X, and denote it by e,. By considering each
such simplex e, as a formal generator, we associated to it a copy of Z whose elements are denoted
as neq. In this way, we have the following abelian group

k
CHX):= { Z Mi€q,

=0

ke N,mg,...,mg € Z}.

Each element o € C2 is a finite Z-coefficient formal sum

k
E Mi€ay,
=0

which is called an n-chain. For n, > 0, the orientation on A™ induces an orientation on e, by
0q- The elements —e,, can be considered as the same simplex with opposite orientation. As a
convention a 0-chain in X is a finite Z-coeflicient formal sum of 0-simplicies in X.

Notice that if n > 2, by restricting o, to the faces of A", there is a natural map from
an n-chain to an (n — 1)-chain. More precisely, assume A" = [uvy,...,v,], for any simplex
ea = 0a([vo, ..., vs)) in X, its boundary 9, (e, ) is given as follows:

n

D (0a([00s s 0a])) = S (~ 1)1 ([0, ey s o 0]

1=0

Here [vy, ..., ;, ..., v,] stands for oriented face determined by all vertices but v;. With the coefficient
(—1)%, the orientation associated to each face is induced by that on [vg, ..., v,]. We can formally
define the boundary of a 1-simplex in a same way. For any simplex e, = 0, ([vg, v1]) in X, its
boundary is defined to be

A (0a([vo,v1])) = —0a([vo]) + oa([v1]).

For any n > 0, the boundary of an n-chain is then defined as follows:
k k
On <Z mieai) = midn(ea,)-
i=0 i=0
A direct computation can show that this induces a group homomorphism
Oy 1 CR(X) = CR 1 (X)

for n > 0. When n = 0, we set
Do : C8(X) =0

where 0 stands for the trivial group.
Put all pieces together, we have the following chain of group homomorphisms:

On+2 On+1 - On—1
LA (X)) I od(x) 2 B () I 2 onx) 2 o x) 250
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Proposition 6.2.2

The composition of two successive boundary homomorphisms is trivial, i.e. for any n € N,
we have

8n ] 8n+1 = 0,

where 0 is the trivial homomorphism.

Proof. For any n € N, it is enough to show that this holds for any n + 2-simplex.

Let A" = [vg, ..., v,41] and e = o([vg, ..., Vn11]°] be an open n + 1-simplex in X. Hence we
have

n+1
Onr1(e) = (o ([0, s vni1))) = > _(=1)'0([v0, ey Ty ey U 41]).-
=0
We then compute its image under O,:
n+1 )
On(Ont1(€) = Y _(=1)'0n(0([v0, -vrs B, -ovy Unp1]))-
1=0
n+1 ) .
= > (D) (=1 (0 ([0, eons Ty eory T oony Ung1]))
1=0 7<i

A3 (D=1 ([V0s ey Ty eory Ty oy V1))

Hence we have the proposition. O
Equivalently, we have the following fact.

Corollary 6.2.3

For any n € N, we have
Im(0p41) C ker(9y,).

We have a name for such a diagram. Let (C),),en be a sequence of abelian groups and for
each n € N*, we have a group homomorphism

6n : Cn — Cn—l-

We denote by 0y the trivial homomorphism from Cj to 0 the trivial group. Hence we have the
following diagram:

On+2

Ont1 On, On—1 o
——Cpy1 — C, —— Chy 2

Definition 6.2.4

We say that (C),)nen with (0n)nen is a chain complex, if for any n € N, we have

ano n+1 — 0.
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Given a chain complex

Ont2 On+1

Cy

Cn+1
for any n € N, we denote

Zp:=kerd, and B, :=Imd,41,
by the definition of chain complex, we have

B, C Z,.

Definition 6.2.5

For any n € N, an element of (), is called an n-chain. Let o € C,, be an n-chain. If we
have o € Z,, we call ¢ an n-cycle. If we have o € B,,, we call 0 an n-boundary. The

quotient group
Hn = Zn/Bn

is called the n-th homology group.
For any n € N, an element in H, is called a homology class. If two cycles z and 2z’
belong to a same homology class, we say that they are homologous.

We now consider the abelian groups (C2),en and (9, )nen constructed previously for X with
a simplicial complex structure, we have a chain complex.
Definition 6.2.6

For any n € N, the homology group H2(X) for this chain complex is called the n-th
sitmplicial homology group.

Let n € N* and let X = A™ = [vg, ..., v,] be the standard n-simplex. The numbers of simplices in
A™ of different dimensions are as follows:

dm||n|n—-1| n—2

1 n+1)n
# 1 n; ( 2!)

n

re are one n-simplex, n + 1 (n — 1)-simplices, ”(n;l) (n — 2)-simplices,..., n O-simplicies. The

abelian groups C£(A™)’s are as follows:

0 k>n
Zlvg, ..., vy) k=mn
@ Z[vg,y .oy Uy . V) k=n-—1
0<i<n
A n
Ci(A") = @ L[V, ey Uiy y ey VigonUp] k=m—2
0<i1<iz<n
P zvi] k=0

0<i<n
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We consider the torus with a simplicial complex structure in Figure [6.2.5] Denote the torus by T'.
Let S be the interior of a triangle in 7" which is the image of o,|a2 for some «. Topologically
we remove an open disc from the torus. The resulting surface is a torus with one boundary
component, denoted by T”. By removing the map o, from the simplicial complex structure of T,
we obtain a simplicial complex structure of T”.

Let €q,,-,€a, be all 2-simplicies in 7. An orientation on A? induces orientations on
€ays ey €ay, DY Oayy ey Oy - I two 2-simplices e, and e,, are adjacent, then by the definition of
the simplicial complex structure o,; and o,, induces a same orientation on the common 1-simplex
€q,; N eq,. Hence the orientation on e,; and that on ey, are not coherent.

Consider the 2-chain .

7= Deicar

i=1
such that €j,...,e; € {1,—1}, and for any two given neighbor simplicies €q; and e, we have
€; = —e¢. In this way, we use this chain to represent the torus 7" with an orientation. The
simplex removed from T to get T” is given by o,. Up to a sign, the boundary of chain o is then

9o = oq([vo, v1]) + a([v1, v2]) — a([vo, v2]).
Consider its boundary, we then have
0(00) = 04(v1) — 00 (v9) + 04 (V2) — 06 (V1) — 00 (v2) + 04(vg) = 0.

Topologically the boundary of 7" is a circle which has empty boundary.

6.3 Singular homology

Recall that our initial goal is to study the topological space X and a simplicial complex structure
is an additional structure on X. Given a space X, its simplicial complex structures are not
unique in general. For example, a compact surface X may have different triangulations which
are different combinatorically. On the other hand the simplicial homology group depends on the
existence and choice of a simplicial complex structiure on X. Hence we may face two immediate
questions:

1) Does a space X has a simplicial complex structure?

2) Are the homology groups for different simplicial complex structures on X isomorphic to
each other?

In fact the construction of simplicial homology groups can be generalized to avoid these
problems. We now present the construction of singular homology groups for a space. Let X be a
topological space. For any n € N, we still denote by A™ the standard n-simplex. Instead of focus
on simplices as subsets in X, we consider the map from A" to X.

Definition 6.3.1

For any n € N, a singular n-simplex in X is a continuous map

o: A" = X.

As in the construction of simplicial chain complex, we also associated to A™ an orientation.

Then define .

Co(X) = { > mio;

=0

ke N,mg,....mi € Z}.
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The construction of boundary homomorphisms still works here for C,,(X). For any n € N*| we
may express A" with an orientation as an ordered sequence of its vertices

[’Uo,...,vn].

Then for any singular n-simplex o, we define

n

0,0 = Z(*U"ﬂ[UO,..‘,a,...,vn]~

=0

Here we identify a (n — 1)-face [vo, ..., 0}, ..., v,] With the standard (n — 1)-simplex A"~! by
identifying the vertices in order and extending this identification to [vg, ..., ¥;, ..., v,] to AP7!
using linear maps. Then for any n-chain

k
o = ZO’i € Cn(X),
i=1

we define .
5‘n(0') = 2801
i=1
This gives a group homomorphism

For n = 0, we define dy to be the trivial homomorphism from Cy(X) to the trivial group 0. In
this way, we have the following diagram

Onta On+1 On On—1 > 1 o
I O () 2 (X)) =2 O (0 I 2 o (x) 2 0 () — 2 0

A similar computation shows the following fact.

Proposition 6.3.2

For any n € N, we have
(9n o 6n+]_ =0.

Hence (Cy(X))nen with (05 )nen is a chain complex.

Definition 6.3.3

The homology group H,(X) for this chain complex is called the n-th singular homology
group of X.

Compare with simplicial homology groups, singular homology groups are independent of choice
of simplicial complex structure and can be defined for the space even without any simplicial
complex structures. Moreover by considering composition of continuous maps, we may immediately
conclude that singular homology groups are topological invariants. More precisely, if two spaces
are homeomorphic to each other, they have isomorphic n-th singular homology groups for any
n € N.

Of course, there is a price to pay. We consider too many simplices. It is not easy to compute
it directly by definition in general. We will study it more closely in the next several sections. But
before that, let us check some simple cases first.
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Proposition 6.3.4
For any path connected space X, we have Hy(X) = Z.

Proof. Notice that 0y is trivial, hence
Zo(X) = Co(X).

We will show next that all singular 0-simplices in X are homologous to each other. Notice that
AL is a single point set. Hence an 0-simplex is determined by its image. For any p and ¢ two
points in X, we have

o: A" - {p} and 7:A"— {q}.

Since X is path connected, there is a path
a:0,1] - X
with a(0) = p and a(1) = ¢q. We identify [0, 1] with
Al = [vg, v1],

where 0 and 1 are identified with vy and vy respectively. Then « can be considered as a singular
1-simplex in X, and we have
Ja=T1—o0.

Hence 7 and o are different by a 0-boundary, and we have in the homology group

7] = [o].

Hence Hy(X) has one generator [r] and

12

Ho(X) 2 7.

O

Another obvious fact comes from the fact that a continuous map sends a path connected space
to a path connected space.

Proposition 6.3.5

Let X be a topological space with a path connected component decomposition

X = |_|Xa.

a€eQ

Then for any n € N, we have

H,(X) = @ Ha(X).

acl)
Proof. For any n € N, for any singular n-simplex ¢ in X, since A™ is path connected and o is
continuous, there is an index « € €2, such tha
o(A"™) C X,.

Hence we have

Co(X) = @ Cu(Xa).

a€eQ
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Moreover, for any n € N*, any a € Q, and any o € C,,(X,), we have
Ono € Cp_1(X).

Hence we have
and

Hence by the fundamental theorem of group homomorphism, we have

Hn(X) = Zn(X)/Bn(X) = @ Zn(Xa)/Bn(Xa) = @ Hpn(Xa).

ae ac)

Corollary 6.3.6

Let X be a topological space with a path connected component decomposition

X = |_|Xa.

(6119

Then we have

Hy(X)= Pz

a€eQ

The "simplest" topological space is the single point space. In this case, we can explicitly
compute its singular homology groups using definition.

Proposition 6.3.7

Let X be a single point space. Then we have

|2z, n=0,
Ha(X) =1 n>0

Proof. We denote by p the point in X. For any n € N, there is a unique singular n-simplex in X:
on, A" — X
w—p

which is a constant map. We compute the boundary of ¢,,. For any n € N*| we have

(—J)ian,l.

&
S
I

Hence we have
n even,

On—1,
8n0h =
{0, n odd.

Therefore up to isomorphism, the chain complex

Ont1 0, do

Ot C(X) =225 Gy (X) 227 22 0y (30) 2 (X)) 20

—— Cp1 (X)) ——
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can be identified with the following one

id 0 id

Z Z Z Z 7 0
where n is even.
Hence for any n € N*, we have
0, n even,
Zn(X) =
Cn(X), mnodd,
and
0, n even,
B,(X) =
Cn(X), nodd.

Hence for any n € N*| we have

and

Since X is path connected, we have Hy(X) = 0. We can also get it from the above discussion
which shows that
ZQ(X) :Co(X) and Bo(X) = 0.

Therefore, we have
Ho(X) = Co(X) 2 Z.

Remark 6.3.8.
To simplify the notation, we will denote 0 for all 0,,. The meaning will be clear by considering
the context

6.4 Homotopy invariance of singular homology groups
We have seen that the singular homology is invariant under homeomorphisms. In fact, it is also
invariant under homotopy equivalence.
Consider two topological spaces X and Y. Let
f: X—=>Y

be a continuous map. Then for any n € N and any n-simplex in X:

o: A" = X,
we have

foo: A" Y

an n-simplex in Y (see Figure for an illustration).
Hence for each n € N, the map f induces a group homomorphism

fu: Ch(X) = CL(Y)

k k
Znioi — an(f o 0'1').
=1 =1

Here to avoid too many subscription, we use fy for all n € N. The meaning will be clear by
considering the context.
This homomorphism satisfies the following property:
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Figure 6.4.1

Proposition 6.4.1

We have
aof# = f# 08.

Here the 0 on the left hand side is the boundary homomorphism for (C,(Y)),en and the
one on the right hand side is the boundary homomorphism for (Cy,(X))nen

It comes from the observation that f sends an (n—1)-face of an n-simplex ¢ in X to an (n—1)-face
of foo inY. The proof of the fact that fx is a group homomorphism and the proof of the above
proposition are left to readers.

Hence we have the following commutative diagram

2 G (X)L (X)) —S O (X)) 2 S o () —2 oo (X)) 22— 0
lf# f f f f#

(V) Lo (v) — O (V) 2 — L 0 (YY) =2 o (YY) 20
Definition 6.4.2

The homomorphisms f4’s are called the chain maps induced by f.

One important property of the chain maps f4’s is that it builds the connection in the homology
group level.

Proposition 6.4.3

For each n € N, the chain maps fu induces a group homomorphism

Fo Hy(X) = Ho(Y).

Proof. It is enough to show that for any n € N, the map fx sends n-cycles and n-boundaries in
Cr(X) to n-cycles and n-boundaries in C,,(Y") respectively.
Let n € N. For any z € Z,(X), we have

Nf4(2)) = f%(0(2)) = f(0) = 0.
Hence fx(Z) € Z,(Y). Therefore we have a homomorphism
my o fu: Zpy(X) = Z,(Y) = H,(Y) := Z,(Y)/Bn(Y).
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For any b € B, (X), there is a (n + 1)-chain o € C,,1(X), such that
b= do.

We have
f#() = f(0(0)) = O(fx(0)).

Therefore f4(b) € B,(X), and
B, (X) C ker(my o fy).

We have a group homomorphism
fe: Hy(X) = Hp(Y),

which satisfies the following commutative diagram

Za(X) L Z,(V) =2 H(Y)
ﬂxl /
H,(X)

Now we consider two continuous maps
f: X—=>Y and g¢g: X =Y,
homotopic to each other. We should like to show the following theorem.

Theorem 6.4.4
For any n € N, we have f, = g..

Proof. Since f and g are homotopic, there is a homotopy
H:X x[0,1] =Y,

between them, such that Hy = f and H; = g.

i
/\ n
j . ey
An
—_
9

Figure 6.4.2: The relation between fx and gx.

Let n € N. We consider the induced chain maps fz and g4 (see Figure for an illustration).
It is enough to show that for any z € Z,,(X), we have

f#(2) = g4 (2) € Ba(Y).
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For any k € N, Given any k-simplex 7 in X, we can extend this to a continuous map

7: AR % [0,1] = X x[0,1],
(a,t) = (1(a),t).

Notice that A* x [0,1] is a prism. We denote the simplex A* using its vertices
[ug, ..., ug)-

Then we denote the simplex A* x {0} still by
[0y -ves VK]

and the simplex A* x {1} by

[wo, ..., wg],

such that for any 0 < i <k, we have v; = (u;,0) and w; = (u;, 1).
We consider A™ x [0,1] and the map H o7 (see Figure for an illustration).

X x [0,1] Y
Figure 6.4.3: An illustration of the map H o o.

Then the prime can be decomposed in to the union of the following n-simplices whose interiors
have empty intersections:
{[voy ey Vi, Wiy ooy wy] | 0 <4 < n}.

V2 V2

; ! Qvl :

"lwzx\ wWa

Figure 6.4.4: An illustration of the decomposition of the prism A? x [0, 1].

For any n-simplex ¢ in X, we then can define

n

P(J) = Z(_l)lH © 5Il[vo,...,vi,wi,...,wn]'
=0
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This can be extend to a group homomorphism
P:C(X) = Cphyar(Y)

and P is called the prime operator.
One important property satisfied by P is the following identity

gy — fg =00P+ Pod.
To prove this identity, it is enough to check it for one n-simplex. We first compute (9 o P)(0):

(a o P)(J) =0 <Z(_1)2H o b—v|[vo,...,vi,wi,...,wn])

=0

= Z Z(_l)’(_l)]]—[ © 5|[vo,...,;;,...,U,-,w,-,“.,wn]

n
i=0 \ j<i

) ) H e,

i>i

~
w'iv-“ijr“vu}n]

<

On the other hand, we have

n

(Pod)(@) = (=17 Ploly,. ..

7=0
n
-1
=> | D (=1(-y Hoal, & iwiwn]
=0 \ j<i

jyees

1111111

Jj>i
Hence we have
n—1
(8 oP+Po 8)(0) =Ho 5|[wo,...,wn] + Z(_1)2iH o 5|['U0,---,'Ui,'wi+1 ~~~~~ wn]+
=0

n—1
+ Z(_1)2Z+1H 0 a|[U07~"yvi7wi+17'~~7wn] —Ho &‘[UOy“wvn]
1=0

=Ho a:|[wo,...7w”] —Ho 5|[U0,‘..,’U"]
= 9#(0) = f4(0).
For any z € Z,(X), we have
(94 — f4)(2) = (00 P+ P o 0)(z) = 9(P(2)) € Bu(Y).

Hence the theorem. O
Definition 6.4.5
Any chain map L mapping C,,(X) to Cy,1(Y) for any n € N and satisfying

g# —fp=00L+ Lo,

is called a chain homotopy between chain maps fx and gx.

With this theorem, we can show the homotopy invariance of homology groups.
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Theorem 6.4.6

Let X and Y be two spaces homotopy equivalent to each other. Then for any n € N, we
have
H,(X)=H,(Y).

Proof. Since X and Y are homotopy equivalent, there are continuous maps
f:X—=>Y and g¢g:Y —> X,

such that fog ~idy and go f ~idx.
By the previous theorem, for any n € N, we have
feog. = (fog)* = (idY)* = idHn(Y)7
and
g« o fx = (go f)* = (idX)* = idHn(X)'

This implies that both f. and g. are bijective. Therefore both of them are isomorphisms and we

have
H,(X)=2H,(Y).

As an application, we consider contractible spaces and have the following statement.

Corollary 6.4.7

If X be a contractible space, then for any n € N, we have

1z, n=0
H(X)= 4, n>0

Proof. Since X is contractible, it is homotopy equivalent to a single point space. By Proposition
[6-3:7] we have the corollary. O

6.5 Singular homology and subspaces

When studying topological spaces, sometimes the whole space is difficult to study but it has some
subspace which is easy to study and the quotient space is also easy to study. Sometimes it also
happens that a space is difficult to study, but can be viewed as part of a space easy to be studied.
Hence studying homology groups of a space relative to it subspace would be useful in these cases.

Let X be a topological space and A be a non-empty subspace in X. In order to make the
homology machinery work, we assume that A has an open neighborhood U in X, such that A is
a strong deformation contraction of U. We define the relative chain complex in the following way.

For any n € N, we define
Cr(X,A) :=Ch(X)/Cpr(A).

Hence we have the short exact sequence

00— Cn(A) — Co(X) 2= Cp (X, A) —— 0

where 7 is the inclusion map and pr is the quotient map.
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Notice that 0 maps an n-chain in A to an (n — 1)-chain in A. Hence for any n € N, the
boundary homomorphism for C,,(X) induces a homomorphism

91 Coi1(X, A) = Co(X, A).

Then we have a chain complex
o 17} 17} 17} o 1%}
—=C1 (X A) — O (X A) —— - —— C1(X,A) —— Cp(X,A) —— 0

The last 0 from Cy(X, A) is unique trivial homomorphism to the trivial group. Since the identity
element in C,(X) is sent to the identity element in C, (X, A), hence we have

dod =0,
and (Cp, (X, A),0)nen is a chain complex.

Definition 6.5.1

For any n € N, the homology groups H,, (X, A)’s associated to this chain complex is called
the n-th homology group of X relative to A.

For any n € N, for any o € C,,(X), we denote

a = pr(a).

Definition 6.5.2

For any n € N, for any o € C,,(X), we call a an n-cycle relative to A, if
da € Cp_1(A),
and we call o an n-boundary relative to A, if there is an (n + 1)-chain g € C,11(X) and
an n-chain v € C,,(A4), such that
a=0B+".

For any n € N, by the definition, we have

Zn(X,A) ={a e Ch(X,A) | a € Cp(X) is an n-cycle relative to A},
B,(X,A) ={aecCh(X,A) | acC,(X) is an n-boundary relative to A}.

and then

H,(X,A):=Z,(X,A)/B,(X,A).

Another observation is that the map ¢ and pr commute with 0. In particular, we have the
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following commutative diagram which extends the above short exact sequence to the whole chain:

0 0 0

2 O (A) — 0 (A) — 2 O (A) — 2

~~~*8>Cn+1(X)—>Cn(X)—8>Cn_1(X)B*>~~
pr pr pr

o O (X, A) L O (X, A) — 2 O (X, A) L

Definition 6.5.3
The above diagram is called a short exact sequence of chain complex.

We would like to show the following long exact sequence which relates homology groups H,(X)’s,
H,(A)’s and H, (X, A)’s. To distinguish the homology in X and that in A, for any « € Z,,(A4),
we will denote by [a]4 the homology class in H,,(A), and by [a]x the homology class in H,(X).

Theorem 6.5.4

There is a long exact sequence

0

2 Ho1 (A) = Hyyy (X) =25 H,y (X, A) H,(A)

P S H (X, A) 20,
where the partial map is defined as follows: for any n € N,
0: Hy(X,A) = H,_1(4),
[@] — [0a]a.
Proof. First we have check that the map
0:Hy(X,A) = H,_1(4),

is well defined.

Let a € C,(X) be a relative n-cycle, then we have
da € Cp_1(A).
Since as an n-chain in X, we have
D(0(c)) = 0 € Co_s(A),

hence da € Z,,_1(A). Hence the map is well defined.
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Notice that we do not know if da € B,,_1(A) is true, since « is in C,,(X), not necessary in
Cr(A).
Now we try to show the following three equality

Im 0 = ker i,
Imi, = kerpr,

Impr, =kerd

We firs consider for any n € N
Hoi1 (X, A) 2 H,(A) — Hy(X)
Im 9 C keri,: Let [a] € Im 9, then there is a relative (n + 1)-cycle

ﬂ € Cn+1(X)7

such that

[a]a = 9[B] = [95]a.

Now we consider the n-chain 98 in C,,(X). Since

Jp € Bn(X),

we have
i«([a]a) = [a]x = [08]x = [0]x.

Hence

[a]a € keriy,
and we have

Im O C keri,.
Im 9 D keri,: Let [a]a € keri,, we have

[a]x = [0]x.

Hence a € B,(X), or equivalently, there is an (n + 1)-chain 5 € Cy,11(X), such that
a = 00.
We consider 8 € Cy,41(X, A). Since
0 =a€ Z,(A) C Cr(A),
the (n + 1)-chain S is a relative (n + 1)-cycle, hence
B € Zni1(X, A).

We then have

[a]a = [0B)a = O([A]) € Im d.

Hence
Im O D keri,.

Now for any n € N, we consider

s

Hp(A) —2 H,(X) —= H, (X, A)
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Imi, C kerpr,: Let [a]x € Imi,, then there is an n-cycle

such that

[Vx = [elx,
or equivalently

a—7v € By(X).

Therefore, there is a (n + 1)-chain 8 € C,,41(X), such that

a—vy=0p.
Hence

a=098+n,

which shows that « is a relative n-boundary. Hence
@€ B,(X,A),

and

Hence we have
lo]x € kerpr,,

and
Imi, C kerpr,.

Imi, D kerpr,: Let [a]x € kerpr,, we have
@ € B,(X,A),

and « is a relative n-boundary. There are an (n + 1)-chain 8 € C,,1(X) and v € C,,(4), such
that
a=0B+"7.
Hence we have
[]x =[x = ix([7]a) € Imi,.

Therefore we have
Imi, D kerpr,.

Finally for any n € N, we consider
Hypi1(X) — Hoi1 (X, A) 2 H,, (A)
Impr, C kerd: Let [@] € Impr,, then there is an (n + 1)-cycle

AS Zn-‘rl(X)a

such that

Hence
a—7€ B,(X,A),

or equivalently a — v is a relative (n + 1)-boundary. Hence there is an (n 4 2)-chain 8 € Cy, 42,
and an (n 4 1)-chain n € C,,41(A), such that in Cj,41(X), we have

a—y=08+n.
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Now we have
Oa — 0y = 0n € B,(A).

Hence

[0ala = [07]a.
Notice that 7 is an (n + 1)-cycle, hence 9y = 0 in C,,(A). Therefore we have
Ola) = [0a]a = [0]a.
and
[@] € ker 0.

Hence we have
Impr, C kero.

Impr, D kerd: Let [@] € ker 0, then
[0a]a = [0]a.
Hence O« € B,,(A) and there is an (n + 1)-chain v € C,,11(A), such that
oa = 0.
Therefore
a—7 S Zn"rl(X)v

and we have
pr,([a —1]x) = [0 =] = [a].

Therefore we have
Impr, D kero.

O

Another important tool when study relative homology is called the excision theorem. If one
consider the homology of X relative to a subspace A, then naively, taking out a part of A should
not effect on the relative homology groups. The excision theorem shows that it is indeed the case.
There are two equivalent versions of this theorem.

We consider the subspace U of a space X. Let V' be a subspace of X such that

VcUuU.

Theorem 6.5.5 (Excision Theorem I)

For any n € N, we have
H,(X,U)2H,(X-V,U-V).

Equivalently, we can state it in the following way. Let A and B be two subspaces of X such that

X =AUB.



6.5. SINGULAR HOMOLOGY AND SUBSPACES 229
Theorem 6.5.6 (Excision Theorem IT)

For any n € N, we have
H,(A,ANnB)= H,(X,B).

Remark 6.5.7.
To see the equivalence, we can take take U = Band V = X \ A.

We will proof the second version. Before giving the details, let us first have a look at the situation.
Notice that A C X and B C X are both subspaces, hence any simplex in A or in B is also a
simplex in X. Therefore for any n, the abelian group C,,(A) and C,,(B) are two subgroups of
Cr(X). We define

Cn(A+ B):= {ijiai | o; is an n-simplex in A or in B} )
i=1

In fact, this is just the subgroup of C, (X) generalized by C,,(A) and C,(B). Since C,(X) is an
abelian group, we can also rewrite it into

Cn(A+ B) =C,(A) + C,(B).
Another subgroup of C,,(X) is given by considering simplices in A N B. We define
m
Cn(ANB) := {Z kio; | o; is an n-simplex in AN B} )
i=1

Since all subgroups of an abelian group are normal subgroup, by the fundamental theorem of
group homomorphisms, for any n € N, we have

Cn(A)/Cr(ANB) = Ch(A+ B)/Cyh(B),

or equivalently, we have
Cn(A,ANB)=C,(A+ B,B).

Moreover, by the definition of the groups involved here, this isomorphism also induces isomorphism
between the subgroup of relatives cycles and the subgroup of relative boundaries:

Zw(A,ANB)=Z,(A+B,B) and B,(A,ANB)=B,(A+ B,B)
The details are left to readers to check. With these facts, we have the following observation:
Observation 6.5.8
For any n € N, we have
H,(A,ANnB)= H,(A+ B, B).
Hence it is enough to show for each n € N the following isomorphism
H.(A+ B,B)= H,(X,B).

The difference between two sides is this: for H, (X, B), we use simplices in X, and for H,(A+ B, B)
we use simplices in A or B. In the other words, if the above isomorphism holds, it means using
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"smaller" simplices, we obtain the same homology group for each n € N. This will be the key
point in the proof of the excision theorem.

The main tool used here is the barycentric subdivision for an Euclidean simplex. We will
apply such subdivision on A™ to subdivide simplex in X. Notice that by hypothesis, we have

X =AUB.

Hence for any n € N and any n-simplex o in X, if the preimage of ¢ ~1(A) and ¢~1(B) form an
open cover of A™. Since A™ is compact, there is an open cover of balls of A™ such that the image
of each ball is either in A or in B. Hence all we have to do in this step is to subdivide A™ into
simplices with diameter uniformly small enough.

Let us first recall the varycentric subdivision. Let o be a Euclidean n-simplex determined by
n + 1 points v, ..., v, € R™ (m > n). Then the barycenter of ¢ is given by

Vg (vo + -+ vy).

:n—|—1

If 7 is a k-face of 0 with & < n, we denote 7 < . Then in a barycentric subdivision, we first
take the barycenters of all faces of o and v,. Then we subdivide ¢ into the union of Euclidean
n-simplices, each of with can be written as

[Vrgy ees Ury 1 Vo]
such that the faces 7g, ..., 7,1 satisfy
TO< " < Tp-1 <O.
We denote by d the diameter of ¢ and
d" = max{n | n is an n-simplex obtained from the barycentric subdivision of o}.
Then we have the following comparison.

Lemma 6.5.9

We have
n

/
< .
d _n—i-ld

Proof. The diameter of an Euclidean simplex is given by its longest edge (1-face).

We use induction on n. Notice that for n = 0, we have 0 = 0.

Assume that the inequality holds for k-simplicies with 0 < k < n — 1 for some n > 0, then let
7 < 7’ be two faces of 0. Without loss of generality, we may assume that

T = [vo, ooy Ug] < [V, .o,y =7

with k <1 < n.
If I < n, then

Al <

||UT — U7
For the case [ = n, notice that

+1 .
—|l< 22 — v <i<
o —_ Py
[|lv vr| n max{||v, —v;]| |0 <i <k}

=max{||lv, —vi|| | 0 <i <k}
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On the other hand, for each i, we have

1 n+1 1
Vo — U = (vo+ -+ wv,) — viziz(vofvi).

n-+1 n+1 n-+1 4~
J#i
Hence we have
llve —vi]| < T max{||lv; —v|| |0 < j<n,j#i}= n+1d1am(a) = o 1d.

Hence we have

n
o Ur < ——d.
llos = vrl] < =

As a conclusion, we have

We then have the following corollary.

Corollary 6.5.10

Given any Euclidean n-simplex o, for any € > 0, there is an m € N*, such that after taking
m times barycentric subdivision, all simplices obtained have diameter smaller than e.

Proof. Let d denote the diameter of . Let m € N* be such that

n m
d .
<n+1> <€

By the previous lemma, applying m times barycentric subdivision, all n-simplices obtained have
diameter smaller than e. O

For any n € N, we consider the barycentric subdivision of A™, and denote the resulting
Euclidean n-simplices by

TQy eeey Tk

There is a chosen orientation on A™ for the singular homology. For each 7;, we consider a linear
homeomorphism

fiSAn%Ti

such that the induced orientation on 7; is the same as the one given by considering 7; as subspace
of A™. We then define for any n-simplex in X, the following n-chain

k
S(o) = Zgofi
i=0

Then S can be extended to a group homomorphism
S:Ch(X) = Cn(X),

for any n € N. We then have the following proposition.
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Proposition 6.5.11

For any n € N, for any ¢ an n-chain in C,,(X), there is an m € N* such that
S () € C,(A+ B),

where S(™) = So...08.
—_——

m

Remark 6.5.12.
It should be noticed that here the constant m depends on o.

Another observation on S is that it commute with the boundary homomorphism.

Lemma 6.5.13

We have
Sod=008.

Now we would like to show that for any n € N, for any o € Z,(X), there is an n-cycle
o' € Z,(A+ B), such that
o —o' € B,(X).

In particular, we would like to show
o —S™(s) € B,(X),

where m is given by the previous proposition. For this purpose, we start construct a chain
homotopy T between the chain maps Id and S, where Id is the identity map.

The construction of T is inductive. To make it clear, we discuss what happens to the chains in
Euclidean spaces given with simplices defined by linear maps from standard simplices to Euclidean
spaces.

Consider the Euclidean space R™. Let n € N. we denote by L, (R™) the abelian group
of singular n-chains given by singular linear n-simplices, i.e. maps from A™ to R™ which are
restrictions of linear maps.

For any linear n-simplex ¢ in R™, denote

A" = [vg, ..., Up].

Choose b € R™, then we have an linear (n + 1)-simplex b(o) given by mapping

A = [ug, ..., Up 1]

to R™ linearly and sending ug to b and u; to o(v;—1) for i > 0.
This gives us a homomorphism

b:L,(R™) = L1 (R™)
Lemma 6.5.14

We have
bod+0ob=1d.
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Proof. For any o € L,(R™) a linear n-simplex, we have

n n

b(9o) = ;(*1)%(0\[vo,,_@,“_m) = ;(*1)%(0)|[u0’,,,,17i;,m’un]
On the other hand
n+1 )
Ob0) = S (V@) o O i
i=1
Since b(0)|u,,....un.1] = 0 the lemme is proved. O

Lemma 6.5.15

Let o be an Euclidean n-simplex with b its barycenter, then we have
S(0) = b(S(99)),

where S is the barycentric map for the chain complex (L, (R™))pen.

Now we consider the following commutative diagram

o — 2 L ®™) 2 LR L S L R 2 Ly(R™) 20

15] m o my O 9 m 9 my 9
o2 LR 2 LR L 2 L (R —2 s Lo(R™) L 0

Now we define the chain map
T, : L,(R™) = L,4+1(R™)

inductively.

For n = 0, we define Ty : L,(R™) — Ly,+1(R™) by sending each 0-simplex o to b, (o) where
b, is the barycenter of o. For example, if o(vg) = p € R™, we have b, (o) a linear map from
[vg,v1] to R™, such that o(vy) = o(v1) = p.

Then for any n € N, for any n-simplex o € L, (R™), we define

T(0) = by(o —T(0(0))),
where b, is the barycenter of o. Then we have the following proposition

Proposition 6.5.16

We have
Id-S=To0d+0d0oT.

Proof. We show it by induction on n.
When n = 0, for any 0-simplex o, we have do = 0. Consider

(0oT)(o)=0—0=1Id(o) — S(o) =0.

Assume that n € N and the identity holds for any k with 0 < k < n — 1. It is enough to show
it for an n-simplex o € L, (R™), we have

o—S(o) =T(0(c)) + (T (0)).
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Notice that
A(T(0)) = by (0 —T(9(a))))

=(Id = b, 00)(c — T(9(0)))

=0 —T(9(0)) = bs(00) + (by 00 0T 0 0)(0)

=0 —T(3(0)) — by (30) + (by o (Id — S — T 0 9))(do)
=0 —T(9(0)) — by (30) + by (Do) — by (S (Do) — T(OP )
=0 —T(9(0)) — bs(5(90))

=0—-T(9(c)) — S(o)

Here the second identity comes from

bod+0o0b=1d,
the fourth identity comes from the induction, the sixth identity comes from d?) = 0, and the last
identity comes from

O

Now we consider simplices in X. Given any n-simplex ¢ in X, whatever happen to A™ (as
an linear n-simplex) could be translate to o by taking composition. Consider the following
commutative diagram

(X)L (X)L — L o (X) =2 (X)) L0

% 0 (X)L (X)L L 0 (x) =2 Cp(x) 20

For any n € N, we also have
T:Ch(X) = Cpry1(X).

The relation
Id-—S=To0d+00T,

still holds.

Proposition 6.5.17

For any n € N, for any o € Z,,(X), for any m € N*, we have
[ (@)] = [a] € Hp(X),

where S(™) = So...085.
—

m

Corollary 6.5.18

For any n € N, for any « € Z,,(X), there is an n-cycle 8 € Z,,(A + B), such that

[a] =[] € Hn(X).

Hence we have the following theorem
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Theorem 6.5.19

For any n € N, the homomorphism
H,(A+ B) = H,(X),

induced by the inclusion Cp,(A 4+ B) — Cy,(X) is an isomorphism.

Remark 6.5.20.
Roughly speaking this theorem says that to construct the homology group, we can use only small
simplices. This theorem can be extended to one for an open cover {Ug, }ocq of X

Now we consider the relative homology.

Lemma 6.5.21

For any n € N, for any @ € Z,,(X, B), then for any m € N*, we have

5(m)(a) € Z,(X, B),

and [S(™)(a)] = [@] in H,(X, B) where S(™) =So...08.
N—_———

m

Proof. Let a be a relative n-cycle, then we have

Oa € C,_1(B).
Since So0d = 0o S, we have

(S (a)) = S (9a) € Cp_1(B).
The previous discuss shows that
a—S(a)=0(T(0)) + T(0c).

By the definition of T, since da € C,,_1(B), we have

T(0a) € C,(B).
Hence o — S(«) is a relative boundary, and we have

[@] = [S(a)].

Using induction, we can show that for any m € N*, we have

@) = [5™(0).

Corollary 6.5.22

For any n € N, the embedding
ix : Hy(A+ B,B) —» H,(X, B)

is surjective.



236 CHAPTER 6. SIMPLICIAL AND SINGULAR HOMOLOGY
Lemma 6.5.23
The embedding i, is also injective.

Proof. For any n € N, let a € Cy,(A + B) be a n-cycle relative to B. Hence we have
Oa € Cp_1(B).

Assume that
i+([@a+5,8) = [0]x,5-

Then a € C,,(X) is an n-boundary relative to B. Hence there is an (n + 1)-chain v € C,,11(X)
and 8 € C,(B), such that
a=0v+p.

Choose m € N* such that SU™ () € C,,11(A + B), then we have
S (@) = a(S"™ (7)) + ST (B)

which is an n-boundary relative to B in C,,(A + B). Notice that

[@avp,B =[S (0)|a+B.B

in H,(A+ B, B). Hence

[@a+B,B =[0latn,B € H(A+ B, B).
Therefore the homomorphism i, is injective. L

Combining all discussion above, we proved Theorem [6.5.6]

6.6 Homology of quotient spaces

Topologically, if we do not care about the information in some subspace, we could also consider
the quotient space. In this part, we would like to consider a topological space X and its subspace
A, and compare the following two homology groups for each n € N:

Ho(X,A) and H,(X/A).

For technical reason, we assume that A admits a neighborhood U in X, such that A is a
strong deformation retraction of U.

The relative homology groups are also homotopy invariant. More precisely, let X and Y be
two spaces. Let A and B be subspaces of X and Y respectively. We consider the two pairs (X, A)
and (Y, B). A morphism between the two pairs denoted by

f(X,A4) = (Y, B),

is a continuous map
f: X =Y,

such that f(A) C B. Two morphisms f, g between (X, A) and (Y, B) are said to be homotopic
to each other if there is a continuous map

H:Xx[0,1] =Y,

such that Hy = f, Hy = g, and for any 0 < ¢ <1, H,(A) C B.
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A morphism between pairs (X, A) and (Y, B) induces the following commutative diagram for
any n € N:

Cu(X) —E s C(Y)

Lo,

Cn(X,A) —— C,(Y, B)

where the two vertical arrows are given by the quotient maps. This homomorphism fx between
the two relative chain groups then induces a homomorphism between relative homology groups:

fo i Ho(X, A) — H,(Y, B).

Proposition 6.6.1

If f and g are two homotopic morphisms between pairs (X, A) and (Y, B), then for any
n € N, we have
f* = 9*7

for the relative homology groups.

The proof is essentially the same as the one for the absolute homology groups. We leave it as an
exercise.

Let B be a subspace of X containing A. The inclusions:
AcCcBcCcX
and the morphisms between pairs:
i:(B,A) = (X,A) and j:(X,4)— (X,B).
These maps induces an exact sequence for any n € N
05 Cu(B, A) —% 5 (X, A) —2* 5 C(X, B) —— 0.
The exactness comes from again the fundamental theorem of group homomorphism:
(Cn(X)/Cn(A))/(Cn(B)/Cn(A)) = Cpn(X)/Cn(B).

Similar to the previous case, we have the following long exact sequence relating H, (X, B),
H,(X,A)and H,(B, A).

Proposition 6.6.2

There is a long exact sequence

e Hy 1 (B A) s Hy (X, A) — T Hy (X, B) = Hy (B, A) —— -

e L H(X,B) 0
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Then back to out situation, since A is a subspace in X admitting an open neighborhood U
which has A as a strong deformation retraction. Using the homotopy invariance of the relative

homology, we have
H,(UA)=H,(A,A) =0.

As a consequence of this fact with the above long exact sequence, we have the following proposition.

Proposition 6.6.3

With the same notation X, A, U as above, for any n € N, we have

H,(X,A) = H,(X,U).

Proof. Since for all n € N, we have
H,(U/A) =0,
from the above long exact sequence, for each n € N, we have
0 —% Hy (X, A) —2 Ho(X,U) -2 0.
Therefore, we have the isomorphism:
H,(X,A) =2 H,(X,U).
O

The last ingredient is again a consequence of the long exact sequence of the relative homology.

Proposition 6.6.4

For any point p € Y in a topological space Y, for any n € N*, we have
Hy(Y,p) = Ho(Y).

For n = 0, the group Ho(Y, {p}) is generated by simplices in the path connected components
of Y not containing p.

Proof. By Theorem [6.5.4] we have the exact sequence for any n > 2

0= H,({p}) = Ho(Y) — H,(Y, {p}) — H,_1({p}) 0.

Hence we have
H,(Y,p) = H,(Y).

For n = 0 and 1, we consider
02 Hy({p}) =— H\(Y) —= Hy(Y,{p}) —2— Ho({p}) —— Ho(Y) —= Hy(Y, {p}) Z— 0.

Since
iv : Ho({p}) = Ho(Y')
is injective, the O on its left has trivial image, and we have
H(Y) = Hi(Y, {p}).

The last part of the statement for Hy(Y,{p}) is given by the injectivity of i, in the following
exact sequence

T

Ho({p}) Ho(Y) —25 Ho (Y, {p}) Z—0
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Next, we would like to show the following relation.

Theorem 6.6.5

Let X, A and U be as above. For any n € N, we have

H,(X,A) = H,(X/A, AJA).

Proof. Let V be a subspace in U, such that
AcVvcVcu.

We use the following sequence of isomorphisms:

Hn(XvA) = Hn(Xv U) = Hn(X - V, U - V)
[, (X/A—V/AU/A—V/A) = H,(X/A,U/A) = H,(X/A, AJA).

We explain these isomorphisms in order.

The first one is given by Proposition [6.6.3

The second one is given by Excision Theorem [6.5.6]

The third one is given by Proposition the homotopy invariance of relative homology,
considering the following morphism

Fi(X-V,U-V) > (X/JA—V/AUJA—V/A).
which is given by a homeomorphism f : (X — V) — (X/A — V/A), hence is homotopic to the
identity morphism between the pairs.

The fourth one is again given by Excision Theorem.
The last one is given by Proposition [6.6.3 O

Corollary 6.6.6

Let X, A and U be as above. For any n > 0, we have

Ho(X, A) = H,(X/A).
Proof. The is given by considering the above theorem and Proposition O

6.7 Mayer-Vietoris Sequences and some applications
Let X be a topological space. Let A and B be its subspaces, such that
AUuB=X.
Excision Theorem tells us that the n-th homology group H,(X) of X can be define use only

n-cycles in A or in B.
By considering inclusions of subspaces, we have the following commutative diagram

A

AnB-2

1

J2
B—
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We also have the inclusion of pairs
t: (A, AN B) — (X, B).
From these, we have the following relation between the two long exact sequences

S Hy (AANB) 2 H (AN B) Y H(A) — S Hy (A, AN B) 2

lL* l(]é)* l(h)* llz*

-~-—>Hn+1(X,B)a—>Hn(B)&>Hn(X)i>Hn(X,B)B—>~-

Notice that the map ¢, is isomorphism by Excision Theorem.

We also have an short exact sequence fo chain complex

00— Co(ANB) —25 Co(A) @ Cn(B) —2— Cr(A + B) —— 0.

where

p:Ch(ANB) = C,(A) & Cn(B) and P :Cp(A) & Cp(B) = Cp(A+ B)
a— (a, ) (,B)~a—p .

This induces a long exact sequence which is called the Mayer- Vietoris sequence.

Theorem 6.7.1

We have a long exact sequence

e S HA(ANB) -2 Hy(A) @ Hoy(B) —2s Hy(A+ B) —° H, (AN B) &

Y Hy(A+B) 20

where
0:H,(A+B)—> H,(A+B,B) - H,(A,ANnB) - H,_1(AN B),

and 0 = 0o&, opr,, with £ the natural isomorphism between C,,(A+ B, B) and C,,(A, ANDB).

Proof. We first show that ¢ is well defined. For any [z] € H,(A + B), we have an n-cycle
z=x+y€ Z,(A+ B),
with € C,,(X) and y € C,(Y). Hence we have
0=0z =0z + 0y.

Therefore, we have
Oxr=—0y € Cph,_1(ANB).

Since 9(da) = 0, we have
or € Zn—l(A n B)

Hence we have
0:H,(A+B) —» H,(A+B,B) - H,(A/AnB) — H, 1(ANB),

[t +ylagp [@|ayB,B — [T]a,anB — [0x] AnB-
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Now we try to show the following three equality

Im p, = ker 1,
Imy, = kerd
Im § = ker ¢,

We first consider

Ho(ANB) 25 H,(A) @ Hp(B) —= H,(A + B).

Im ¢, C kerp,: Since 1 o p = 0, we have

Yo = (Vo) =0,

hence
Im g, C ker,.

Im ¢, D kere,: For any ([z]a, [y]B) € Hn(A) @ ker )., we have
[z —yla+s = [0la+s.

Hence
x—y € By,(A+ B),

or equivalently, there is an (n + 1)-chain z; € Cy41(A) and y; € Cy11(B), such that
x—y=0(x1+y1).

Hence we have
a=xz—0xr1=y+0y € C,(AN B).

Since z € Z,(A), we have

Oa =0z = 0.
Hence
a € Z, (AN B).
We have
e«([o]anp) = ([z]a; [v]B)-
Hence

Im @, D ker,.

Next we consider

Ho(A) @ Hy(B) —2 Hoy(A+ B) —° H,_,(AN B)

Im 4, D kerd: Let z € ker §, hence we have x € C,,(A) and y € C,,(Y), such that

z=x+Y
dx+y)=0
[6(z +y)]ans = [0]anB

By the definition of §, we have

[0ylang = [0z]ans = [6(z + y)]ans = [0]ans-
Hence x € Z,(A), —y € Z,(B), and we have

¥u([2la; [=y]B) = [z + ylars.
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Hence we have
Im, D kerd.

Im ¢, C kerd: For any ([x]a, [y]ls) € Hn(A) & H,(B), we have
(0 o) ([x]a, [y]B) = 6([r — y]atB) = [0]anB = [0]anB-

Hence
Im, C kerd.

Finally, we consider
Hy(A+B)—5 H, 1(ANB) -2 H,_1(A) & H,_1(B)

Im§ C ker ¢,: For any [z]a+p € H,(A+ B), there is an n-chain « € C,,(A) and y € C,,(B), such
that z = = +y. We have

[z +ylayp) = [02]ans = [-0Y]anB

Hence
@ (6([z + ylayp)) = ([0z]a, [-0y]B) = ([0]4, [0] ).
Imd D ker¢.: Let [z]anp € ker ¢, then

A Bn_l(A) and z € Bn_l(B)

Hence there is an n-chain z € C,,(A) and y € C,,(B), such that

z = 0z = Jy.
Let w=x —y € C,(A+ B), we have
ow=z—2z=0.
Hence
w € Zn(A+ B).

We consider
d([w]asr) = [02]ans = [2]anB-

In the proof of Excision Theorem, we show the following two isomorphisms
n: Hy(A+ B) — H,(X)
[a]avp = [a]x

and
p:H,(A+ B,B) —» H,(X, B)

[@a+B,B — [a]x,B-

Therefore the previous exact sequence can be rewritten as the following one

3 Hy (AN B) =2 Hy(A) ® Hy(B) 2 Ho(X) —2 Hy_ (AN B) &

P

» Ho(X)

where

§: H,(X)— H,(X,B) — H,(A,ANB) — H,_1(AN B),

and § = d ot opr,.
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Applications:

Next we give some applications of Mayer-Vietoris sequence. The first one is about the computation
of the homology group of spheres.

Proposition 6.7.2

For any k,n € N, we have

7Z8Z, k=n=0,

ez k=0,n>0,
A" =4 4 k=n>0
0, k+n,k#0.

Proof. Since S = {x, *} has two points, hence we have

Z&®Z, k=0
Hi (S%) = Hy,({x}) @ Hp({}) = ’ .
((8°) 2 Hi({+) © Hu({+) {07 o
In the following we consider S™ with n > 0. Since S™’s for n > 0 are all path connected, we have
HO(Sn) = Za

for all n > 0. Hence in the following we also consider only k > 0.
Denote NV and S the normal pole and south pole of S™, and consider

A=S"\{N} and B=5"\{S}
We have the following homotopy equivalence

A~B~D" and ANB~S"'
We consider the following part of the Mayer-Vietoris sequence

Hu(A) & Ho(B) - Hy(S™) —— Hy 1 (AN B) — Hy_1(A) & Hy_1(B)

Since n > 0, we have

H(A) = Hy(B) = Hy(pmy = & F =0
RV R T R T o, k>0

For k£ > 1, the above sequence becomes

02 Hy(5™) —2 o Hy 1 (S &0

By the exactness, we have the following isomorphism
Hk(Sn) = kal(snil).

For k = 1, we consider the following part of the long exact sequence

Hi(A) & Hy(B) IR Hy(S™) —2— Hy(AN B) —Z% Hy(A) & Ho(B) TN Hy(S™) ——0

If n = 1, equivalently, we have

5

0" Hy(SY) 7673767 zZ 0
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Since the exactness at Ho(S!) (the Z on the most right) shows that
e 2T — 7,

is surjective. Hence we have ker ¢, = Z. This can be obtained by considering both Z & Z and Z
as Z-free modules. The kernal of v, is a submodule of Z ® Z, hence a Z-free module of rank at
most 1. If it has rank 2, then the image should be 0 or a torsion module. If it has rank 0, then
the image of ¥, should be Z & Z. Hence both are impossible. Hence it should be rank 1, i.e.
isomorphic to Z as Z-module and as group as well.

The exactness at Z @ Z on the right shows that

Imp, =kery, = Z.

A similar reason as above shows that
ker p, = Z.

The exactness at Z @ Z on the left shows that
Tm o = ker g, 2 Z.
The exactness at H(S') shows that §is injective. Hence as a conclusion, we have

H'(SY) = 7.

If n > 1, the exact sequence becomes

Hy(A)® Hi(B) s Hy(S") > 2202 22— 0

A similar discussion using the exactness at each position from the right to left shows that
H,(S™) =0.

With all information obtained above, if k£ > n, we have

1

Hp(8") =2 Hp_1 (S"71) =+ =2 Hy_(S°) 2 0.

If £ < n, we have

1

Hk(Sn) ngfl(Sn_l) ng(Sn_k) >~ 0.

If K =n, we have
H,(S")=...=~ H|(S') =7

O

Using this result, we can get some results which are closer to our initial goal: classification
of spaces in a topological way. This also shows that the homology groups can be used for this
purpose.

Corollary 6.7.3

Let m and n be two distinct natural numbers.
1) The sphere S™ is not contractible.

2) The spheres S™ and S™ are not homotopy equivalent.
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Proof. These are a consequence of invariance of homology groups.
For m = 0, the sphere S° is not path connected, hence is not contractible. For m > 0, we have

H,(S™) =Z,

which is different from the m-th homology group for a contractible space which is trivial. Hence
S™ is not contractible for any m.
For m # n, without loss of generality, we may assume that m < n, then

H,o(S™) 2202 Z = H,(S").

Hence S™ and S™ are not homotopy equivalent to each other. O

Remark 6.7.4.
Therefore spheres in different dimension are not homeomorphic to each other.

The above result may be not strange, but it seems impossible to prove it directly by simply
constructing maps and playing with definition. With this result, we can also compare Euclidean
spaces which seems also a mission impossible at the first glance.

Corollary 6.7.5

For two positive natural numbers m # n, the spaces R™ and R™ are not homeomorphic to
each other.

Proof. Assume there is a homeomorphism
f:R™ = R™
This induces a homeomorphism
fRTA{O} = R"\{f(O)},

where O is the origin of R™.

Notice that R™ \ {O} is homotopy equivalent to S™~! while R™ \ {f(O)} is homotopy
equivalent to S”~!. Hence we have S™~! and S”~! homotopy equivalent to each other, which is
a contradiction. O

In certain case, we can also show certain properties of continuous maps by comparing homology
groups.

Corollary 6.7.6 (Brouwer Fixed Point Theorem)
Let n € N\ {0,1}. Any continuous map from D™ to itself has a fixed point.

Proof. If not, there is a continuous map
f: D" — D",

has no fixed point.
Then for any p € D?, we have

f(p) #p.

We consider the ray
R(p) = {f(p) +tlp— f(p) | t € Rxo},
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and denote
r(p) = RN 5™
This gives a map
r: D" — S

which is identity on S™~! and can be used to show that S”~! is a deformation retraction of D".
Hence for each m € N, we have

H,,(D™) = H,,(S"™1),

which is impossible, since
H, ((D")=0%Z>=H, (S").

6.8 Equivalence between simplicial homology and singular
homology

Let X be a topological space with a simplicial complex structure. For simplicity, we assume
that X is finite dimensional, i.e. there is an upper bound on the dimension of simplices in the
simplicial complex structure.

One could define the simplicial homology groups with respect to this simplicial complex
structure and the singular homology groups. We denote by (C2(X),d?),, the simplicial chain
complex, and by (C,,(X),9)nen be the singular chain complex. Notice that a simplex in the
simplicial complex is also a singular simplex, hence for any n € N, we have a natural map

on OB (X) = Cp(X).

Moreover taking the boundary of a simplex in a simplicial complex is defined in the same way as
when considering it as a singular simplex. Hence these (¢, )nen are chain maps between the two
chain complex:

A (X)L a2 e () B er () 0

i O (X)L (X)) — 5 (X)L 2 Oy(x) 20

Hence we have the homomorphisms in the homology groups level: for any n € N,
(@) = H'(X) = Ho(X).

To compare the two kinds of homology groups, it is enough to understand these homomorphism
(¢n)s’s. In particular, we would like to show the following theorem.

Theorem 6.8.1

For any n € N, the group homomorphism defined above
(Pn)s : HnA(X> — Hy(X),

is an isomorphism.
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Remark 6.8.2.

Before going into the proof, let us first make some remarks. First, in order to let this theorem
make sense, the space X should be able to be equipped with a simplicial complex structure which
is not true for any topological space. On the other hand, the definition of singular simplices are
more flexible, since we only consider continuous maps.

Secondly, given a space with a simplicial complex structure, this theorem says that the
simplicial homology and the singular homology are the same. Notice that the singular homology
depends only on the topological structure on X, and is independent of the choice of any additional
structure on it. Moreover, it is a immediate consequence of its definition that the singular
homology groups are invariant under homeomorphism. Previously we have shown that it is even
homotopy invariant. On the other hand, the simplicial homology groups depends on the given
simplicial complex structure. From the previous discussion on the triangulations of surfaces, we
have seen that the simplicial complex structure may be not unique. Hence the above theorem
shows that the simplicial homology is independent of choice of simplicial complex structure.

Lastly, the singular homology groups is independent of choice of simplicial complex structure,
but the cost is that we have to consider lots of singular simplices. The chain groups are too large,
which makes the direct computation impossible. Although we have the homotopy invariance, the
long exact sequence for relative singular homology and the Excision Theorem, it is still quite
complicated to do computation. On the other hand, the simplicial homology are defined in a
much simpler and geometric way, which makes the direct computation doable. Remember one
reason that we would like to study the homology group is to use it as an invariant to tell different
spaces.

The tool used in the proof is the relative homology. The definition of relative homology can
be extends to the simplicial homology naturally. More precisely, for any A C X a A-subcomplex,
we can define for any n € N, the group of relative n-chains

O (X, 4) = O (X) /R (A).

Then the relative simplicial homology H2 (X, A) is the homology groups for the relative simplicial
chain complex (C2(X, A),d)nen. We also have the long exact sequence for relative simplicial
homology in this case. In particular, the above relation between the two homology groups induces
the following commutative diagram relating the two long exact sequence together:

rA A rA A iA
L HA (X, A) S HA(A) s HA(X) /5 HAX, A) L HA ((A) —— -

n n

J{(‘Pn#—l)* J{(‘Pn)* l(tpn)* J(S@n)* J{(‘Pn—l)*

P H (X A) 2 H(A) — s H(X) —2 Hoy (X, A) —2— Hyoq (A) 2

For any k € N, we define the k-skeleton of X is the union of simplces in X with dimension &
or less, and denote it by X*. Hence it is a A-subcomplex of X. For any n € N, we define

Ca(xF, xF ) = oR (XM /o (XE,

with the convention that X! = ().
If n # k,k — 1, then there is no n-simplex in X*. Hence

Ca Xk, X1 =0,
If n = k, then there is no n-simplex in X*~!, hence

Ci(XF, XF 1) = P Za,

a€e)
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where € is the collection of k-simplices in X and Z,, is the copy of Z associated to the k-simplex
a.
If n =k — 1, then X* and X*~! have the same collection of (k — 1)-simplices. Hence

c L (XE xF =,

Hence we have

0, n # k.

For each n € N, consider the singular relative homology groups H, (X%, X*~1). Now we would
like to discuss its relation with H2(X* XF~1),
For any k € N*| we consider the following commutative diagram for pairs of spaces

(HA&H@AQ)L(HA&H(M\{%})) & (Hdz,ﬂdk\{ba}))

a€ef) a€e) aEeQ a€el) aEQ a€e

k : :

hi

ha

(XF XE) ——— (X’ﬂX’“\ H{Ua(ba)}> — (X" \XFTL (XA XEON T {oa(ba)}

aef) a€eQ

Notice that g3 is a homeomorphism between the two pairs, hence it induces isomorphism between
the relative homology groups. The maps f> and hs also induces isomorphisms between the relative
homology groups by Excision Theorem. Hence the map g2 also induces an isomorphism between
relative homology groups.

To see the maps f; and hy induce isomorphisms between relative homology groups, we consider
the following fact.

Lemma 6.8.3

Let X be a topological space with subspaces A and U satisfying the inclusion relation:
UCcAcCX,
such that U is a deformation retraction of A, then for any n € N, we have

H,(X,A)~ H,(X,U).

We first recall the five lemma for abelian groups.

Lemma 6.8.4 (Five Lemma for Abelian Groups)

Consider the following commutative diagram of abelian groups

At yp-d ok ,p_L |

P P

At g Lo P p L

Assume that the first row is exact at B, C and D, the second row is exact at B’, C' and E’,
and the homomorphisms «, £, § and € are isomorphisms. Then ~ is an isomorphism.

)
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Proof of Five Lemma. We first show that v is surjective.
For any ¢ € C’, denote
d =FK()eImk' =kerl'

Hence we have
I'(d)y=0¢€FE.

Since J is an isomorphism, there is d € D, such that
5(d)=4d'.

Then since

and € is an isomorphism, we have

I(d) =0,

hence
d € kerl =Imk,

and there is an element ¢ € C, such that

k(c)=d
Hence

K (v(e)) = d(k(c)) = d',

and

K (c" = (c)) = 0.

Therefore, we have
¢ —v(c) € kerk’ =Imy’

and there is an element b’ € B’, such that
J) = =)
Since f is isomorphism, there is an element b € B, such that
B(b) =1

Hence we have

V(5 (b)) = 5" (B(b)) = ¢ —(c).
Therefore
¢ =~(() +c) € Im~.

The homomorphism + is surjective.

Now we would like to show that v is injective. It is enough to show that

ker v = {0}.

Let ¢ € kery. Then we have

Since ¢ is an isomorphism, we have
k(c) =0.

Hence
cekerk =1Imy,
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and there is an element b € B, such that

Now consider

We have
b =pB(b) € kerj’ = Im?’,

and there is an element o’ € A’, such that
i'(a)=V.

Since « is an isomorphism, there is an element a € A, such that

Notice that

we have
b € Imi = kerj.
Hence
c=j)=0.
We therefore have
ker v = {0}.

O

Proof of Lemma[6.8.3 Let ¢ : U — A be the inclusion map, and r : A — U be the retraction
such that ¢t or 2 id4. By the homotopy invariant of singular homology, we have for any n € N

H,(A) = H, (U).

Let X = UaecqXq be the path connected component decomposition of X. Let Qp (resp.
Q4) be the collection of indices o such that U N X, (resp. AN X) is not empty. Since U is a
deformation retraction of A, we have Qy = Q4. Hence for n = 0, we have

=~ (P Zo = Ho(X, A).

aEQu

Now let n > 0. For any n-chain o € Cy,(X), if [a] € Z,(X,U), then there is an (n — 1)-chain
B € Cr—1(U), such that da = 8. Since C,,_1(U) < C,—1(A), we have

[C{]A S Zn(X, A).
If [a]y € Bn(X,U), we have an (n + 1)-chain 5 € C,,11(X), such that
la]u = 9flv = [0f]u

Hence there is an n-chain v € C,(U), such that « = 98 + 7. Since v € C,,(A), we have
[a]a € B, (X, A). Hence the inclusions U C A C X induce a group homomorphism

H,(X,U) = H,(X, A).
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Now consider the long exact sequence for relative homology and have the following commutative
diagram, we have

(jU)*Hn_l(Xk_l)

l(idx)*

Hyo(0) 225 1, (x0) 2% 1, (X, U) 22 H(U)

JL* J(ldx)* J/‘P
j )

Ho i (A) 2225 H, (0) 225 1, (X, 4) 4 1, (4) =25 1, (X)
By the Five lemma, we have ¢ an isomorphism. O

Using this lemma, the map f; and h; induce isomorphisms in between relative homology
groups in each dimension. For any n € N, we have

H, (X%, X571 (HA ]_[aA’;) P Ha (AL, 0AL)
a€gQ) ac acQ

We have the homeomorphism between the pairs (A*, dA¥) and (D¥,0D¥). In the homework
using the long exact sequence for relative homology groups, for any k,n € N, we have

anl(Sk); n = 27

H(Dk'H Sk)% 0, n=1,k>1;
" ’ Z, n=1k=0;
0, n =0.

Let n=k+ 1. If £ = 0, then we have
Ho(D', 8% =7
If £ > 0, then n > 2, and we have
Hy (D1 S%) = H(S%) = 7

Hence for k > 1, we have
Hy(X*, XE7h) = HR (X%, X7,

Moreover, from the above discussion, we can check that this isomorphism is given by
(on)s : HE (X, X71) = Hy(X*, X7,
Now we start to give the proof of Theorem [6.8.1]
Proof of Theorem [6.8.1 Notice that there is an inclusion relation among all k-skeleton’s of X
X°cXxtc--cxtc
Since we assume that X is finite dimensional, there is k& € N, such that
X = X"

The proof is by induction on k.
Consider k = 0, the 0-skeleton X° is a collection of points. Hence we have
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On the simplicial side, by its definition, we have
@ Z[p], n=0;
H2(X%) = { pexo
0, n > 0.

Hence we only have to check the case when n = 0. Notice that a singular 0-simplex is also a
simplicial O-simplex. Hence for any p € X°, the homomorphism (). sends each [p]® € H{(XO)
to [p] € Ho(X"). As a result, we have

Hy(X°) = H}(X0).
Now assume that k£ > 0 and for any 0 < ¢ < k — 1, and for any n € N, the homomorphism
(Pn)s : Hy'(XT) = Hp(X7),
is an isomorphism. We consider the commutative diagram

Z»A rA
(X, X k1) 22 A xhty o ga(xh) 2 gAxk, xRty 20 g (xRt

n

l(ﬁon+l)* l(‘ﬁn)* J/(‘Pn)* l(‘ﬁn)* l(%"nl)*

Hyr (X5, X910 2y o (x=1) —2y f (xF) 2 i (xR, xRy 2 g (xR

A
Hn+1

Here the maps associated to vertical arrows are all isomorphism except the middle one. From
left to right, the first and the fourth are because of the previous discussion on relative homology
groups. The second and the fifth are because of the induction condition.

Using Five Lemma, we may conclude that

() + H (X®) = Ha(X"),

is an isomorphism.
By induction, we have the theorem. O

From this, we have the following immediate corollaries.
Corollary 6.8.5
The simplicial homology groups of X given by different simplicial complex structures are

isomorphic to each other. In other words, the isomorphism type of the homology groups is
independent of choice of simplicial complex structure.

Corollary 6.8.6

For any n € N, if X has a simplicial complex structure with finitely many n-simplices, then
H,(X) is finitely generated.

6.9 First homology and fundamental group

In the study of surface, we use the abelianizations of the fundamental groups of surfaces to give
the classification of surfaces. We call it the first homology group of the surface. In fact the
abelianization of the fundamental group of a surface is indeed isomorphic to the first homology
group of the same surface. This is moreover a general fact.
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More precisely, let X be a path connected space, and p be a base point. Recall that a path in
X is a continuous map
a:[0,1] - X.

By definition, this is also a singular 1-simplex in X.

For any « € L(X,p), we have

a(O) = 01(1)7
hence da = 0 and we have

o € 74 (X)
We have a natural map from £(X,p) to H1(X).

In order to have a map from (X, p) to Hy(X), we should prove that the image is invariant
under path homotopy. We consider o’ be another loop in £(X, p) homotopic to a. Let us denote
the homotopy by

H:[0,1] x [0,1] = X,
with Hy = o and H; = /.
Consider the square [0,1] x [0, 1] with
ug = (0,0), uy = (1,0), U = (1, 1), us = (0, 1).
There is a triangulation of [0, 1] x [0, 1] by adding the diagonal uguz. The restriction to each
triangle gives a singular 2-simplex in X, and we denote them by
o1 = H|[ug,u1,u2} and 02 = H|[uo,u2,U3]-
Let
o =01 + 09.
Then we have
do = 8H|[u07u1,uz] + 8H‘[uo,u2,u3]

= Hl[ul,uﬂ - H|[U0,u2] + Hl[uo,m] + H|[U2,u3] - Hl[uo,ug] + H|[U0,u2]

= Hl[u1,u2] +a—a - H|[uo,us]‘

Notice that both H|fy, .y, and H|[y, ) are constant map by the definition of a path homotopy.
We consider a singular 2-simplex

A% 5 X,
which is a constant map with image g. Let
B: Al = X,

be the singular 1-simplex which is a constant map with image q.
We still denote
A? = [vg, vy, v].
Then we have
OT = T|(vy,03] = Tl{wo,va] + Tl[wo,es) = B— B+ B =5
Hence the singular 1-simplex in X given by constant path gives a 1-boundary in C;(X). Let 7
be the singular 2-simplex in X with image p and 75 be the singular 2-simplex in X with image p.
We then have
a—a' =00 —0r + 0.

Hence

From this discussion, we find a well-defined map
h: 7T1(X7p) - HI(X)7
[a]z, — [a]x.

The main goal of this section is to show the following theorem.
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Theorem 6.9.1

The map h is a group homomorphism. Moreover it is surjective and its kernel is the
commutator group of 7 (X, p).

By the definition of the abelianization of a group, we have the following corollary

Corollary 6.9.2

We have
™ (X,p)** = m (X, p)/[m(X, p), m (X, p)] = Hi(X).

Proof. We first show that h is a group homomorphism.
For any a and o/ loops in X based at p, we have

B=a*xa xaxa

is a loop based at p which is homotopically trivial. We identify S' with the quotient space
[0,1]/0 ~ 1. Since j is a loop, it descends to a map 8’ from S! to X, such that we have the
following commutative diagram

0,1 2 x
A

Sl
Since 8 is homotopically trivial, the map 3’ can be extends to a map

B:D?*— X.
We may identify A? with D? and get a singular 2-simplex o, such that

do=a+ad —axd.
Hence we have
[a]x +[¢]x = [a*d]x,

and h is a homomorphism.

Now we would like to show that the map h is surjective. Let z € Z1(X). It can be written as

k
z = E a;,
i=1

where o;’s are singular 1-simplices in X. Here for different ¢ and j, it is possible that o; = o;.
Since z is a singular 1 cycle, we have

0z =0.

Hence
k

Z(Uilvo - Ui‘vl) = 0.

=1

This means each point in
{oi(v0), 00, | 0 <7 < K}
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appears even times. Moreover the times as starting points and the times as ending points of
some o; are the same. Hence all o;’s considered as paths in X form several loops by taking
concatenation. Without loss of generality, we may assume that

Y=01%-- k0

is a loop in X based at q.
First the concatenation

(o1 %+ xop) %7

is a loop homotopically trivial, hence when consider the associated map from S* to X by identifying
0 and 1 of [0, 1] together, it can be extends to a continuous map from D? to X. Moreover, the
disk D? can be considered as an (k + 1)-gon P, where sides are given by o1, ..., 0,7 following a
given orientation of S'. By taking the triangulation P, we can show that

o1+ o +y=01+ - 0p —7 € Bi(X).
We have
[2] = [v]-
Now we consider a path a in X from p to q. The changes of base point yields a loop based at p:
v =axyxa.
Notice that
Ok 7y ok O % 7
is again a loop homotopically trivial, by a similar argument as above, we have
(@47 —a) =9 €Bi(X),
hence
[2] = 7] = [+] € Im .
Now we determine the kernel of h. Since H;(X) is abelian, we have
[m1(X,p),m1(X,p)] C ker h.
Now let [a] € ker h, hence we have
[a]x = [0]x € Hi(X),
or equivalently
a € By (X)
Let

k
0= E O,
=0

where o071, ..., 01 € C3(X), such that
o = do.

For each 1 < i < k, we denote
Oo; = Tio — Ti1 + Tiz

Hence
k

a = Z(Tio — Tl + Ti2).

=1
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Notice that on the left hand side there is one singular 1-simplex. Hence all 7;;’s should be all
canceled out with one left. We denote

O'Z'ZA?—>X,

then the above observation induces a way to glue all A?’s together to a simplicial complex P and

we have a map
n:P—X,

such that n|a2 = 0;. Here A? is identified with its image in P after gluing. In particular, it is
connected. Hence the loop 7y is homotopic to a concatenation of 7;;’s considered as paths in X.
For each path 7;;, we consider a path +;; going from p to the starting point of 7;;. Hence we
have loop
Tij = Yij * Tij * Vi(i+1)>
here j is taken up to mod 3. The loop 7 is also changed to 7 without changing its homotopy
class since each change is given by adding 7;; * v;; which is homotopic to a constant path.
Notice that the path 7;; is based at p now. And 7 is a concatenation of 75;’s in certain order.
Now we consider them in the abelianization of 71 (X, p) (so that we can change their order) and
have

(F13° = 1 ([Faol3% * [Taolay + [Fa0)32) = *i=1 [Fio * Tao * Tiol

Notice that for each i, the path Tig * Ty * T30 is homotopically trivial as a path in X, since it
comes from the boundary map of a continuous map

o A2 5 X,

Hence we have

[7’:710 * T;0 * 7~'1'0]7r1 = [Cp}m’

and we have

Ml = Al = leoli

This shows that
] € [m1(X,p), m (X, p)].



Chapter 7

CW-complex and cellular
homology

We will introduce another homology group for a space using cells in it. The structure on the space
to make this construction work is call a CW complex structure. The construction essentially
follows the same idea as the one for simplicial homology by considering cells instead of simplices,
although the first definition that we will give seems quite abstract.

7.1 CW-complex

Similar to simplicial complexes or simplicial complexes, the CW complex is also obtained by
gluing spaces with certain topological type.
For any n € N*, by a cell of dimension n, we mean a topological space homeomorphic to
the Euclidean unit closed ball:
D":={peR"||p| <1},

where | - | stands for the Euclidean norm in R”.
An open cell of dimension n is a topological space homeomorphic to the Euclidean unit

open ball
D":={peR"[|p| <1}.
where | - | stands for the Euclidean norm in R™.

As a convention, a 0-cell consists of a single point.

Example 7.1.1 (Cells in dimension 0, 1,2, 3).
Figure illustrates cells in dimension 0, 1, 2, 3 respectively.

| l l

Figure 7.1.1: From left to right, we have D°, D', D? and D3.

257



258 CHAPTER 7. CW-COMPLEX AND CELLULAR HOMOLOGY

Next we would like to glue cells possibly in different dimensions together. Let X and Y be
two topological spaces, and A is a subspace of X. The space obtained by gluing X to Y along A
is defined to be

XUpY =XUY/x ~ f(x)

where f : A — Y is a continuous map, and ~ is given by identifying x € A with its image
flz)eY.

Example 7.1.2 (Gluing a handle to a cup).
Topologically, We would like to glue a cylinder C to a disk D? by identifying the boundary of C
to circles in D?. Figure illustrate how it works.

¢|

Figure 7.1.2: Glue a handle to a cup.

Definition of a CW-complex
A topological space X is called a CW-complex if it has a filtration of subspaces
XO cxMW) .. xt ...
such that
1) X (0) is a disjoint union of points;
2) for any n € N*, we construct X by
x() . x(n=1) U ( |_| DZ)
ga|a€Q \a€Q
where for each o € Q, D} is a closed n-cell, and
go : 0D — X (71
is a continuous map.

3) we have
X =[Jxm,
neN

and the topological on X is the weak topology given by (X (™), cy. In the other words, a
subset A of X is open if and only if AN X is open in X ™.
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For any n € N*, for any § € (), we have a continuous map

fa: Dy — X"V | | Dp = X™ - X,
a€ef

where the first arrow stands for the inclusion of Dy in the disjoint union, the second arrow stands
for the quotient map to glue all n-cells to X~ and the last arrow stands for the inclusion of
X ™) into X. Such a map fs is called the characteristic map for D],.

An easy observation shows the following two facts:

1) the restriction of f, to 0D is ga;

2) the restriction of f, to D" is a homeomorphism to the image.

For any n € N, the subspace X (™ is called the n-skeleton of X.

A sub-CW-complex Y of X is a subspace of X, such that it is a CW-complex and for any
n € N; we have

Yy = x( Ny,

Hence Y is closed.

Sphere/Torus/RP" /Wedge sum of circles/Wedge sum of spheres

7.2 Properties of CW-complexes

Regarding the topological properties on X, since we construct X by gluing cells, we have the
following proposition

Proposition 7.2.1

A CW-complex is Hausdorff and locally contractible.

Another property comes form the fact that when we cone off a subspace, the topology in
that part becomes trivial. When making a cover over loop in a space, it is equivalent to glue
a disk to along that circle. If this loop has non-trivial homotopy class, then after gluing the
disk, this loop is homotopic to a constant path. A rigorous proof can be given by considering
Seifert-Van-Kampen theorem.

By checking how gluing n + 1-cells changes the topology of the n-skeleton X () of a CW-
complex., we have the following proposition.
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Proposition 7.2.2

Assume that the 2-skeleton X of a CW-complex X is path connected. The inclusion
i X® 5 x

induces an isomorphism
Lyt 7'(-1()((2)31)) — ﬂ_l(va)a

where p € X2,

Proof. We consider the inclusion
j: x( _y x(n+tl)

We try to show that the induced homomorphism
j* : WI(X(n)vp) — WI(X(n+1)7p)7

is an isomorphism for n > 2.

Any point in any n-cell in X (™ can be connected to X(»~1 by a path. Then by induction, it
can be connected to X which is path connected. Hence X (™) is path connected, since any pair
of points in X (™) can be connected to X (?) by paths, then by taking a concatenation of these two
paths with a path in X(®), we have a path in X to connect the two points.

Let D" be a (n + 1)-cell glued to X () by g, with characteristic map f,. Let v, be a path
in X with 7,(0) = p and 74(1) € go(@D2*'). We then glue a Euclidean band to X+ along
.

Let [0,1] x [0, 1] be the band. Then we consider the map

Fo 1 0,1] x {0} U {1} x [0,1] = XD,
such that for any ¢ € [0, 1], we have

Yo (t7 O) = Yo (t),

and
Fa({1} % (0,1]) C fa(DE™).
Then we glue [0,1] x [0, 1] to X1 along [0,1] x {0} U {1} x [0,1].
For any other DZJrl if exists, we repeat the same construction. Denote a path vz in X (n)
with v5(0) = p and v5(1) € g3 (8DZ+1). Then we glue a band [0, 1] x [0, 1] along

{0} x [0,1]U[0,1] x {0} U {1} x [0, 1].

by map 7, such that
Y5110y x[0,1] = Val{0}x[0,1]5
and for any t € [0, 1], we have
Ya(t,0) = y5(1),

and
Fo({1} x (0,1]) C f5(D3*).

We denote the resulting space by Z which has X("t1 as a deformation retraction. Now we
consider
U=2Z-X" and V=2-] fs(D5™).
pen
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Hence U NV is a obtained by gluing as many copies as (n + 1)-cells glued to X ™of [0, 1] x [0,1]
along {0} x [0, 1], hence is contractible. )
The space U is given by taking union of U NV with all fg(DgH), hence is also contractible.

The space V has X" as a deformation retraction.
We choose a base point ¢ in 7, ({0} x (0, 1)), then by the Seifert-Van Kampen Theorem, we
have

m(XMD )y = (Z,9) =2 m(Uyq)  x  m(V,q) Zm(Vig) = m(X™, p).
71 (UNV,q)

Hence we have the following sequence of isomorphism:
7r1(X(2)7p) o 7T1(X(3),p) L wl(X("),p) ~ ...
Now we consider a loop v in £(X, p). If it is homotopically trivial, then there is a homotopy
H:[0,1] x [0,1] = X,
such that Hy =y and H; = c¢,. Notice that the image of H is compact in X.

Lemma 7.2.3
Given any K a compact subset in X, K only meets finitely many cells.

Proof. Suppose that K is compact and meets infinitely many open cells. Then we denote by

S = {pla o5 Pms }

whose points are in K and meet different open cells.

Notice that S is closed subset of X, hence is compact, since it is a subset of a compact set K.
A space with discrete topology which is compact must contain only finitely many points. Hence
the contradiction. O

As a corollary, any compact subset of X contained in X(™) for some n € N. Since the image of ~
and H are both compact, hence there is n > 2, such that

[ = [ep) € m(X™), p).
Hence the homomorphism from 71 (X ®), p) to 71 (X, p) induced by the inclusion
X 5 X ,
is injective.
To see it is surjective, for any v € L(X,p), it is contained in X (™) for some n > 2. Since the
inclusion from X2 to X induces an isomorphism between the fundamental group, we have a

loop 1 € L(X®), p), such that
] = [7] € m(X™),p).

Hence the homomorphism ¢, is surjective.

One corollary of this result is that

Corollary 7.2.4

Any group is a fundamental group of a CW-complex.
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Proof. Any group G can have a presentation
(S| R),

where S is the set of generators and R is the set of relations. Notice that the cardinal of S and
that of R could be arbitrary.
Notice that

G = (5)/((R)).

Where (S) is the free group generated by S. To realize it as a fundamental group of a CW-complex,
we consider X (9 be a single point and

xW=1\/ s

acsS

Now for any w € R, it corresponds to a loop v in X!, by identifying 0 with 1, we can rewrite

this loop as a map
v 8t = x ()

The by identify S} with S', we consider this map 7' and use it to glue D? to X along
Sl = 9D?2. We repeat this for all relations w € R and obtain X(?). Then the fundamental group
X @) is isomorphic to G. O

Remark 7.2.5.
In the case where R is infinite, we can use the generalized version of Seifert-Van-Kampen theorem
to see the final isomorphism.

7.3 Cellular homology group

Now we will give the construction of the cellular homology group for a CW-complex. For simplicity,
we consider the case when X is of finite dimension, i.e. the dimension of cells glued has an upper
bound.

We consider first the singular (relative) homology group of X. As a convention, let X 1 = .

Proposition 7.3.1

For any k,n € N, we have

1) the relative homology groups

@Za, k=n

Hy(Xx™ x=1y =~ { e
0, k#n

where 2 is the index set of n-cells in X and Z,, is isomorphic to Z;
2) Hip(X(™) =0 for k > n;

3) the inclusion
L XM X,
induces an isomorphisms
Lyt Hy(X™) = Hy(X),

for k < n.
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Proof. The proof for 1) is similar to the one about simplicial complex when we try to show the
equivalence between the simplicial homology and singular homology.
For any n € N*, we consider the following commutative diagram for pairs of spaces

(HDz, Hanzs) o, (HDz, o {bm) 2 (Hﬁg, [0 {ba»)

a€ef) a€e) a€el) a€e) a€E) aEQ

k - :

(X)) x(n=1)) *ﬂ” (X(")7X("L—1)\ H{fa(ba)}> J (Xw \ XD (x )\ X (n=1))\ H{fa(ba)}>

g acQ
For 2), we consider part of the long exact sequence for relative homology
Hy (XM, x0=0) s 1 (X)) —— Hy (X)) —— H, (X, X(=1),
Since k > n, we have k +1 > 0. By 1), we have
Hppr (XM, XDy > g (x () x (=1 =~ .
The exactness of the sequence shows that
Hi (XD = Hy(X™).

Hence we have
Hk(X(")) o Hk(X(”_l)) L Hk(X(O)) o~ .

For 3), we consider the same part of the long exact sequence
Hy (XD X)) s H (X)) —— Hy (X)) —— Hy (XD x (),
Since k < n, by 1) we have
Hk+1(X(”+1),X(”)) o Hk(X("'H),X(")) &~ .

By the exactness, we have
Hp(X™) 2= Hy (X)),

Hence we have for any m € N,
Hy(X™) =~ Hy(XHD) o gy (X (4m),
Since X is of finite dimension, we have X = X(*t™) for some m € N. Hence

Hy(X) = Hy(X™).

We denote by
D, = H,(X™ x(=1)

For n = 0, we have
Dy == Hy(X'9,0) = Ho(X?).
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Notice that for n > 0, the (n—1)-skeleton appears in two pairs (X (™), X(»=1) and (X (»~1), X (»=2))

hence H,,_1(X(™~Y)) appears in the intersection between two long exact sequences:
Hn(X(”),X(”_l))

o

H,(X(n=1), x(n-2)) SN H,_1(X(®=D) _ H,_1(X(=D) LN H,_1(X(=D, x(0=2))

H,_1(X™)

pr,

anl(X(n%)((nfl))

We then define
0: D, — Dn717

by taking the composition § = pr, o d in the above diagram from D,, to D,,_1 at the upper right
corner. As a convention for n = 0, we define § to be the unique homomorphism from Dg to 0 the
trivial group.

Proposition 7.3.2

We have 62 = 0.

Proof. For any n > 0, we can write the composition:
6% Hy (XD XMy o g (X)) & JHy(x™ x5 g, (X(7D) 5 |, (x(0D x(n2)
Notice that this sequence is exact at H, (X, X(»=1) hence §2 = 0. O

From the above discussion, we conclude that (D,,d)nen is a chain complex. We call it the
cellular chain complex for the CW-complex X. The n-th homology group associated to this
chain complex is called the n-th cellular homology group, we denote it by

HEY(X).

Theorem 7.3.3

For each n € N, we have
H™W(X) = Hy(X).

Proof. We review the above intersection between two exact sequences with the information given
by Proposition [7.3.1}

Hn+1 (X("+1), X(n))
5

pr,

0 0 H,(X™) H, (XM, x("=1)

(injective)

i« (surjective)

Hn(X)
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Since i, is surjective, and the vertical sequence is exact at H, (X ™), we have
H,(X)~ H,(X™)/Imé.
Since pr, is surjective, we have
Imd = Imo,

and
ker 6 = ker 0.

Consider the following diagram

Hn+l(X(n+1)7 X(n))

Ont1
\L)n+1 \

(Pryp1)«

—_—
O
J/(i,wrl)*(surjective) Ja" \

H,(X) Hy oy (X00) P g (o), X 02))
J{(in)*(surjective)
H, 1(X)
Notice that
Hy (X™) = H,(x™, x0=Dy 5 g, (x("Y)

is exact at H, (X, X(»=1) hence
Im (pr, 4 1)« = ker 9,, = ker d,,.
Hence

ker 0, /Im 8,41 = Im (pr,, 1)+ /Im ((pr,, 41 )% © Ong1)-

Since (pr,,; 1)« is injective, we have

HEY(X) :=ker 6, /Im 61 = H, (X™)/Im 8,1 = H,(X).

Remark 7.3.4.
Given any CW-complex, for any n € N, if there is no n-cells, then H,, (X, X(=1) is trivial,
hence

H,(X)2 H>(X)=0.

If there are finitely many n-cells, then the singular homology group H,,(X) is finitely generated.

Cellular boundary formula

From the construction, we use H, (X X("~1) to define the n-complex. We would like to
given another way to understand this chain complex which is more geometric and can be used to
construct a way to compute the cellular homology and eventually compute the singular homology.

We first study the structure of H,, (X X () for each n € N. The case when n = 0 is clear.
For any « € N, we consider the morphism between pairs:

fa s (D4, 0D3) = (X", X ("1,
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For any n € N, it induces a homomorphism
(fa)e 2 Hy(D2,0DT) — H,(X™, x (=1,

To see the image, we use a discussion similar to the one used previously for studying H,, (X (), X (=1)),
Consider the following commutative diagram for morphisms between pairs

(D, 0D%) (D2, D2\ {ba}) (D, D\ {ba})

| | J

(HD:; HaDz) s (HD:; [T\ {bm) & (HD":;, H(ﬁn\{ban)

aE a€e) (119) a€cf) a€E) aE)

k : :

(X, x -1y My (X(n>7X(n—1>\ ]_[{fa(ba)}) PR <X(n> \ XD (X \ X (=1 \ H{fa(ba)}>

acQ) acl)

This commutative diagram gives a free generating set of H, (X (") X ("_1)):
{leal | a € ).

Notice that the composition of the two vertical arrows on the left corresponds to f,. Hence (fq)«
sends the generator of H,,(D?,dD") to one free generator of H,, (X, X(®~1)) associated to D”.

As previously discussed (See Corollary , the homology groups of a space X relative to a
subspace A are isomorphic to the homology group of the corresponding quotient space. Hence for
n > 0, we have

Hn(X(”)7X(”_1)) o Hn(X(”)/X(”—U)

Although X and its skeletons of different dimensions could be quite complicated, the quotient

space is quite simple. If
XM= x| ] <|_| DZ) ;

Jo|la€Q \a€Q

the the quotient space
X(ﬂ)/x(nfl)

with quotient map denote by 7 is topologically can be considered as identifying the boundaries of
all D7'’s together:

xmyxt=0 =TT pp/ [ oD = \/ DijoD:.
acf acf) a€ef)

Here 2 stands for being homeomorphic. We denote by

p: XM/ x0T o/ 1] oDz
aEeQ a€E)

the obvious homeomorphism.
Recall that when identifying all points on the boundary of an n-cell, we obtain an n-sphere.
Hence we have

g XMW/ x0D 5\ s
a€eQ

the homeomorphism induced by .
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To describe 4§y, it is enough to describe 4, (e?) for all a € Q. In fact, by its definition, the
information of this map is determined by g,. All we have to study is the following composition

oDy — X7 5 XD x (=2 =\ [ gn,
ac

Notice that each S7} corresponds to a generator of H,_1(z(»1, X(=2)) Hence the whole study
is boiled down to answer the following question: How the 0D covers each (n — 1)-sphere in

\/ si.

ae)

degree
Let n € N*. We consider a continuous map
f:8"—= 8™
This map induces a homomorphism in the homology group level. In particular, we have
foH,(S™) = H,(S™).

Since

H,(S") 2 Z,

the homomorphism f, is determined by the image of [a] a generator of H,,(S™). There is a integer
d € Z, such that

Definition 7.3.5

The integer d is defined to be the degree of f, denoted by deg f

Here we list several properties of degree.
Proposition 7.3.6
For any n € N*, the degree of continuous maps from S™ to S™ satisfies the following
properties:

1) The identity map of S™ has degree 1.

2) If f:58™ — S™ is not surjective, then deg f = 0.

3) If f,g:S™ — S™ are two homotopic continuous maps, then we have

deg f = degg.
4) For any f,g:S™ — S™, we have
deg fog=deg fdegg.
5) A reflection of the sphere has degree —1.
6) The antipodal map has degree (—1)""1.

7) Any map f:S™ — S™ with no fixed point has degree (—1)"*1.
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Proof. The identity map of S™ induces an identity homomorphism of H,,(S™), hence the degree
of identity map is 1.

Assume that f is not surjective, then there is a point p € S™ which is a not in the image of f.
We may view f as a continuous map from S™ to S™\ {p}. The latter is homotopy equivalent to a
single point space. Hence H,,(S™ \ {p}) is trivial and the degree of f is 0.

By Theorem [6.4.4] since f and g are homotopic to each other, they induces a same homomor-
phism between homology groups. Hence we have deg f = deg g.

The fourth statement comes from the fact that (f o ¢)s = fi © gs.

By the previous statement, to show the fifth one, it is enough to show that it holds for one
reflection. Consider the map

fr8m—sm,

(T1, T2, Tpy1) = (1, T2 Tg1)-

Let Hy = {(z1,22....,2p41) € S™ | x1 > 0} and H_ = {(x1,22...,Zp4+1) € S™ | 21 < 0} be the
two hemispheres of S™. It changes the orientation of S™. Let [a] be a generator of H, (S™), we
then have

Hence deg f = —1.

The antipodal map is a composition of n + 1 reflections, hence its degree is (—1)"*1.

To see the last one, we will show that a self-map on S™ with no fixed point is homotopic to
the antipodal map. Let f : 8™ — S™ be a map with no fixed point. For any p € S™, we have
f(p) # p. Hence the segment connecting f(p) and —p does not pass the origin, and the following
map is well defined:

H:5"xI—8"
(1—1)f(p) +t(-p)
(1 =t)f(p) +t(=p)|

Notice that H(p,0) = f(p) and H(z,1) = —x. Hence f and the antipodal map are homotopic to
each other. By 3), we have deg f = (—1)"*1. O

(p,t) — |

Here is one application of degree.

Proposition 7.3.7

If n is even, then any group acts on S™ freely is either trivial or isomorphic to Zs.

Proof. An action of a group G on a set X is free if for any z € X, for any g.x = x, then g = ¢
which is the identity element of G. In the other words, the only element with at least one fixed
point is the identity element.

Let G be a group acts freely on S™. For any g € G, we denote its action S™ still by g¢.
Since any element g € G is invertible, the map g : S™ — S™ is a homeomorphism. Therefore, it
induces an isomorphisms in the homology group level. Hence degg € {1, —1}. Let {1, —1} be the
order 2 group. By considering the properties of the degree of maps on S™, we have the group
homomorphism

p:G—{1,-1}
g degg.
Any g € G\ {e} has no fixed point, hence degg = (—1)"*1. Since n is even, we have degg = —1.

Therefore, the kernel is trivial {e} and ¢ is injective. The group G is isomorphic to a subgroup of
Zo which is either trivial group or Z. ]
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Cellular boundary formula

Now we are ready to give the cellular boundary formula.

Theorem 7.3.8 (Cellular boundary formula)

For any n € N*, for any « € 2, we have

on(lea)) = Z daﬁ[eg_l}v

BEA

where A is the index set for (n — 1)-cells in X, and for each 8 € A, the integer d,s is the
degree of the following map

Cap 1 OD) — X071 — X7 x(0=2) oy X0 (X (=D f(DRY)) — D oD

Remark 7.3.9.
The last step can be considered as the projection to the (n — 1)-sphere labeled by 3:

\ spt— s

neA

Proof. For n = 0, by our convention, D_; = 0.
For n =1, we consider the map

6 =0: Hi(XW XO) 5 Hy(xO),

The formula can be checked directly by considering the definition of dug.
For n > 2, for each § € A, we consider

mgr XD X2 x () (x0T fy(DETY)) — D DR,

and
finq : XD o x (=1 x(n=2)

Then we consider the following commutative diagram

(Caﬁ)*

o)

H,(D,0D?) ————— H,_1(0D") H, (D' /oD3™)

(fa)*l (ga)*J/ T(ﬂ—ﬁ)*

Ho (X, X0y 2 g (xm-0)y e g (xnm1) ) x(n-2))

\ pr*J/ f
On (Kn—1)«

anl(X(nil), X(nf2))

IR

Let [D?] denote the generator in H,, (D2, 0D ), such that

ea] = (fa)«([Da])

We are interested in the expression of d,([ef]) under the basis

{les~11 8 € A}
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The coordinate for label 3 is given by the degree associated to

O(ﬂ_ﬁ)* © (%n—l)* © 5n © (f(x)*

Since
0+ H,(D",0D") — H,_1(0D")

is an isomorphism, this is equivalently to compute the degree associated to

(75)x © (Rm1)+ 0 3 0 (fa)e 0 (07) = (cap)--

Applications

Given any CW-complex X, we can now compute the cellular homology by using the cellular
boundary formula. As a result, we obtain the singular homology of X.

Let n € N*. We consider the oriented closed surface ¥,, of genus n. It can be considered as a
connected sum of n torus.

From the classification of compact closed oriented surface (see Theorem and Theorem
, the surface ¥,, can be obtained by gluing paired sides of a 4n-gon whose sides are labeled
by aq, b1, al_l, bl_l, ey Gy by ar b b1 following a cyclic order. After the sides gluing all vertices
are identified to a same point and the boundary of the polygon becomes an 2n-rose.

This gives us a way to associated to %,, a CW-complex. In particular, there is one 0-cell, 2n
1-cell and one 2-cell. Moreover, the boundary of the 1-cells are all mapped to the only 0-cell, and
the boundary of the 2-cell covers each 1-cell twice with different orientation. Hence the degrees of
all maps induced by the gluing are 0. We summary the above information as follows. From the
number of cells in each dimension, we have

(
(an Z(O ) ZZn’

Hy (2 (2) 2(1))

Hy (2R k= 1>) 0, k> 3.

Consider the chain complex
0— Hy(=@ W) o 7 (21,20 - Hy(2(®) — 0.

From the information about the degree of maps going from boundaries of k-cells to (k — 1)-cells,
the boundary maps involved above are all zero maps. Hence the cellular homology groups of 3,
are as follows:

H§Y(En) 2 Z,
HEY(S,) 2 2%,
HQCW(Z,I) =7,
HEY(S,) 20, k>3

For each n € N*| there is a degree 2 covering map from S™ to RP". Meanwhile, we may consider
the hemispheres in S™ defined as follows

u" = {(x07 79377,) es” | Ty > 0}7
L™ ={(xg,...,xpn) € S™ | 29 < 0}.
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Notice that U™NL™ is homeomorphic to S"~1. By identifying (0, z1...,7,) € U™ with —(0, z1..., 2,,),
we have a map from U" to RP". In this way, we may write RP" as a disjoint union of an open
ball D” with RP"~!. Repeating this process, we have

RP" = Dn U D=1 U D2 U DU {x}.

This gives us a CW-complex structure on RP". From the number of cells in each dimension, we

have
Ho((RP™)") = 7,

Hi((RP")D RP™)(O)) =~ 7,

H,((RP™)™ RP")("—D) =7,

Hip (RP™)F) RPM)F-D) >0, k> n+ 1.
To compute the cellular homology group, we should find how cells of different dimension gluing
together. The above discussion shows that it is actually given by the antipodal map. In particular,
for any n € N*, the boundary of D" is S"~! which is obtained by gluing two copies of D"~1
along its boundary. Hence the map from 9D" to DD”_1 is a 2 to 1 covering. If the map from
Un=1! to D"! is denoted by f, then the map from L"»~1 to D»—1 if given by go f where g is the
antipodal map on S”~!. We may take f to have degree 1, then degg = (—1)". Hence

o([e"]) = 1+ (=1)™)[e" .

It is easy to understand this. The antipodal map on S"~! sending one hemisphere to another
hemisphere in an orientation preserving way if and only if n is even.
Now we consider the chain complex:

0 — H,((RP")™ (RP")"D) ... - H (RP")D, (RP")) — Hy(RP™)) — 0.

By the above discussion, if n is even, we have

and if n is odd, we have

0

where f : Z — Z is defined by f(1) = 2. Therefore, if n is even, we have

Z k=0
HEW(RPY) = Zy 0<k<mnodd

0 otherwise

If n is odd, we have

Z k=0,n
HEW(RPY) = {Zy 0<k<nodd
0 otherwise

7.4 FEuler-Poincaré characteristic

In Chapter 5] we have discussed the Euler characteristic for a surface using triangulations. If we
compare it with the definition of CW-complex, we can see that any triangulation of a surface is a
special kind of CW-complex formed by cells of dimension 0, 1 and 2. In Chapter [5] the Euler
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characteristic is computed by counting numbers of vertices, edges and faces, i.e. the number of
0-cells, 1-cells and 2-cells. With this observation, we may try to generalize this notion for more
general CW-complexes.

Let X be a CW-complex with finitely many cells of dimension at most n € N. We define its
Euler-Poincaé characteristic to be

X(X):=> (~1)aj,

=0

where for each 0 < j < n, a; € N is the number of j-cells in X. A surface may have different
triangulations. Similarly a CW-complex could be decomposed into cells in different ways. Hence
in order to have a topological invariant, we have to check if the quantity x(X) depends on the
cell structures on X. To answer this, we will relate the quantity to the cellular homology groups
which are isomorphic to singular homology groups, hence the quantity depends only on the space
X itself.

To be more precise, let us recall some background on finitely generated abelian groups. Let
G be such a group. If it is torsion free, then there is r € N, such that G 2 Z". The number r
is called the rank of G. If it has torsion, then there are r € N and dy, ...,ds € N\ {0, 1} with
dy |-+ | ds, such that

G=Z1"®ZLa © - DLy,

Here r is called the rank of G and dj, ..., ds are called the invariant factors of G.

We would like to compute the ranks of homology groups for X. To compute the cellular
homology groups of X, we consider the chain complex

0— Hy(X™W, x=Dy & o B (XD, X Oy 5 Hy(X©) - 0.
We still denote by ¢ the boundary map. Then we have the following short exact sequence
0 — ker 0y — Hp(X®, X*=Dy 5 Tm g, — 0,

where the second homomorphism is the inclusion map and the third one is dx. By the definition
of the cellular homology group, we have

0 — Im 1 — kerdy, — HEW(X) — 0,
Then we have the relations among ranks of above groups

rank(Hy, (X ®, X *=Y)) = rank(ker 6 ) + rank(Im 6 ),
rank(ker 6;,) = rank(Im 6y, 1) + rank(HSW (X)).

For Ho(X©), we have

rank(Hy (X(O)) = rank(ker §p) + rank(Im dy),
rank (ker 6p) = rank(Im 61 ) + rank(HS"W (X)).

Notice that Im dy = Im d,,41 = 0. By summing up over k, we have

X(X) = (=1)"rank(H (X, X*E=1)) 4 rankHo (X V) =3 (= 1)*rank(H{" (X))
k=1 k=0
Hence the Euler-Poincaré characteristic is a topological invariant for X, independent of choice of
cell structures for defining the cellular complex.
The rank of the k-th homology group Hy(X) is called the k-th Betti number of X, which is
usually denoted by bx. Hence the above relation shows that

n

X(X) = (- 1)F.

k=0
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Remark 7.4.1.

Historically, Betti numbers were defined in an combinatorical way which were are about decom-
posing a manifolds in the most efficient way with lower dimensional submanifolds. The relation
among Betti numbers, ranks of homology groups and Euler-Poincaré characteristics are initially
built based on series of work of Riemann, Betti, Poincaré, etc.

7.5 Lefschetz fixed point theorem

In the previous section, we discussed the degree of maps from a sphere S™ to itself, which helps
us to study the cellular homology groups of a space. We saw that the degree of a map can tell
us some information of the map. In particular, a map on S™ with no fixed point homotopic to
the antipodal map. Hence any map of S™ with degree different from that of the antipodal map
will have a fixed point. In this section, we would like to study similar questions for a general
topological space.

Let X be a CW complex. Let f be a map from X to itself. As in the sphere case, the map f
induces endomorphisms of homology groups of X. We would like to study the relation between
this information and the existence of fixed points of f. For any n € N, we have the endomorphism
of the n-th singular homology group

Jon H,(X) — Hn(X),
[0] = [f o a].

We consider the trace of f, , defined as follows. Let G be a finitely generated abelian group, and
TorG := {g € G | g has finite order}

denote its torsion subgroup. Given any endomorphism ¢ of G, it induces an endomorphism @ of
G/TorG. Since G/TorG is torsion free and is finitely generated, we have

G/TorG = 7",

where 7 is the rank of G. Hence ¥ is an endomorphism of Z". By choosing a basis of Z", the
endomorphism ® can be represented as a Z-valued matrix M,. We define the trace of ¢ to be

try = tr M.

Notice that tr M, is independent of choice of basis of Z", hence tr ¢ is well-defined.
Assume that X is of dimension n. We then define the Lefschetz number of f as follows:

T(f) = Ztrf*,k.
k=0

Remark 7.5.1.
If f is homotopy equivalent to idx, then 7(f) = x(X).

Theorem 7.5.2 (Lefschetz fixed point theorem)

Let X be a CW-complex with finitely many cells of dimension at most n € N. Any
continuous map f : X — X with 7(f) # 0 has a fixed point.

Before giving proof of the theorem, we first check some of its applications.
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Let D™ denote the ball of dimension n. It is homotopy equivalent to a point, hence its homology
groups are as follows:

Hy (D) =~ Z, k=0

F “ o, k>0

Hence for any map f: D™ — D™, we have

T(f) = tI‘f*10 = 1.

By Lefschetz fixed point theorem, the map f has a fixed point.

Another slightly non trivial example is the even dimensional real projective space. Previously, we
have compute the cellular homology groups of RP™ for any n € N*. Let n = 2k be even, then we

have
Z j=0

H;(RP?**) ={7Zy 0<j<nodd
0  otherwise

Since to define the trace of a map from RP" to itself, we have consider each homology group
quotient by its torsion subgroup, we have

Z j=0

H:(RP?*) /TorH;(RP?*) =
i( )/ TorH ;( ) 0 j>0

Hence for any f : RP" — RP", we have

T(f) :trf*,O =1.

By Lefschetz fixed point theorem, the map f has a fixed point.

The homology groups of sphere S™ for n € N* are as follows:

7Z k=0,n

0 otherwise

Hy(S™) = {

Let f be a map on S™. The Lefschetz number of f is then
T(f) =trfuo+ (=1)"tr fin = 1+ (=1)"tr fup.

Therefore, by Lefschetz fixed point theorem, if f has no fixed point, then tr f.,, = (—1)"*!. Since
H,(S") = Z, we have tr f, ,, = deg f.
In particular, if f is the antipodal map, then it has no fixed point, hence

deg f = tr fun = (—1)"T1.
Another consequence in the differential topology context is that there is a no non-zero vector

field over S2.

To prove the Lefschetz fixed point theorem, we would like to use the cellular approximation
theorem.
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Definition 7.5.6

Let X and Y be two cellular complex. A map f: X — Y is said to be cellular if for any
n € N, we have f(X™) c Y™,

Definition 7.5.7

Let X and Y be two cellular complex. A map f: X — X is said to be cellular approximated
by amap g : X — Y if g is cellular and f is homotopic to g.

Theorem 7.5.8 (Cellular approximation theorem)

Proof. content... O
Theorem 7.5.9 (Hopf trace formula)

content...

Proof. content...

Proof of Lefschetz fized point theorem. content...

7.6 Homology with arbitrary coefficients
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Cohomology group

8.1 Cohomology of a chain complex
8.2 Cohomology and homology
8.3 Singular and cellular cohomology

8.4 Cup product

277



278 CHAPTER 8. COHOMOLOGY GROUP



Chapter 9

Poincaré duality

9.1 Manifolds and orientation
9.2 Cap product
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9.4 Applications
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Appendix A

Free groups

Let G be a finitely generated group. Let n € N*, such that there is a subset
{a1,...,an} C G,
generating G, i.e.
G={by- by |meEN* by,....by € {ai’,...,aF'}}.
Here all we know is that any element can be expressed as a products among finitely many elements
in
+
{aFh, ... a1},
We call these expressions words in letters
+1 +1
{a77..yan}.
However, we have no idea if the expression is unique or not. An example is that
_ -1
a1 = ayazGy .
The reason for this to happen is that the elements a2 and a3 ! satisfy a relation:

agagl =e.

However, this is a little bit trivial, since this relation satisfied by any element and its inverse
in any group. Here is a less trivial example. Consider the group Z; of multiplication. By a direct
computation, we know that Z} can be generated by 2. Moreover by the Lagrange theorem, we
know that

=1

Of course

is not satisfied by all groups.
Another less trivial examples are abelian groups. Let G be an abelian group. For any a,b € G,
we have

ab = ba.

Same as before, this is not a property satisfied by all groups.
This raises some problems when we try to study groups using words of letters in generating
sets:

o How do we know if two different words represent a same elements in the group?

281
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o If we have two groups which both can be generated by n elements for some n € N*, how do
we know if they are isomorphic to each other?

e Is there a group with as less relation as possible?

o It seems that groups generated by n elements with more relations look smaller in sense than
those with less relations. For example, for any m € N*, the group Z,, can be considered as
a quotient group of Z. On the other hand, not every pair Z,, and Z,, can be compared in
this way. Is there a way to make this kind of relation more clear?

A.1 Definitions of free groups

We will first try to construct a group with least possibly many relations satisfied by a given
number of generators.
Let n € N*. Consider the set of 2n distinct elements
A= {alil7 iy,
as 2n letters.
For any k € N*, we call the expression

€1 €k
el

a’Ll ik

where for each 1 < j <k, ¢; € {1,-1} a word of letters in A.
A word

€1 €
; -ask

al] .o in

is said to be irreducible, if for any 1 < j < k — 1, we have
—€; €41
di; ' # ai;ﬂ'
We denote by F;, the following set
F,, := {e} U {irreducible word},

where distinct irreducible words are distinct elements and e is an elements distinct from all
irreducible words and is called the empty word.

Remark 1.1.1.
Another construction is using infinite sequences. We consider sequences in AU {e} of the following
form

67;1 61'1 e'il
(a;'sat s na,t e e, .),

i.e. only finitely many positions taking values in A, and all other entries are e.
An irreducible word is an infinite sequence such that if two adjacent elements are not e, then

we have
—€iy “ij41
a;, # a; '

In this setting, an empty set is the infinite sequence

(e,e,....).

The set F), still consists of irreducible words and empty words.
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Next we will define a binary operator on F,. It take two steps to get the result. Given any
wi,we € F,, we first take their concatenation wiws. Then we simplify wiws. The rule is as
follows. If wyws is not irreducible, then there exist two adjacent letters form aiai_1 or a; La;. We
remove them. Check the resulting word again to see if it is irreducible. If we get an irreducible
word, then it is the result of the computation. If there is nothing left, then we set the result to
be the empty word, i.e.

wiwa = €,

Let n = 5. Consider
W] = a1630204, W = azlaglagag,,
in Fy, then
a1a3a2a4a21a§1a3a5 S alagaga;lagag, —> ajasasas

Hence we have
w1Wwo = ai1aszazas.

Proposition 1.1.3

The set F,, with the above binary operator form a group.
Definition 1.1.4

The group F,, is called the free group of n letters {ay,...,a,}. We call n the rank of F,,.

Remark 1.1.5.
To distinguish with Z™, we also call F;, the rank n non abelian free group.

A.2 The universal property of free groups

The free group F;, has a so-called universal property, which can be stated as follows:

Theorem 1.2.1

For any group G, and n elements u, ..., u, in G, there is a unique group homomorphism
¢:F, — G,

such that for any 1 < i <n, we have ¢(a;) = u;.

The proof is a direct verification. Any group generated by n elements can be considered as a
quotient group of Fj,.

¢
F,——— <wu,..,u, >

{ /
F,/ker ¢

where ¢ is a group isomorphism.
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A.3 Free bases

Consider
A" ={araz,az,...,an} C F,.

Notice that
a1 = (araz)ay ' € (A').

Hence we have
F, = (A").

If we consider

bl = ala25b2 = a2, abn = Qn,

as new letters, and we can get a free group of n letters {by, ..., b, }. We denote it by F'. Using the
relation between {b1,...,b,} and {ay, ..., a,}, we have a group homomorphism

W F — F,.

which is surjective (a; = 1 (b1by ). To see the kernel of 1, we should show that the image of any
irreducible word in F' is not identity in F},. To see this, the rough idea is as follows. We consider
a word

w(bh bg..., bn)

Then its image will be

w(aiag, az, ..., an).

In order to cancel out everything, any b; should be followed by by 1 then
b1 b2_1 =ai.

Then to cancel a;, we need a; ', but the only irreducible word for aj* is baby !, then the word in
w(by, ..., by) is not irreducible.

Definition 1.3.1

Let m € N*. We call any m elements c1, ..., ¢;, in F),, satisfying
o F,={c1,.sCm),
e irreducible words of ¢y, ..., ¢, are not identity in Fj,,

a free basis of F,.

Hence A and A’ are both free bases of F,.

An immediate question is that do all free bases of F;, have n elements?

Theorem 1.3.3

Let X be a free basis of F,,. We have |X| = n.
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Proof. We consider homomorphisms from F, to Zs. Given any free basis {b1,...,by,}, any
homomorphism
¢ : Fn — ZQ,

can be determined by

(b(bl)v aAS) ¢(bm) € ZQo

On the other hand, by the universal property of F,,, given any uq,...,u, € Zsz, we have a
group homomorphism
¢: F, — Zo,

such that
¢(a1) = ULy ey (rb(an) = Unp.

Hence the set of homomorphisms from F, to Zs has cardinality 2™
|[Hom(F,,Z2)| = 2".

By the definition of a free basis, the group F,, is isomorphic to F'x the free group with letters
in X. By a similar argument, we have

|Hom(Fx,Zs)| = 21X1.

Since a group homomorphism is a map which is independent of choice of free basis, hence we
have
ol Xl = 9n,

equivalently, we have | X| = n. O

A.4 Presentations of groups

Let us consider the universal property of F;,. Given any group G and its n elements uq, ..., Uy,
we consider the homomorphism

¢:Fp— H={uy,..,u,) <G,

such that for any 1 < i < n, we have ¢(a;) = u;. From the fundamental theorem of group
homomorphism, we have the following commutative diagram

F— o H

e

F,/ker¢

where ¢ is an isomorphism. For any non identity element w € ker ¢, it is an irreudicble word of
a;’s
E]‘ ... ek

w:ail i

By taking value w;’s, we have the following identity in G:

Loyt = eg.

uil Uk

We call the left side is a relation among u;’s

Therefore, the construction of H can be considered as a two steps process. First, we consider
the free group of letters {uq, ..., u,}, then taking its quotient by the relations satisfied by wu;’s.
The rough idea of a presentation of a group is that to describe a group by giving its generators
and the relations satisfied among the generators.
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Normal closure

Let G be a group.

Definition 1.4.1

Consider any non-empty subset S C G, we call
() = (N <G| S N,

the normal subgroup generated by S, or the normal closure of S.

Remark 1.4.2.
Notice that given any normal subgroup N7, Ny <t G, we have N1 N No << G. Moreover this holds
for any intersections among normal subgroups of G. Hence the above definition is well defined.

There are two ways to understand the normal closure. The definition shows that it is the smallest
normal subgroup of G containing S. The second way of understanding is that it is the biggest
normal subgroup which could be "generated" by S.
To be more precise, for any a € G, we consider [a] the conjugacy class of a in G. For any non
empty subset S of G, we denote
[S] :=U{[a] | a € S}.

Proposition 1.4.3

We have the following relation

((S)) ={a1---ax | k €N, ay, ...,ax € [S]U[ST]}.

Remark 1.4.4.

In the other words, ((S)) is the subgroup generated by the union of conjugacy class of elements
in S and S~

Now back to our discussion on presentations of groups. Let H be a group generated by n
distinct elements {uq,...,u,}. Let F, be the free group of letters ay,...,a,. We consider the
homomorphism

¢:F,— H,

such that for each 1 <14 < n, we have ¢(a;) = u;. Denote N by its kernel. Let R’ be a normal
generating set of N. We denote by

R :={w(uy,....,up) | w(ay,...,a,) € R'}.
Then a presentation of H can be given as

H = (S|R).

Remark 1.4.5.
In general a group need not to be finitely generated, and the relation set R need not to be finite
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either. The notion of presentation can be used for any group. When S is finite, we say it is
finitely generated. When both S and R are finite, we say that it is finitely presented.

The quaternion Group Qg has the following presentation:

Qs = {(a,b ] a*,b*,a®V?, abab™").

The symmetry group S3 has the following presentation:

Ss = {a,b | a® b3, abab).

The dihedral group D, has the following presentation:

Dy = (r,s|r% s srsr).

The free abelian group Z? has the following presentation:

7% = (a,b | aba"'b71).

A.5 Visualization of the presentations of groups

Cayley graph is an efficient tool to help us to see the structure of a group from the generating set
and generating relations.
Let G be a group. Let S be a generating set of G, such that S = S~1.

Definition 1.5.1

The Cayley graph of G with respect to the generating set S is a graph I'(G, S) = (V, E),
where

o Vertices are elements in G (V = G),

e For any w,w’ € G, there exists an edge in F connecting w and w’ if and onlt if
w’ = ws, for some s € S.

By the cancellation rule in a group, if w’ = ws, the element s is unique. Hence there is a unique
way to associated to each orientation of an edge an element of S.

If we following a path in the graph from the identity element e to an element w, by writing
down elements associated to each edge with the orientation induces by the orientation of the path
from e to w, then we get a word for w of letters in S. On the other hand, any word of letters in
S associated to the element w will correspond to a path from e to w.

For example, for the element

w=aj---a.

we have

e a1 aias a1a2as3 (arag - - - ag).

Here are some examples
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Let G = Zo, and S = {1}, then we have

Let G = Dy4. Consider the four points in R?:

v = (]., 1), Vo = (71, 1), V3 = (71,71), Vg = (1,71)
Let s be the reflection of the plane fixing v; and vs, and r be the rotation sending (vy,va, v3, v4)
to (va, v3, vy, V7).

We denote S = {s, 7,771 = r3}, then have

rs S

Let G = Qs. Consider the generating set
S = {=+i,+j},

and we have

Now we assume that G is generated by n elements a4, ..., a, and denote

S ={af,.. at

ceey Uy e

As discussed previous, when different ways of writing w € G into words of letters in S correspond
to different paths connecting e to w. In particular, we consider w = e, then each loop from e to e
corresponds to a word of letters in S which is in the kernel of

¢:F, — G,

if we view it as an elements in Fj,.
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The Cayley graph of 7?2

Now we consider Z2 as an example to give a more precise description. Let

S = {(L 0)7 <_1a 0)7 (O’ 1)) (07 _1)}’

then the Cayley graph of Z? can be given as follows:

—(—1,3) (0,3) (1,3) (2,3) (3,3)
—(—1,2) 0,2) (1,2) (2,2) (3,2)
—(—1,1) 0,1) (1,1) (2,1) (3,1)
— (—1,0) (0,0) (1,0) (2,0) (3,0)
—(-1,-1)——(0,-1) —— (1,-1) ——— (2,-1) —— (3, —-1) ——

Notice that this is an infinite graph. Now we consider the presentation of Z2.
F2 = (a, b>

and the group homomorphism
o Fy — 72,

such that
¢(a) = (1,0), (b) = (0,1).
With the above graph, we would like to show that
ker ¢ = N(aba b~ 1).

Given any element w € F», it can be written as a word of a,b,a™!,b7 !,
w = w(a,b).

Its image under ¢ is then
p(w) = w((1,0),(0,1)),

which corresponds to a path in the Cayley graph.
Moreover w € ker ¢ if and only if

w((la 0)7 (07 1)) = (0,0),

or equivalently, w((1,0), (0,1)) corresponds to a loop starting and ending at (0, 0).
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First consider the loop corresponds to aba=1b~1:

(0,1) ——(1,1)

(0,0) —— (1,0)

This relation tells us that the generators of Z? commute with each other, hence Z? is an abelian

group.
Notice that any loop in Z2? can be decomposed into small squares of the form:

(Pg+1) ——(+1,q+1)

(p,g) —(p+1,9)

By connecting one vertex to (0,0), for example we take

(Pg+1) ——(p+1,q+1)
(p,g) —(p+1,9)
(0,0) (p,0)

then we have a loop starting and ending at (0,0) corresponding to the following word in Fs
w = (aPb?)aba" b~ (b7 9a7P).

Notice that w is conjugate to aba~'b~".

By this observation, any loop based starting and ending at (0, 0) corresponds to a product
among elements in [aba~1b~!]. Hence we have

ker ¢ = ((aba~1b71)).

For example, we consider the following loop in the Cayley graph

(0,2) ——(1,2)
(0,1) (1,1)
(0,00 —— (1,0)

If we walk around counterclockwise, the corresponding element in F5 is

abba~ b~ 1p L.
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If we go back to (0,0) in the middle, we can decompose it into two loops

(07 1) - (171) (072) - (172)
(07 0) - (170) (07 1) - (17 1)
(0,0)

corresponds to aba~'b~! and baba~'b~1b~! respectively.
Hence we have

abba" o707 = (aba b1 (baba b TY) € ((abaTthTY)).

Remark 1.5.5.
Another application of Cayley graphs is to allow us to define a metric on a group, so that we could
study groups using geometric method. This leads us to the research area so called Geometric
Group Theory.
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Appendix B

Construction of groups

B.1 Free Product between groups

In the previous part, we introduce the notion of free group. We may follow this idea and define
the so called free product between groups. Roughly speaking, a free group is a group generated
by a collection of elements which have no relation among them. A free product between groups
is a group generated by elements in two groups, such that elements in different groups has no
relation among them.

Let G and H be two non trivial groups. We consider elements in G* U H* as letters, for any
k € N*, we call any one of the following expressions a word

g1ha -+ grhi,
gihy - hg-19k,
higi - hige,
higi -+ gr—1hi.

We denote
G+ H := {e} U {words}.

To define an binary operator on G x H, we follow the same idea as what we have done for
constructing free groups. For any wy, ws € G H different from e, we first take their concatenation,
if the last letter of wy and the first letter of ws belong to different groups, then the concatenation
is the result wiws. Otherwise, without loss of generality, we may assume that

wy = g1hy - gehk, wo = higy---hig;.
Their concatenation is then
g1h1 - grhieh'igy - - hy,g),.

We do the computation in H to get the element hih].
If hih| # ey, then we obtain the result wyws.
If hyph) = ey, we cancel it and obtain

grhi - he_1grgi b - higg.

Now we consider the computation in G and get the element gxgj.
If grg} # ec, then we get the result wyws.
If grg} = eq, we cancel
grhy - hg_1hb - hlgh.

Then we repeat the above process again.

293
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Since there are only finitely many elements G and H involved, the process will stop at finite
time.

If there are letters left after the cancellation, the word formed by them is the result wjws.

Otherwise, all letters are canceled out, and we define in this case

wiwo = €,

Proposition 2.1.1

The set G * H with above binary operator is a group.

Definition 2.1.2

The group G * H is called the free product between G and H.

Remark 2.1.5.
From its definition, we can see that H * G = G x H. By consider single letter words in G x H,
both groups G and H can be considered as subgroups of G * H.

Remark 2.1.4.
By repeating this construction, we may define free product among several groups.

With this definition, we now review the notion of free group. Let A = {a}, denote
F(a) ={a" | n € Z},

the free group of 1 letter.
For any n € N\ {0, 1}, let

A={ay,...,an}
and denote Fj, the free group of n letter ay, ..., a,.

Proposition 2.1.5

We then have
F, 2 F(a) - * F(ap).

Similar to free groups, the free products between groups also have certain universal property.
Let G and H be two groups.
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Theorem 2.1.6

For any group K and any group homomorphisms
¢¢:G— K, o¢yg:H—=K,
there exists a unique group homomorphism
¢:GxH — K,

such that
dla =da, olu = ou.

B.2 Amalgamated free product between two groups

Let H, G1 and G2 be three groups. Assume that there exist group homomorphisms

¢1ZH—>G1,
¢2:H4)G2.

We consider the free product between GG; and Go, and consider its subset

S ={¢1(a)pz(a)”! | a € H}.

Definition 2.2.1

The amalgamated free product between GG; and G5 over H through ¢, and ¢s is the following
quotient group

G % Gs = (G1 % G2)/((9))-

All groups mentioned above form the following commutative diagram:
Fa

where ¢; and 41 (resp. g and i) are inclusion of Gy (resp. Gs) into G; * Gy and Gy x Gy

%

Gl*G24)G1*G2

>

respectively.

Remark 2.2.2.
Notice that if H = {e}, the an amalgamated free product over H is a free product.

B.3 HNN extension

This method was first introduced by Graham Higman, Bernhard Neumann, and Hanna Neumann
in 1949 in their paper "Embedding Theorems of Groups".
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In stead of "gluing" different groups together along their subgroups, here we consider glue two
parts of a group together.
More precisely, let H and G be two groups. Assume that there are two injective group

homomorphisms
¢1:H—G, ¢2:H— G.

We denote by ¢ a letter, and consider the free group generated by ¢ denoted by F(t). Let G x F(t)
be the free product between G and F(t). Consider the subset

S = {tp1(a)t " pa(a)™ | a € H}.

Definition 2.3.1

The HNN extension of G over H through ¢; and ¢sis the following quotient group

£Gi= G F(0)/((S)).
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