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Chapter 1

Introduction

In this chapter, we review briefly some history on general topology and algebraic topology. More
details can be found in [2] and the following two websites

mathshistory.st-andrews.ac.uk
analysis-situs.math.cnrs.fr

1.1 Some interesting problems
We start by discussing some interesting problems to have an idea of what a topological problem
looks like.

The Seven Bridges of Königsberg

The starting point of topology is Euler’s study on the famous "The Seven Bridges Problem". Here
(See Figure 1.1.1) is a map of an old town called Köningsberg which was the capital of the east
Prussia in east Europe. It is now called Kaliningrad, a city of Russia.

Figure 1.1.1: Map of Köningsberg (from Wikipedia)

The city was divided into four parts by the Pregel River. The question asked by Euler was:

Is it possible to visit all parts of the city by passing each bridge exactly once?

The actual shape of each part is not essential in this problem. Figure 1.1.2 is a sketch map of
the town to simplify the situation.

7
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Figure 1.1.2: Sketch map of Köningsberg

Notice that when we try to solve this question by walking in the city, staying in one part will
not change the result. Therefore, we can simplify the map by shrinking each part to a point and
obtain the following graph (See Figure 1.1.3).

Figure 1.1.3: Graph for The Seven Bridges Problem

Euler’s question is then equivalent to the following one:

Is it possible to find a circle path in the graph passing each edge of the graph exactly once?

One observation is that if we pass a vertex in the middle of the circle path, there should be one
edge arriving at this vertex and another one leaving it. Hence, if we call the number of half edges
adjacent to one vertex the degree of this vertex, then all vertices should have even degree unless
it is the starting or the ending vertex.

In 1736, Euler published a paper on the solution of this question, not only showing that this is
impossible, but also providing a solution for the general question which can be stated in today’s
language as follows.

Theorem 1.1.1 (Euler)

A finite connected graph has a circle path passing each edge exactly once if and only if
there is no vertex with odd degree.

It has a path with distinct starting and ending points passing each edge exactly once if
and only if there are exactly two vertices with odd degree.

Notice that the graph for "The Seven Bridges Problem" has 4 vertices where one has degree 5
and the other three have degree 3. Hence there is no way that we can visit all parts of the city by
passing each bridge exactly once.
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Polyhedron

Another famous work done by Euler is about convex polyhedrons in the Euclidean space. Given
a convex polyhedron, Euler gives the following formula

𝑣 − 𝑒+ 𝑓 = 2

where 𝑣 is the number of vertices of the polyhedron, 𝑒 is the number of edges of the polyhedron
and 𝑓 is the number of faces of the polyhedron.

There are three observations which one can make from this identity. Firstly all data involved
in this identity has nothing to do with the geometry of the convex polyhedron. For example, any
convex polyhedron with 5 vertices with the same adjacency relation among vertices, edges and
faces has a same identity (See Figure 1.1.4).

Figure 1.1.4: Identity for different geometric information: 5 − 9 + 6 = 2

Secondly the value on the right hand side is a constant independent of the values of 𝑣, 𝑒 and
𝑓 . In the other words, if we consider another convex polyhedron with maybe 6 or 10 vertices,
this constant is still the same (See Figure 1.1.5).

Figure 1.1.5: Identity for the left: 6 − 10 + 6 = 2;
Identity for the right: 7 − 11 + 6 = 2

Thirdly this identity also holds for non-convex polyhedron (See Figure 1.1.6).

Figure 1.1.6: Identity for the left: 6 − 12 + 8 = 2;
Identity for the right: 10 − 24 + 16 = 2
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Later, this identity is generalized by Antoine-Jean Lhuilier. He notice that Euler’s formula is
wrong when there are "holes" in the polyhedrons. If there are 𝑔 holes, then we have

𝑣 − 𝑒+ 𝑓 = 2 − 2𝑔.

For example, Figure 1.1.7 is a polyhedron with 1 hole.

Figure 1.1.7: Identity for genus 1: 12 − 24 + 12 = 0 = 2 − 2 × 1

Remark 1.1.2.
Given a polyhedron with 𝑔 holes, if we do not distinguish vertices, points on edges and points on
faces, the surface of this polyhedron is a genus 𝑔 surface. From this point of view, each polyhedron
with 𝑔 holes can be considered as a genus 𝑔 surface marked by some distinguished points as
vertices and distinguished lines as edges. The value 2 − 2𝑔 on the right hand side of the identity
only depends on the genus 𝑔 of the surface. This is called the Euler characteristic of the genus 𝑔
surface. In particular, Euler’s work consider the case 𝑔 = 0 where the surface is a sphere.

Intersection number between two closed planar curves

Consider two closed curves
𝛼 : 𝑆1 → R2

𝑠 ↦→ (𝛼1(𝑠), 𝛼2(𝑠))

and
𝛽 : 𝑆1 → R2

𝑡 ↦→ (𝛽1(𝑡), 𝛽2(𝑡))

For simplicity, we assume that both 𝛼 and 𝛽 are 𝒞1, and for any 𝑠, 𝑡 ∈ 𝑆1, we have 𝛼̇(𝑠) ̸= (0, 0)
and 𝛽̇(𝑡) ̸= (0, 0).

Figure 1.1.8: Two curves with 14 intersection points with each other.
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Assume that 𝛼 ∩ 𝛽 is finite. We are interested in the parity of the number of intersection
points between 𝛼 and 𝛽. To make this question more clear, we assume that all intersections
between 𝛼 and 𝛽 are transversal, and 𝛼 and 𝛽 pass each intersection point only once. In the
other words, at each intersection point in 𝛼 ∩ 𝛽, we assume that the tangent vector of 𝛼 and the
one of 𝛽 are linearly independent, and for each 𝑠 ∈ 𝑆1 (resp. 𝑡 ∈ 𝑆1), there is at most one 𝑡 ∈ 𝑆1

(resp. 𝑠 ∈ 𝑆1), such that 𝛼(𝑠) = 𝛽(𝑡).
Poincaré showed the following result.

Theorem 1.1.3 (Poincaré)

The number of intersection points between 𝛼 and 𝛽 is always even.

Notice that in the statement of this result, there is no condition on geometric information of
𝛼 and 𝛽, although the whole problem lies in a context of Euclidean geometry.

Intuitively this is not hard to understand. If 𝛼 is a round circle, it separate the plane into two
parts. We call the compact part the inside of 𝛼, and the infinite part the outside of 𝛼. When we
walk along 𝛽 with the starting point outside of 𝛼. The intersection happens when we meet 𝛼.
Since the intersection is transversal, each time when we meet 𝛼, we go from inside to outside
or from outside to inside. Since the starting point is outside, we have to meet 𝛼 even number
of times to be outside of 𝛼, which suggests the number of intersection points between 𝛼 and 𝛽
should be even. Of course, one needs to consider general cases and make a rigorous proof to get a
theorem.

1.2 Poincaré’s analysis situs
Since 1895, Poincaré published the famous paper "Analysis Situs" and its five supplements,
introducing "analysis situs" which he considered as a third geometry after the metric geometry
and the projective geometry. Its key feature different from the previous ones is that there is
no more notion of quantities of geometric measurements. The properties considered are all
qualitative. For example, two figures are considered as the same if we can change one to the other
by a continuous deformation.

In Analysis situs, Poincaré introduced the notion of manifold, Betti number, homology and
cohomology and their duality, fundamental group, the Euler-Poincaré formula, etc. Notice that
from the work of Euler and its generalization, we may associate numbers to topological objects as
topological invariants. Poincaré extended the notion of topological invariant, so that a topological
invariant could be an algebraic object, such as fundamental group, homology group, etc, instead
of just a number.

For more details about "Analysis Situs", see the following CNRS website:

analysis-situs.math.cnrs.fr
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Chapter 2

General Topology

2.1 Topological Space
As mentioned in the introduction, Poincaré considered topology as "third geometry" following
"metric geometry" (about distance) and "projective geometry" (about lines). The key feature
differentiating "topology" from the other two is that there is no distance, angle or any other
quantitative measurements. For example, in the "Seven Bridges Problem", when we walk in the
city, all we care about is which part of the city we are in, instead of the exact location. In other
words, we still care about geometry but in a large sense. Instead of saying the exact location, we
will consider neighborhoods. This will be described by so called topological structures.

Topological structures

Definition 2.1.1

Let 𝑋 be a non-empty set. A topological structure on 𝑋 is a collection 𝒯 of subsets of
𝑋, satisfying the following properties:

1) 𝑋 ∈ 𝒯 and ∅ ∈ 𝒯 ;

2) for any 𝑈, 𝑉 ∈ 𝒯 , we have 𝑈 ∩ 𝑉 ∈ 𝒯 ;

3) for any non-empty subset 𝒜 ⊂ 𝒯 , we have⋃︁
{𝑈 | 𝑈 ∈ 𝒜}.

Definition 2.1.2

A topological space is a couple (𝑋, 𝒯 ) where 𝑋 is a non-empty set and 𝒯 is a topological
structure on 𝑋.

Given any topological structure 𝒯 on 𝑋, we will call it a topology on 𝑋 for short.

Remark 2.1.3 (a remark on the word "space").
Mathematically there is no essential difference between "space" and "set". Usually when we see
the word "space", we should expect a set with certain structure (for example topological structure,
differential structure, metric structure, symplectic structure, etc.) depending on the context, most
of the time relating to geometry. In this course, by a space we usually mean a topological space.

13
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To simplify the notation, given a topological space (𝑋, 𝒯 ), when the topological structure 𝒯
is clear, we may simply denote it by 𝑋. Sometimes, we also say a space 𝑋 without mentioning 𝒯 .
This means that we already have a topological structure chosen once and for all.

Definition 2.1.4

Let (𝑋, 𝒯 ) be a topological space. Any subset 𝑈 ∈ 𝒯 is called an open subset of 𝑋 for the
topological structure 𝒯 . A subset 𝐾 ⊂ 𝑋 is said to be closed if its complement is open.

Remark 2.1.5.
It is possible (not necessary) that a subset is open and closed at the same time. Two trivial
examples are ∅ and 𝑋 for any topology on the space 𝑋.

Remark 2.1.6.
Roughly speaking, the subsets in the collection 𝒯 tells "neighborhood"s of each point in 𝑋.

Consider the distance on the real line R given by the absolute value of the difference between
two points. To get to one point 𝑥 ∈ R from anther point 𝑦 ∈ R, we may walk along R from 𝑦 and
check the distance to 𝑥 from our position. When the distance becomes 0, we know that we arrive
at 𝑥 (See Figure 2.1.1).

𝑥

𝑦1 𝑦2 𝑦4 𝑦5 𝑦3

Figure 2.1.1: A sequence converges to 𝑥

When we consider this in the context of topology, there is no notion of distance. Instead, we
may consider get into all neighborhoods containing the point 𝑥 to say we get to the point 𝑥 (See
Figure 2.1.2).

𝑥

𝑦1 𝑦2 𝑦4 𝑦5 𝑦3

Figure 2.1.2: A sequence converges to 𝑥

On the other hand, if we are not close to 𝑥, there must be one neighborhood where we are not
in. Therefore, to make this more rigorous, we have to make precise the meaning of neighborhood
here, and this is the notion related to open sets.

This example suggests that it is possible to use topologies on a space to distinguish points
in the Euclidean space. This may not be the case when considering more general topological
structures. A trivial example is the space 𝑋 equipped with the topology 𝒯 = {∅, 𝑋} discussed
later.

Example 2.1.7 (Euclidean space R3 / Metric topology).
We start by an example familiar to us the most. Consider the Euclidean space R2, and denote by
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dE the Euclidean metric. For any point 𝑝 ∈ R2 and any positive real number 𝑟, the open ball in
R2 centered at 𝑝 with radius 𝑟 is defined to be

𝐵𝑝(𝑟) := {𝑞 ∈ R2 | dE(𝑝, 𝑞) < 𝑟}.

We define that a subset 𝑈 ⊂ R2 is said to be open if

∀𝑝 ∈ 𝑈, ∃𝑟 > 0, 𝐵𝑝(𝑟) ⊂ 𝑈.

We can verify that these open sets form a topology on R2 (See Figure 2.1.3).

Figure 2.1.3: An open set in R2

This construction can be done for any metric space. We call such a topology the one induced
by the metric or simply the metric topology.

Question 2.1.8
Show that with respect to this topology, an open ball 𝐵𝑝(𝑟) is open.

Example 2.1.9 (Trivial topology).
If we forget the intuition from the metric geometry and simply play with the definition, we may
find the following two trivial examples. One is the following subset of 𝒫(𝑋) denoted by

𝒪𝑋 := {𝑋, ∅},

while the other one is the whole power set 𝒫(𝑋). They both satisfy all conditions in Definition
2.1.1 trivially, hence both induce topologies on 𝑋. The topology 𝒪𝑋 is called the trivial topology
on 𝑋, and the topology 𝒫(𝑋) is called the discrete topology on 𝑋. In particular, every point
𝑥 ∈ 𝑋 forms an open set in the discrete topology.

Previously, we discussed how to talk about convergences without using distance. Under the
discrete topology, if a sequence of points 𝑥𝑛 in 𝑋 converges to 𝑥, since the idea is to get into
every neighborhood of 𝑥, it is eventually a constant sequence with all 𝑥𝑛 = 𝑥 for 𝑛 bigger than
some 𝑁 ∈ N.

Example 2.1.10 (Initial topology).
Later we will introduce the notion of continuity, which is a map between two spaces relating the
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open sets in two spaces in certain way. Sometimes, we may be in a situation where we have a
map (or several maps) first and try to find and study a topology with respect to which the map
(or the maps) is continuous. One such example would be the projection from a Cartesian product
to one of its factors. See Subsection 2.3 for details on product spaces.

We consider the construction for one map to have an idea. Let 𝑋 be a non-empty set, and
(𝑌, 𝒯𝑌 ) be a topological space. Let 𝑓 be any map from 𝑋 to 𝑌 . Then

𝒯 := {𝑓−1(𝑈) | 𝑈 ⊂ 𝒯𝑌 }

gives a topological structure on 𝑋. Under this topology the map 𝑓 is continuous.

Example 2.1.11 (Zariski topology).
Let 𝐹 be any field. Given a natural number 𝑛 > 0, we consider the set 𝐹𝑛. We say a subset
𝑈 ⊂ 𝐹𝑛 is Zariski closed if it is the solution set of a family of polynomials on 𝐹 with 𝑛 variables.
By considering the complement of a Zariski closed subset of 𝐹𝑛 as an open set, we get the Zariski
topology on 𝐹𝑛. This is used a lot in the study of Lie theory and algebraic geometry.

Given any non-empty set 𝑋, as we have seen above, the space 𝑋 could be equipped with
different topological structures. Hence whether a subset of 𝑋 is open depends on the choice of
topological structures.

From its definition, it is possible that a topology on a non-empty set could be quite arbitrary
and artificial. By definition, to give a topology on a non-empty set, it is enough to describe all
open sets in this topology, which is also equivalent to describe all closed sets for this topology.

Comparison between topologies

Roughly speaking, a topology on 𝑋 is a subset of 𝒫(𝑋) satisfying certain properties. Unless 𝑋
contains only one element, such a subset in 𝒫(𝑋) is not unique, i.e. the topology on 𝑋 is not
unique when 𝑋 contains more than one element. The partial order on the set 𝒫(𝑋) given by
inclusion induces a partial order among all topologies on 𝑋.

Definition 2.1.12

Let 𝒯1 and 𝒯2 be two topologies on 𝑋. We say that 𝒯1 is finer than 𝒯2 if we have

𝒯2 ⊂ 𝒯1.

In this case, we also say that 𝒯2 is coarser than 𝒯1.

This is equivalent to say that an open set in 𝒯2 is also an open set in 𝒯1. This may remind us of
the comparison between different partitions of a given set. We will discuss this after introducing
the notion of subbasis and basis. Before that let us check two trivial examples.

Example 2.1.13.
By definition, all topologies of 𝑋 contains 𝑋 and ∅. Therefore, the trivial topology 𝒪𝑋 is the
coarsest topology of 𝑋. On the other hand, any topology if coarser than the discrete topology
𝒫(𝑋). Therefore 𝒫(𝑋) is the finest topology of 𝑋.

Example 2.1.14 (Topologies on R2 induced by different metrics).
There are different ways to define metrics on R2, each of which can induce a topology on R2.
Here we consider the four metrics whose distance functions are given by the following formulas:
let 𝑂 denote the origin of R2, for any point 𝑝 = (𝑥1, 𝑦1) and 𝑞 = (𝑥2, 𝑦2),
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1. dE(𝑝, 𝑞) =
√︀

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2;

2. d∞(𝑝, 𝑞) = max{|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|};

3. d𝑆𝑁𝐶𝐹 (𝑝, 𝑞) =
{︃

dE(𝑝, 𝑞), if 𝑂, 𝑝 and 𝑞 are colinear
dE(𝑝,𝑂) + dE(𝑞,𝑂), otherwise

;

4. ̃︀d(𝑝, 𝑞) = 1.

Respectively, we denote their corresponding metric topologies 𝒯E, 𝒯∞, 𝒯𝑆𝑁𝐶𝐹 and ̃︀𝒯 . Then by
considering balls for each metric, we can verify the following relations

𝒯E = 𝒯∞ ⊂ 𝒯𝑆𝑁𝐶𝐹 ⊂ ̃︀𝒯 .
Remark 2.1.15.
We remark here that not every pair of topologies can be compared.

Subbases and bases

To give a topology on a set 𝑋, we may describe all its open sets. Alternatively, we can begin
with some subsets of 𝑋 and try to get a topology of 𝑋 by considering their intersections and
unions. This is what we call "generating a topology on 𝑋 from a collection of its subsets".

More precisely, we denote by T ⊂ 𝒫(𝒫(𝑋)) the collection of all topologies on 𝑋. Let 𝒜 denote
a collection of non-empty subsets of 𝑋. We give the following definition.

Definition 2.1.16

The topology generated by 𝒜 is defined to be the following one

𝒯𝒜 :=
⋂︁

{𝒯 ∈ T | 𝒜 ⊂ 𝒯 }.

Proposition 2.1.17

The set 𝒯𝒜 is a topology on 𝑋.

Proof. For any 𝒯 ∈ T, we have
∅, 𝑋 ∈ 𝒯 ,

from which we have
∅, 𝑋 ∈

⋂︁
T ⊂

⋂︁
{𝒯 ∈ T | 𝒜 ⊂ 𝒯 } = 𝒯𝒜.

By the definition of 𝒯𝒜, for any 𝑈, 𝑉 ∈ 𝒯𝒜, for any 𝒯 ∈ T containing 𝒜, we have

𝑈, 𝑉 ∈ 𝒯 .

Since 𝒯 is a topology on 𝑋, we have
𝑈 ∩ 𝑉 ∈ 𝒯 .

Since This holds for any 𝒯 ∈ T containing 𝒜, we have

𝑈 ∩ 𝑉 ∈
⋂︁

{𝒯 ∈ T | 𝒜 ⊂ 𝒯 } = 𝒯𝒜.
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Similarly, by the definition of 𝒯𝒜, for any collection {𝑈𝛼}𝛼∈Ω of sets in 𝒯𝒜, for any 𝒯 ∈ T
containing 𝒜, we have

{𝑈𝛼}𝛼∈Ω ⊂ 𝒯 .

Since 𝒯 is a topology, we have ⋃︁
𝛼∈Ω

𝑈𝛼 ∈ 𝒯 .

Since this holds for any 𝒯 ∈ T contianig 𝒜, we have⋃︁
𝛼∈Ω

𝑈𝛼 ∈
⋂︁

{𝒯 ∈ T | 𝒜 ⊂ 𝒯 } = 𝒯𝒜.

As a conclusion of the above discussion, we show that 𝒯𝒜 is a topology on 𝑋.

We can also describe this topology in a constructive way.

Proposition 2.1.18

The topology 𝒯𝒜 consists of subsets in 𝑋 which can be written as an arbitrary union of
finite intersections of subsets in 𝒜 ∪ {𝑋}.

Proof. We consider the following subset of 𝒫(𝑋):{︃ ⋃︁
𝛼∈Ω

(︃
𝑛𝛼⋂︁
𝑖=1

𝑈𝛼𝑖

)︃⃒⃒⃒⃒
⃒Ω arbitrary index set, 𝑛𝛼 ∈ N*, 𝑈𝛼𝑖 ∈ 𝒜

}︃

By consider the distribution, we have(︃⋃︁
𝛼∈Ω

(︃
𝑛𝛼⋂︁
𝑖=1

𝑈𝛼𝑖

)︃)︃
∩

⎛⎝⋃︁
𝛽∈Θ

⎛⎝𝑚𝛽⋂︁
𝑗=1

𝑈𝛽𝑗

⎞⎠⎞⎠ =
⋃︁

𝛼∈Ω, 𝛽∈Θ

(︃(︃
𝑛𝛼⋂︁
𝑖=1

𝑈𝛼𝑖

)︃
∩

(︃𝑚𝛽⋂︁
𝑖=1

𝑈𝛽𝑗

)︃)︃

The above set satisfies the Condition 2) and 3) in Definition 2.1.1. By taking Ω to be empty set,
we can see that this set also contains ∅. The only thing not necessarily true is that it contains 𝑋.

To get over this problem, we may consider the same construction for 𝒜 ∪ {𝑋}.

Definition 2.1.19

A subset 𝒜 of 𝒯 is called a subbasis of 𝒯 if it generates 𝒯 .

Remark 2.1.20.
The above definition is essential the same as the one in the course "Point Set Topology". On the
other hand, if 𝒜 is required to have the property that⋃︁

𝒜 = 𝑋.

Then by considering all arbitrary union of finite intersections of subsets in 𝒜, we can have a
topology on 𝑋. There is no need to consider 𝒜 ∪𝑋. This is used as a definition for subbases in
some references.
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Definition 2.1.21

A subset ℬ of 𝒯 is called a basis of 𝒯 if any 𝑈 ∈ 𝒯 can be written as a union of open sets
in ℬ.

Remark 2.1.22.
Both subbases and bases of 𝒯 can be used to generate 𝒯 . The difference is that when we generate
𝒯 using a subbasis, we have to consider both "arbitrary unions" and "finite intersections", while
when using a basis, we only need to consider "arbitrary unions".

Any non empty collection of subsets of 𝑋 can be a subbasis of some topology on 𝑋, but this
is not true for bases.

To check if a subbasis is actually a basis, we may consider the definition, as well as the
following equivalent condition.

Proposition 2.1.23

Assume that ℬ is a subbasis of 𝒯 satisfying
⋃︀

ℬ = 𝑋. Then ℬ is a basis of 𝒯 if and only if
it satisfies the following property (see Figure 2.1.4 for an illustration):

• ∀𝑈, 𝑉 ∈ ℬ, ∀𝑥 ∈ 𝑈 ∩ 𝑉, ∃𝑊 ∈ ℬ, 𝑥 ∈ 𝑊 ⊂ 𝑈 ∩ 𝑉 .

𝑥

𝑈 𝑉

𝑈 ∩ 𝑉

𝑊

Figure 2.1.4: Condition in Proposition 2.1.23

Proof. One direction is trivial. If ℬ is a basis, then for any 𝑈 and 𝑉 in ℬ, the intersection 𝑈 ∩ 𝑉
is in 𝒯 , hence is a union of sets in ℬ. Therefore, for any 𝑥 ∈ 𝑈 ∩ 𝑉 , there is a set 𝑊 ∈ ℬ, such
that

𝑥 ∈ 𝑊 ⊂ 𝑈 ∩ 𝑉.

Now we turn to the other direction. Assume that ℬ is a subbasis, satisfying the condition

• ∀𝑈, 𝑉 ∈ ℬ, ∀𝑥 ∈ 𝑈 ∩ 𝑉, ∃𝑊 ∈ ℬ, 𝑥 ∈ 𝑊 ⊂ 𝑈 ∩ 𝑉 .

If we can show that any intersection between two sets 𝑈 and 𝑉 in ℬ is still in ℬ, by induction,
any finite intersections of sets in ℬ is in ℬ, hence we can conclude that ℬ is a basis.
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In fact the condition in the proposition is weaker than this. Let 𝑈 and 𝑉 be any sets in ℬ.
For any 𝑥 ∈ 𝑈 ∩ 𝑉 , by hypothesis, there is a set 𝑊𝑥 ∈ ℬ, such that

𝑥 ∈ 𝑊𝑥 ⊂ 𝑈 ∩ 𝑉,

therefore we have
𝑈 ∩ 𝑉 =

⋃︁
𝑥∈𝑈∩𝑉

𝑊𝑥.

By induction, we may show that given any finitely many sets 𝑈1, ..., 𝑈𝑛 in ℬ, there is a collection
of sets {𝑊𝛼}𝛼∈Ω in ℬ, such that

𝑈1 ∩ · · · ∩ 𝑈𝑛 =
⋃︁
𝛼∈Ω

𝑊𝛼.

Since ℬ is a subbasis of 𝒯 with
⋃︀

ℬ = 𝑋, given any 𝑊 ∈ 𝒯 , it can be written as a union of
finite intersections among sets in ℬ:

𝑊 =
⋃︁
𝛼∈Ω

(︃
𝑛𝛼⋂︁
𝑖=1

𝑈𝛼𝑖

)︃
.

By the previous discussion, for any 𝛼, there is a collection of sets {𝑊𝛼𝛽}𝛽∈Θ in ℬ, such that

𝑛𝛼⋂︁
𝑖=1

𝑈𝛼𝑖 =
⋃︁
𝛽∈Θ

𝑊𝛼𝛽 ,

therefore, we have

𝑊 =
⋃︁
𝛼∈Ω

⎛⎝⋃︁
𝛽∈Θ

𝑊𝛼𝛽

⎞⎠ =
⋃︁
𝛼∈Ω

⋃︁
𝛽∈Θ

𝑊𝛼𝛽 .

Hence ℬ is a basis of 𝒯 .

Example 2.1.24 (Euclidean spaces).
We consider the Euclidean space R3. Using the same notation as before, the collection of all open
balls in R3 form a basis of the topology of R3 induced by the Euclidean metric dE. In fact we can
choose a even smaller basis by considering only open balls with rational radius. Moreover, we can
check that the intersection between any two balls is not a ball. To fill in one such intersection, we
have to use infinitely many balls.

Example 2.1.25 (Partition of a set).
Let 𝑋 be any non-empty set. Let ℬ be a partition of 𝑋. We denote by 𝒯 the topology on 𝑋
generated by ℬ. Hence ℬ is a subbasis of 𝒯 . Moreover, if we consider the definition of a partition
of a set, the condition in Proposition 2.1.23 is satisfied vacuously, since any two subsets in ℬ have
empty intersection. Hence ℬ is also a basis of 𝒯 , and any open set in 𝒯 is a union of subsets in ℬ.

Neighborhoods and neighborhood bases

In order to study local properties near a point in a space, we introduce the notion of neighborhood
and neighborhood basis.

Consider a topological space 𝑋.
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Definition 2.1.26

For any non-empty subset 𝐴 of 𝑋, a neighborhood of 𝐴 is a subset 𝐵 of 𝑋, such that
there is an open subset 𝑈 of 𝑋 containing 𝐴 and contained in 𝐵:

𝐴 ⊂ 𝑈 ⊂ 𝐵.

In particular, for any point 𝑥 ∈ 𝑋, we call a neighborhood of {𝑥} a neighborhood of 𝑥.

Remark 2.1.27.
By its definition, a neighborhood of 𝐴 is not necessary to be open (See Figure 2.1.5). If a
neighborhood of 𝐴 is open (resp. closed) we will call it an open neighborhood (resp. closed
neighborhood).

𝐵𝑈

𝑝

Figure 2.1.5: One neighborhood 𝐵 of a point 𝑝 ∈ R2, where 𝐵 is the union of the three parts.

We obtain two immediate properties of neighborhoods from the above definition.

Proposition 2.1.28

Let 𝑝 be a point in 𝑋.

1) If 𝐵 is an open set in 𝑋 containing 𝑝, then 𝐵 is a neighborhood of 𝑝.

2) If 𝐵1 and 𝐵2 are two neighborhoods of 𝑝, then so is their intersection 𝐵1 ∩𝐵2.

Proof. 1) Consider the definition of a neighborhood of 𝑝, since 𝐵 is open, then we have

𝑝 ∈ 𝐵 ⊂ 𝐵.

Therefore 𝐵 is a neighborhood of 𝑝.
2) This comes from the fact that the intersection between two open sets is open. By the

definition of a neighborhood of 𝑝, we have open set 𝑈1 and 𝑈2, such that

𝑝 ∈ 𝑈1 ⊂ 𝐵1, 𝑝 ∈ 𝑈2 ⊂ 𝐵2.

Hence
𝑝 ∈ 𝑈1 ∩ 𝑈2 ⊂ 𝐵1 ∩𝐵2.
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Since 𝑈1 ∩ 𝑈2 is open, the intersection 𝐵1 ∩𝐵2 is a neighborhood of 𝑝.

Remark 2.1.29.
The second property relies on the fact that openness is preserved by finite intersections. Since
openness is not necessary preserved by arbitrary intersection, we do not have 2) for the intersection
of arbitrarily many neighborhoods of 𝑝.

Using the notion of neighborhood, we have a criteria for a subset to be open in 𝑋.

Proposition 2.1.30

A subset 𝐴 of 𝑋 is open if and only if for any 𝑥 ∈ 𝐴, the set 𝐴 is a neighborhood of 𝑥.

Proof. By the previous proposition, if 𝐴 is open, then it is a neighborhood of any of its points.
Conversely, if 𝐴 is a neighborhood of any 𝑥 ∈ 𝐴, then by the definition of the neighborhood,

for any 𝑥 ∈ 𝐴, there is a open set 𝑈𝑥, such that

𝑥 ∈ 𝑈𝑥 ⊂ 𝐴.

Hence we have
𝐴 =

⋃︁
𝑥∈𝐴

𝑈𝑥.

Therefore, the set 𝐴 is open.

Remark 2.1.31.
If we recall the discussion on the open sets in an Euclidean space (See Example 2.1.7), by that
definition, open balls are also open. Then similar to the above proposition, we have a subset of
the Euclidean space is open if and only if any point admits a ball neighborhood contained in this
subset.

Let 𝒩 (𝑥) denote the collection of all neighborhoods of 𝑥 in 𝑋.

Definition 2.1.32

A subset ℬ ⊂ 𝒩 (𝑥) is called a neighborhood basis of 𝑥 if it satisfies the following property

∀𝑈 ∈ 𝒩 (𝑥), ∃𝐵 ∈ ℬ, 𝐵 ⊂ 𝑈.

Example 2.1.33.
We consider the Euclidean space R2. Consider a point 𝑝 ∈ R2. Let (𝑟𝑛)𝑛≥0 be a sequence of
positive real numbers such that

lim
𝑛→∞

𝑟𝑛 = 0.

Then
{𝐵𝑛 = 𝐵𝑝(𝑟𝑛) | 𝑛 ∈ N},

is a neighborhood basis of 𝑝 (See Figure 2.1.6).

Example 2.1.34.
We consider another example which may look strange at the first glance. Let 𝑋 be a non-empty



2.1. TOPOLOGICAL SPACE 23

𝐵0 𝐵1 𝐵2 · · · 𝐵𝑛· · ·
𝑝

Figure 2.1.6: One neighborhood basis of 𝑝 ∈ R2

set. We consider the discrete topology. Then for any 𝑥 ∈ 𝑋, the single point set {𝑥} itself can
form a neighborhood basis of 𝑥.

Limit points and limit values

Let us first recall what is the limit of a sequence in R that we saw in the Analysis course. Let
(𝑥𝑛)𝑛∈N be a sequence in R converging to 𝑎:

lim
𝑛→∞

𝑥𝑛 = 𝑎,

i.e. for any 𝜖 > 0, there is 𝑁 ∈ N, such that for any natural number 𝑛 > 𝑁 , we have

|𝑥𝑛 − 𝑎| < 𝜖.

From the topological point of view, we consider the usual topology on R induced by the
Euclidean metric, the following subsets of R

{(𝑥− 𝜖, 𝑥+ 𝜖) | 𝜖 ∈ R>0},

form a neighborhood basis of 𝑥. The limiting condition above is then written as for any
neighborhood (𝑥− 𝜖, 𝑥+ 𝜖) of 𝑥, there is a natural number 𝑁 , such that for any 𝑛 > 𝑁 , we have

𝑥𝑛 ∈ (𝑥− 𝜖, 𝑥+ 𝜖).

See Figure 2.1.2 for an illustration.

Using the limit of a sequence, we can define the continuous function from R to itself. Let

𝑓 : R → R,

be a function. Let 𝑎 be a point in R. In Analysis course, we say that 𝑓 is continuous at 𝑎 if

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎),

which means that whatever the sequence (𝑥𝑛) converging to 𝑎 is, we have

lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓(𝑎).
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Another way to say it is that

∀ 𝜖 > 0, ∃ 𝛿 > 0, ∀𝑥 ∈ (𝑎− 𝛿, 𝑎+ 𝛿), 𝑓(𝑥) ∈ (𝑓(𝑎) − 𝜖, 𝑓(𝑎) + 𝜖).

From the topological point of view, here we consider a neighborhood basis of 𝑎

ℬ = {(𝑎− 𝛿, 𝑎+ 𝛿) | 𝛿 ∈ R>0},

and a neighborhood basis of 𝑓(𝑎)

𝒞 = {(𝑓(𝑎) − 𝜖, 𝑓(𝑎) + 𝜖) | 𝜖 ∈ R>0},

such that
∀𝑉 ∈ 𝒞, ∃𝑈 ∈ ℬ, 𝑓(𝑈) ⊂ 𝑉.

Figure 2.1.7 is an illustration

𝑓(𝑎)

𝑎 𝑥𝑂

𝑓(𝑥)

Figure 2.1.7: The function 𝑓(𝑥) continuous at 𝑎.

Following this idea, we have the following topological definition of the convergence of a
sequence.

Definition 2.1.35

Let (𝑥𝑛)𝑛∈N be a sequence in a topological space 𝑋. We say that the sequence (𝑥𝑛)𝑛∈N
converges to a point 𝑎 ∈ 𝑋, if for any neighborhood 𝑈 of 𝑎, there exists 𝑁 ∈ N, such
that for any 𝑛 > 𝑁 , we have 𝑥𝑛 ∈ 𝑈 .

Similar, we have a topological definition of a map continuous at a point as follows.

Definition 2.1.36

Let 𝑓 be a map from a topological space 𝑋 to a topological space 𝑌 . We say that 𝑓 is
continuous at 𝑎 ∈ 𝑋, if for any neighborhood 𝑉 of 𝑓(𝑎), there exists a neighborhood 𝑈 of
𝑎, such that

𝑓(𝑈) ⊂ 𝑉.
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Remark 2.1.37.
Notice that in the 𝜖-𝛿 language, the quantities 𝜖 and 𝛿 are used to find these neighborhoods in
the above definitions.

These definition can also be restricted to some subset of a topological space.

Definition 2.1.38

Let 𝐴 be a subset of a topological space 𝑋. A point 𝑥 ∈ 𝑋 is said to be an adherent point
of 𝐴 if for any neighborhood 𝑈 of 𝑥, we have

𝑈 ∩𝐴 ̸= ∅.

Let 𝑓 be a map from a topological space 𝑋 to a topological space 𝑌 . Let 𝐴 be a subset
of 𝑋 and 𝑎 be an adherent point of 𝐴. We say that 𝑓 admits a limit value 𝑦 ∈ 𝑌 when 𝑥
tends to 𝑎 in 𝐴, if for any neighborhood 𝑉 of 𝑦 and any neighborhood 𝑈 of 𝑎, we have

𝑓(𝑈 ∩𝐴) ∩ 𝑉 ̸= ∅.

We say that 𝑓(𝑥) admits a limit when 𝑥 tends to 𝑎 in 𝐴, if there exists 𝑦 ∈ 𝑌 , such
that for any neighborhood 𝑉 of 𝑦, we have a neighborhood 𝑈 of 𝑎,

𝑓(𝑈 ∩𝐴) ⊂ 𝑉.

Remark 2.1.39.
We will discuss the uniqueness of a limit in the next part.

Hausdorff condition

In the study in the Euclidean plane R2, the convergence of a sequence in R2 is one thing which
we discuss a lot. One fact used a lot is that the limit is unique for any convergence sequence in
R2. This relates to the property of R2 used here is that any two distinct points admit disjoint
neighborhoods. For example, if two points in R2 have distance 𝑟 > 0, then we may choose a ball
neighborhood of radius 𝑟′ < 𝑟/2 for each one of them, which are disjoint.

𝑝 𝑞

𝑟′𝑟′

𝑟

Figure 2.1.8: Disjoint neighborhoods of two points 𝑝 and 𝑞 in R2.

This can guarantee that there is no ambiguity of the limit point. However, such a property
does not hold for any topological space.
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Definition 2.1.40

We say that a topological space 𝑋 satisfies the Hausdorff condition if any distinct points
𝑥 and 𝑦 in 𝑋 admit disjoint neighborhoods, i.e. there exist a neighborhood 𝑈 of 𝑥 and a
neighborhood 𝑉 of 𝑦 such that

𝑈 ∩ 𝑉 = ∅.

If the space 𝑋 satisfies the Hausdorff condition, we say that 𝑋 is Hausdorff.

By this definition, the Euclidean plane, and more generally all metric spaces are Hausdorff. Now
let us check some non-Hausdorff spaces.

Example 2.1.41.
Consider the union

{0−} ∪ {0+} ∪ (0, 1).

For any 𝑥 ∈]0, 1], it has a neighborhood basis

ℬ(𝑥) =
{︂(︂

𝑥− 1
𝑛
, 𝑥+ 1

𝑛

)︂
∩ (0, 1)

⃒⃒⃒⃒
𝑛 ∈ N*

}︂
.

A neighborhood basis of 0− can be given by

ℬ(0−) =
{︂

{0−} ∪
(︂

0, 1
𝑛

)︂ ⃒⃒⃒⃒
𝑛 ∈ N*

}︂
,

and similarly a neighborhood basis of 0+ can be given by

ℬ(0+) =
{︂

{0+} ∪
(︂

0, 1
𝑛

)︂ ⃒⃒⃒⃒
𝑛 ∈ N*

}︂
.

Then we may see that it is impossible to separate 0− and 0+ with disjoint neighborhood.

The above example may be a little bit artificial. The following one appears a lot in the study
of character varieties.

Example 2.1.42.
Consider the special linear group SL(2,R). Let 𝜒 denote the set of conjugacy classes of elements
in SL(2,R). The group SL(2,R) can be considered as part of R4. We consider the restriction of
the Euclidean metric dE on R4 to SL(2,R) and give a topology on SL(2,R).

Given two subsets 𝐴 and 𝐵 of SL(2,R), we can define the distance between them as

dE(𝐴,𝐵) := inf{dE(𝑥, 𝑦) | 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}.

There is a natural projection from SL(2,R) to 𝜒. By defining a subset in 𝜒 is open if it is the
image of an open set of SL(2,R), we have a topology on 𝜒 (we will talk about this construction
later in details).

The non-Hausdorff phenomenon appears when 𝐴 and 𝐵 are distinct elements in 𝜒 with
dE(𝐴,𝐵) = 0, then there is no way that we can separate 𝐴 and 𝐵 by disjoint neighborhoods in 𝜒.

Such 𝐴 and 𝐵 do exist in 𝜒. Consider the following two matrices[︂
1 1
0 1

]︂
,

[︂
1 0
0 1

]︂
.
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Notice that in the conjugacy class of 𝑥, we have the elements of following form[︂
1 𝑡−2

0 1

]︂
=
[︂
𝑡−1 0
0 𝑡

]︂ [︂
1 1
0 1

]︂ [︂
𝑡 0
0 𝑡−1

]︂
for any 𝑡 ̸= 0. As 𝑡 goes to +∞, we have[︂

1 𝑡−2

0 1

]︂
→
[︂
1 0
0 1

]︂
.

Now we turn to the relation between the uniqueness of convergence limit and the Hausdorff
condition.

Proposition 2.1.43

If the topological space 𝑋 is Hausdorff, then given any convergent sequence (𝑥𝑛)𝑛∈N in 𝑋,
its limit is unique.

Proof. We prove it by contradiction. Let (𝑥𝑛)𝑛∈N be a sequence in 𝑋. Assume that 𝑎 and 𝑏 be
two distinct limits of (𝑥𝑛)𝑛∈N in 𝑋. Since 𝑋 is Hausdorff, there are 𝑈 and 𝑉 neighborhoods of 𝑎
and 𝑏 respectively, such that

𝑈 ∩ 𝑉 = ∅.

On the other hand, since 𝑎 is a limit of (𝑥𝑛)𝑛∈N, there exists 𝑁𝑥 ∈ N, such that for any 𝑛 > 𝑁𝑥,
we have

𝑥𝑛 ∈ 𝑈.

Similarly, since 𝑏 is a limit of (𝑥𝑛)𝑛∈N, there exists 𝑁𝑦 ∈ N, such that for any 𝑛 > 𝑁𝑦, we have

𝑥𝑛 ∈ 𝑈.

Let 𝑁 = max{𝑁𝑥, 𝑁𝑦}, then for any 𝑛 > 𝑁 , we have

𝑥𝑛 ∈ 𝑈 ∩ 𝑉,

which contradicts to the fact that 𝑈 ∩ 𝑉 is empty.

Interior, closure and boundary

Let 𝑋 be a topological space and 𝐴 be one of its subset.

Definition 2.1.44

The interior of 𝐴 is defined as:

𝐴 := {𝑥 ∈ 𝐴 | ∃𝑈 neighborhood of 𝑥,𝑈 ⊂ 𝐴}.

The closure of 𝐴 denoted by 𝐴 is the set of all adherent points of 𝐴, i.e.

𝐴 := {𝑥 ∈ 𝑋 | ∀ neighborhood 𝑈 of 𝑥, 𝑈 ∩𝐴 ̸= ∅}.

The boundary of 𝐴 is defined to be the subset

𝜕𝐴 := 𝐴 ∖𝐴.
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(1)

(2) (3) (4)

Figure 2.1.9: (1) subset 𝐴 of R2; (2) the interior 𝐴 of 𝐴; (3) the closure 𝐴 of 𝐴;
(4) the boundary 𝜕𝐴 of 𝐴.

Example 2.1.45.
See Figure 2.1.9 for an illustration of the above definition for a subset 𝐴 in R2. Here the dash
line means those boundary points are not in 𝐴.

There are certain facts which can be verified directly using the definitions.

Proposition 2.1.46

For any subset 𝐴 of 𝑋, we have

1) the interior of 𝐴 is the union of all open subsets of 𝑋 which are contained in 𝐴;

2) the closure of 𝐴 is the intersection of all closed subsets of 𝑋 which contain 𝐴;

3) the boundary of 𝐴 is the intersection between 𝐴 and 𝐴𝑐.

Proof. To show the first point, it is enough to prove the following two facts:

• 𝐴 is open;

• any open subset of 𝐴 is contained in 𝐴.

For any 𝑥 ∈ 𝐴, by the definition of interior and the definition of neighborhood, there is an
open neighborhood 𝑈 of 𝑥 contained in 𝐴. By Proposition 2.1.30, since 𝑈 is open, it is also a
neighborhood of any point 𝑦 ∈ 𝑈 . Hence every 𝑦 ∈ 𝑈 is also a point in 𝐴, which implies

𝑈 ⊂ 𝐴.

Hence 𝐴 is a neighborhood of 𝑥. Since this holds for any 𝑥 ∈ 𝐴, we have 𝐴 open.
Let 𝐵 be an open subset of 𝑋 contained in 𝐴. By Proposition 2.1.30, for any 𝑥 ∈ 𝐵, the open

set 𝐵 is a neighborhood of 𝑥 which is contained in 𝐴 by hypothesis. Therefore, we have

𝐵 ⊂ 𝐴,

and it holds for any open subset of 𝐴, including 𝐴. Hence 𝐴 is the union of all open subsets of 𝐴
(in another word, 𝐴 is the largest open subset of 𝐴).

To show the second point, it is enough to prove the following two facts:
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• the complement of 𝐴 is open;

• any open subset of 𝑋 disjoint from 𝐴 is contained in (𝐴)𝑐.

If 𝑥 ∈ 𝑋 is not a limit point of 𝐴, there is an open neighborhood 𝑈 of 𝑥 with

𝑈 ∩𝐴 = ∅.

Moreover for any 𝑦 ∈ 𝑈 , the set 𝑈 is a neighborhood of 𝑦, hence

𝑦 /∈ 𝐴.

Hence
𝑈 ⊂ (𝐴)𝑐.

Therefore (𝐴)𝑐 is open and 𝐴 is closed.
Let 𝐵 is a closed subset in 𝑋 containing 𝐴, then 𝐵𝑐 is open and disjoint from 𝐴. For any

point 𝑥 ∈ 𝐵𝑐, since 𝐵𝑐 is open, hence it is a neighborhood of 𝑥. Hence 𝑥 is not a limit point of 𝐴,
therefore 𝑥 /∈ 𝐴. Hence we have

𝐵𝑐 ∩𝐴 = ∅.

This implies that
𝐴 ⊂ 𝐵.

From the above discussion, we conclude that 𝐴 is the intersection of all closed set in 𝑋
containing 𝐴 (in another word, 𝐴 is the smallest closed subset containing 𝐴).

To show the third point, let 𝑥 ∈ 𝜕𝐴, by the definition of the boundary, we have

𝑥 ∈ 𝐴, 𝑥 /∈ 𝐴.

By the definition of 𝐴, given any neighborhood 𝑈 of 𝑥, we have

𝑈 ∩𝐴𝑐 ̸= ∅,

for otherwise, if 𝑈 ∩𝐴𝑐 = ∅, we have 𝑈 ⊂ 𝐴, which means that 𝑥 ∈ 𝐴. This is a contradiction.
Hence we have

𝑥 ∈ 𝐴𝑐,

and then
𝜕𝐴 ⊂ 𝐴 ∩𝐴𝑐.

Conversely, let 𝑥 ∈ 𝐴 ∩𝐴𝑐, for any neighborhood 𝑈 of 𝑥, we have

𝑈 ∩𝐴 ̸= ∅, 𝑈 ∩𝐴𝑐 ̸= ∅.

Hence 𝑈 is not a subset of 𝐴, hence 𝑥 /∈ 𝐴, and we have

𝑥 ∈ 𝐴 ∖𝐴 = 𝜕𝐴.

Hence we have
𝐴 ∩𝐴𝑐 ⊂ 𝜕𝐴.

As a conclusion, we have
𝐴 ∩𝐴𝑐 = 𝜕𝐴.

If we consider taking the interior or the closure of a map as maps from 𝒫(𝑋) to 𝒫(𝑋), their
relations with taking the union or the intersection of two subsets, or taking the compliment of a
subset are as follows.
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Proposition 2.1.47

If 𝐴 and 𝐵 are both subsets of 𝑋, we have

1) 𝐴 ∪𝐵 ⊂ ˚̂
𝐴 ∪𝐵 , 𝐴 ∪𝐵 = 𝐴 ∪𝐵 ;

2) ˚̂
𝐴 ∩𝐵 = 𝐴 ∩𝐵 , 𝐴 ∩𝐵 ⊂ 𝐴 ∩𝐵 ;

3) ̂̊︁𝐴𝑐 = 𝐴
𝑐
, 𝐴𝑐 =

(︁
𝐴
)︁𝑐

, 𝜕𝐴 = 𝜕𝐴𝑐 .

Proof. 1) For any 𝑝 ∈ 𝐴 ∪ 𝐵, we have 𝑝 ∈ 𝐴 or 𝑝 ∈ 𝐵. Without loss of generality, we assume
𝑝 ∈ 𝐴. Then there is a neighborhood 𝑈 of 𝑝, such that

𝑝 ∈ 𝑈 ⊂ 𝐴 ⊂ 𝐴 ∪𝐵.

Hence we have
𝑝 ∈ ˚̂

𝐴 ∪𝐵

The other direction is not correct. For example, we consider 𝐴 = (0, 1) ∪ {5} and
𝐵 = (4, 5) ∪ (5, 6). Consider the Euclidean metric topology on R, then 5 is an interior
point for 𝐴 ∪𝐵, but

𝐴 = (0, 1), 𝐵 = 𝐵,

which shows that 5 /∈ 𝐴 ∪𝐵.

Let 𝑝 ∈ 𝐴 ∪𝐵. For any neighborhood 𝑈 of 𝑝, we have

𝑈 ∩ (𝐴 ∪𝐵) ̸= ∅.

Hence we have 𝑈 ∩𝐴 ̸= ∅ or 𝑈 ∩𝐵 ̸= ∅.
If all neighborhoods of 𝑝 have non empty intersection with 𝐴, we have

𝑝 ∈ 𝐴.

Otherwise, there is a neighborhood 𝑈 of 𝑝 disjoint from 𝐴. We claim that all neighborhoods of 𝑝
have non empty intersection with 𝐵. For otherwise, there is a neighborhood 𝑉 of 𝑝 disjoint from
𝐵. Notice that 𝑈 ∩ 𝑉 is also a neighborhood of 𝑝, and we have

(𝑈 ∩ 𝑉 ) ∩𝐴 = ∅ = (𝑈 ∩ 𝑉 ) ∩𝐵.

This contradicts to the fact that 𝑝 ∈ 𝐴 ∪𝐵. Therefore, we have

𝐴 ∪𝐵 ⊂ 𝐴 ∪𝐵.

Conversely, if 𝑝 ∈ 𝐴 ∪𝐵, without loss of generality we may assume that 𝑝 ∈ 𝐴, then given any
neighborhood 𝑈 of 𝑝, we have

𝑈 ∩𝐴 ̸= ∅.

this implies that
𝑈 ∩ (𝐴 ∪𝐵) ̸= ∅.

Therefore we have 𝑝 ∈ 𝐴 ∪𝐵, and moreover

𝐴 ∪𝐵 ⊃ 𝐴 ∪𝐵.
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As a conclusion, we have
𝐴 ∪𝐵 = 𝐴 ∪𝐵.

For any point in 𝑝 ∈ ˚̂
𝐴 ∩𝐵, there is a neighborhood 𝑈 of 𝑝, such that

𝑈 ⊂ 𝐴 ∩𝐵,

hence
𝑈 ⊂ 𝐴 and 𝑈 ⊂ 𝐵.

This implies that
𝑝 ∈ 𝐴 and 𝑝 ∈ 𝐵.

from which we have
𝑝 ∈ 𝐴 ∩𝐵.

Hence
˚̂

𝐴 ∩𝐵 ⊂ 𝐴 ∩𝐵.

Conversely, if 𝑝 ∈ 𝐴 ∩𝐵, there are two neighborhoods 𝑈𝐴 and 𝑈𝐵 of 𝑝, such that

𝑈𝐴 ⊂ 𝐴 and 𝑈𝐵 ⊂ 𝐵.

Hence
𝑈𝑎 ∩ 𝑈𝐵 ∈ 𝐴 ∩𝐵.

By Proposition 2.1.28, the intersection 𝑈𝐴 ∩ 𝑈𝐵 is again a neighborhood of 𝑝, hence

𝑝 ∈ ˚̂
𝐴 ∩𝐵.

Therefore we have
˚̂

𝐴 ∩𝐵 ⊃ 𝐴 ∩𝐵.

We conclude now that
˚̂

𝐴 ∩𝐵 = 𝐴 ∩𝐵.

Now we consider the closure of 𝐴, 𝐵 and 𝐴 ∩𝐵. If 𝑝 ∈ 𝐴 ∩𝐵, then given any neighborhood
𝑈 of 𝑝, we have

𝑈 ∩ (𝐴 ∩𝐵) ̸= ∅.

Equivalently, we have
𝑈 ∩𝐴 ̸= ∅ and 𝑈 ∩𝐵 ̸= ∅

Hence
𝑝 ∈ 𝐴 and 𝑝 ∈ 𝐵.

Therefore, we have
𝐴 ∩𝐵 ⊂ 𝐴 ∩𝐵.

The other direction of inclusion is not correct. For example, we consider 𝐴 = (0, 1) and
𝐵 = (1, 2). Then we have

𝐴 = [0, 1] and 𝐵 = [1, 2].

Hence
𝐴 ∩𝐵 = {1},

while 𝐴 ∩𝐵 = ∅ which implies that 𝐴 ∩𝐵 = ∅.
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3) A point 𝑥 is in ̂̊︁𝐴𝑐, if and only if there is a neighborhood 𝑈 of 𝑥 such that

𝑈 ⊂ 𝐴𝑐.

Hence 𝑈 ∩𝐴 = ∅ which is equivalent to 𝑥 /∈ 𝐴. This shows that

̂̊︁𝐴𝑐 = 𝐴
𝑐
.

A point 𝑥 is in 𝐴𝑐, if and only if for any neighborhood 𝑈 of 𝑥, we have

𝑈 ∩𝐴𝑐 ̸= ∅.

This is equivalent to the fact that given any neighborhood 𝑈 of 𝑥, we have

𝑈 ⊈ 𝐴,

which is equivalent to
𝑥 /∈ 𝐴.

Hence we have
𝐴𝑐 =

(︁
𝐴
)︁𝑐
.

By the point 3) in Proposition 2.1.46, we have

𝜕𝐴 = 𝐴 ∩𝐴𝑐.

Replacing 𝐴 by 𝐴𝑐, we have

𝜕𝐴𝑐 = 𝐴𝑐 ∩ (𝐴𝑐)𝑐 = 𝐴𝑐 ∩𝐴 = 𝜕𝐴.

2.2 Continuity
Let 𝑋 and 𝑌 be two topological spaces. To build the connection between the two spaces in a
topological way, we use so called continuous maps.

Definition 2.2.1

A map
𝑓 : 𝑋 → 𝑌,

is said to be continuous if it satisfies one of the following equivalent conditions:

1) for any open set 𝑉 ⊂ 𝑌 , its preimage 𝑓−1(𝑉 ) is an open set in 𝑋;

2) for any closed set 𝑉 ⊂ 𝑌 , its preimage 𝑓−1(𝑉 ) is a closed set in 𝑋;

3) for any set 𝐴 ⊂ 𝑋, we have 𝑓(𝐴) ⊂ 𝑓(𝐴);

4) for any point 𝑥 ∈ 𝑋, for any neighborhood 𝑉 of 𝑓(𝑥) ∈ 𝑌 , there is a neighborhood 𝑈
of 𝑥, such that 𝑓(𝑈) ⊂ 𝑉 .

Remark 2.2.2.
From Definition 2.1.36, the last condition means that the map 𝑓 is continuous at every point
𝑥 ∈ 𝑋

Consider Definition 2.1.32, we may replace the last condition by an equivalent one
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5) for any point 𝑥 ∈ 𝑋, there is a neighborhood basis ℬ of 𝑥 and a neighborhood basis 𝒞 of
𝑓(𝑥), for any neighborhood 𝑉 ∈ 𝒞, there is 𝑈 ∈ ℬ, such that 𝑓(𝑈) ⊂ 𝑉 .

Proposition 2.2.3

All conditions listed in the definitions are equivalent to each other.

Proof. 1) ⇐⇒ 2) This comes from the fact that for any subset 𝑉 in 𝑌

(𝑓−1(𝑉 ))𝑐 = 𝑓−1(𝑉 𝑐).

4) =⇒ 3) Let 𝐴 be a subset of 𝑋. Assume that for any 𝑥 ∈ 𝐴, any neighborhood 𝑉𝑥 of 𝑓(𝑥), we
have a neighborhood 𝑈𝑥 of 𝑥, such that

𝑓(𝑈𝑥) ⊂ 𝑉𝑥.

Then for any neighborhood 𝑉𝑥 of 𝑓(𝑥), we have

𝑉𝑥 ∩ 𝑓(𝐴) ⊃ 𝑓(𝑈𝑥) ∩ 𝑓(𝐴) ̸= ∅.

Hence 𝑓(𝑥) ∈ 𝑓(𝐴). We have
𝑓(𝐴) ⊂ 𝑓(𝐴).

3) =⇒ 1) Assume that for any set 𝐴, we have

𝑓(𝐴) ⊂ 𝑓(𝐴).

Let 𝑉 be an open set in 𝑌 . Then its complement is closed, hence

𝑉 𝑐 = 𝑉 𝑐.

Let 𝐾 = 𝑓−1(𝑉 𝑐). We have
𝑓(𝐾) ⊂ 𝑓(𝐾) = 𝑉 𝑐 = 𝑉 𝑐.

Let 𝑈 denote 𝑓−1(𝑉 ). Notice that 𝐾 = 𝑈 𝑐.
For any 𝑥 ∈ 𝑈 , if any neighborhood 𝑊 of 𝑥 satisfies

𝑊 ∩ 𝑈 𝑐 ̸= ∅,

we have
𝑥 ∈ 𝐾.

By the previous discussion, we have

𝑓(𝑥) ∈ 𝑓(𝐾) = 𝑉 𝑐.

Hence
𝑥 /∈ 𝑓−1(𝑉 ) = 𝑈,

which is a contradiction. Therefore for any 𝑥 ∈ 𝑈 , there is a neighborhood 𝑊 of 𝑥 contained in
𝑈 , hence 𝑈 is also a neighborhood of 𝑥. This means 𝑈 is open.

4) =⇒ 1) Let 𝑉 be a open set of 𝑌 . For any 𝑥 ∈ 𝑋, such that 𝑓(𝑥) ∈ 𝑉 , the set 𝑉 is a
neighborhood of 𝑓(𝑥), hence there is a neighborhood 𝑈𝑥 of 𝑥, such that

𝑓(𝑈𝑥) ⊂ 𝑉,
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Hence we have
𝑈𝑥 ⊂ 𝑓−1(𝑉 ).

By the definition of neighborhood, there is an open neighborhood 𝑈 ′
𝑥 of 𝑥, such that

𝑈 ′
𝑥 ⊂ 𝑈𝑥 ⊂ 𝑓−1(𝑉 ).

Hence we have
𝑓−1(𝑉 ) =

⋃︁
𝑥∈𝑋,𝑓(𝑥)∈𝑉

𝑈 ′
𝑥.

Therefore 𝑓−1(𝑉 ) is open in 𝑋.

1) =⇒ 4) Assume that given any 𝑥 ∈ 𝑋 for any neighborhood 𝑉 of 𝑓(𝑥), there is an open
neighborhood 𝑉𝑥 of 𝑓(𝑥) contained in 𝑉 . By 1), 𝑓−1(𝑉𝑥) is open, hence a neighborhood of 𝑥. Let
𝑈𝑥 = 𝑓−1(𝑉𝑥), we then have

𝑓(𝑈𝑥) ⊂ 𝑉𝑥 ⊂ 𝑉.

As mentioned in the previous in Example 2.1.10, any map from 𝑋 to 𝑌 can induce a topology on
𝑋 by considering the preimages of open sets in 𝑌 .

Consider a map
𝑓 : 𝑋 → 𝑌.

We denote by 𝒯𝑋 the topology on 𝑋 and by 𝒯𝑓 the topology induced by 𝑓 .

Proposition 2.2.4

The map 𝑓 is continuous if and only if the topology 𝒯𝑋 is finer than 𝒯𝑓 .

Proof. Let 𝒯𝑌 denote the topology on 𝑌 . By the definition of 𝒯𝑓 , for any 𝑈 ∈ 𝒯𝑓 , there is an
open set 𝑉 ∈ 𝒯𝑌 , such that

𝑈 = 𝑓−1(𝑉 ).

By definition, the map 𝑓 is continuous with respect to the topology 𝒯𝑋 on 𝑋, if and only if
for any 𝑉 ∈ 𝒯𝑌 , we have

𝑓−1(𝑉 ) ∈ 𝒯𝑋 ,

this is equivalent to
𝒯𝑓 ⊂ 𝒯𝑋 ,

i.e. 𝒯𝑋 is finer than 𝒯𝑓 .

Definition 2.2.5

A map
𝑓 : 𝑋 → 𝑌,

is called a homeomorphism if it is continuous and bijective, and its inverse

𝑓−1 : 𝑌 → 𝑋,

is also continuous.
Two topological space are said to be homeomorphic if there is a homeomorphism

between them.
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Now assume that the map
𝑓 : 𝑋 → 𝑌,

is bijective.
If 𝑓 is continuous, by taking preimage and considering Proposition2.2.4, it induces a map

𝑓* : 𝒯𝑌 → 𝒯𝑋 ,

whose image is 𝒯𝑓 . If 𝑓−1 is continuous, then by the same reason, we have a map

(𝑓−1)* : 𝒯𝑋 → 𝒯𝑌 ,

whose image is 𝒯𝑓−1 .
Assume that 𝑓 is a homeomorphism. Since 𝑓 ∘ 𝑓−1 is identity map, for any 𝑉 ∈ 𝒯𝑌 , we have

𝑉 = (𝑓 ∘ 𝑓−1)(𝑉 ) = 𝑓(𝑓*(𝑉 )) = (𝑓−1)*(𝑓*(𝑉 )),

hence it induces the identity map

(𝑓−1)* ∘ 𝑓* : 𝒯𝑌 → 𝒯𝑌 .

Similarly, the composition
𝑓* ∘ (𝑓−1)* : 𝒯𝑋 → 𝒯𝑋

is also the identity map. Therefore, both map 𝑓* and (𝑓−1)* are bijective, and we have

𝒯𝑋 = 𝒯𝑓 , 𝒯𝑌 = 𝒯𝑓−1

In fact, we could have the following proposition.

Proposition 2.2.6

Let 𝑓 be a bijective map from a topological space (𝑋, 𝒯𝑋) to a topological space (𝑌, 𝒯𝑌 ).
Then 𝑓 is a homeomorphism if and only if 𝒯𝑋 = 𝒯𝑓 .

Proof. If 𝑓 is a homeomorphism, the above discussion shows that 𝒯𝑋 = 𝒯𝑓 .
Now let us assume that 𝒯𝑋 = 𝒯𝑓 . We would like to show that the bijective map 𝑓 and its

inverse are both continuous.
By Proposition 2.2.4, we have 𝑓 continuous. To study 𝑓−1, notice that the fact that 𝑓 is

bijective induces a bijective map
𝑓 : 𝒫(𝑋) → 𝒫(𝑌 ),

𝐴 ↦→ 𝑓(𝐴).
Its has an inverse

𝑓−1 : 𝒫(𝑌 ) → 𝒫(𝑋),
𝐵 ↦→ 𝑓−1(𝐵).

which is also bijective.
Let 𝑈 ∈ 𝒯𝑋 be any open set of 𝑋. Since 𝒯𝑋 = 𝒯𝑓 , there is an open set 𝑉 ∈ 𝒯𝑌 , such that

𝑓−1(𝑉 ) = 𝑈.

Since 𝑓−1 is bijective and 𝑓(𝑈) satisfies

𝑓−1(𝑓(𝑈)) = 𝑈,

we have 𝑉 = 𝑓(𝑈). Therefore, we have

(𝑓−1)−1(𝑈) = 𝑓(𝑈) = 𝑉

open for any 𝑈 ∈ 𝒯𝑋 . The map 𝑓−1 is continuous.
As a conclusion, the map 𝑓 is a homeomorphism.
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Remark 2.2.7.
All these discussions shows that if two topological spaces are homeomorphic to each other, from
the topological point of view (only playing with open sets), we cannot distinguish them. We will
see this phenomenon in a more concrete way later.

Remark 2.2.8.
The discussion here may reminds us the example to show that a continuous bijection is not
necessary a homeomorphism. Let us check what happens here and compare it with the above
proposition.

Let 𝑋 be the interval [0, 1) and 𝑌 be the unit circle 𝑆1 in the Euclidean plane R2. We define
the map

𝑓 : [0, 1) → 𝑆1,

𝑡 ↦→ (cos 2𝑡𝜋, sin 2𝑡𝜋).

(See Figure 2.2.1).

0 𝑡 1
𝑓

2𝜋𝑡

𝑓(𝑡)

𝑓(0)

Figure 2.2.1: The map 𝑓

We consider the subspace topology (which will be talk about later). The topology in [0, 1)
considered here is generated by its intersections open intervals in R, while the topology in 𝑆1

considered here is generated its intersection with Euclidean open balls in R.
Notice that this is a continuous map and bijective, but 𝑓−1 is not continuous. The problem

appears when we consider the neighborhoods of 0. The interval [0, 1/2) is open in [0, 1), but its
preimage is not in 𝑆1.

If we would like to compare 𝒯𝑋 and 𝒯𝑓 , we will see that a neighborhood basis of 0 in 𝒯𝑋 can
be given by {︂[︂

0, 1
𝑛

)︂⃒⃒⃒⃒
𝑛 ∈ N ∖ {0, 1}

}︂
,

while a neighborhood basis of 0 in 𝒯𝑓 can be given by{︂[︂
0, 1
𝑛

)︂
∪
(︂
𝑛− 1
𝑛

, 1
)︂⃒⃒⃒⃒
𝑛 ∈ N ∖ {0, 1}

}︂
.

(See Figure 2.2.2)
Hence for any 𝑛 ∈ N ∖ {0, 1}, the subset [︂

0, 1
𝑛

)︂
,
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0 1 0 1

Figure 2.2.2: A neighborhood basis of 0 for 𝒯𝑋 (Left); a neighborhood basis of 0 for 𝒯𝑓 (Right)

is never a neighborhood of 0 for 𝒯𝑓 . We can verify that

𝒯 ⊋ 𝒯𝑓 .

2.3 Constructions of topologies
There are several ways which we usually use to construct topological spaces from a set possibly
equipped with some (geometric, algebraic, topological, etc.) structures.

Subspace topology

Let 𝑋 be a topological space. Given any non-empty subset 𝐴 ⊂ 𝑋, we can define a topology on
𝐴 by considering the topology on 𝑋 in the following way:

• a subset of 𝐴 is open if and only if it can be written as an intersection 𝐴 ∩ 𝑈 , where 𝑈 is
open in 𝑋.

Definition 2.3.1

This topology on 𝐴 is called the subspace topology, and the subset 𝐴 equipped with the
subspace topology is called a topological subspace of 𝑋 (or simply a subspace of 𝑋).

The following is an immediate consequence of the definition.

Proposition 2.3.2

Let 𝐴 be a subset of 𝑋 and consider the subspace topology on 𝐴.

1) Let ℬ be a basis (resp. subbasis) of the topology on 𝑋, then

{𝐴 ∩ 𝑈 | 𝑈 ∈ ℬ}

form a basis (resp. subbasis) of the topology on 𝐴.

2) Let 𝑝 be a point in 𝐴 and ℬ𝑝 be a neighborhood basis of 𝑝 in 𝑋, then

{𝐴 ∩ 𝑈 | 𝑈 ∈ ℬ𝑝}

is a neighborhood basis of 𝑝 in 𝐴 equipped with the sub

Example 2.3.3 (Circles in R2).
Denote by 𝐶 a circle in the Euclidean plane R2. Consider the Euclidean metric topology on R2,
and the induced subspace topology on 𝐶. Since open balls form a basis of the topology on R2,
their intersections with 𝐶, which are open circular arcs, form a basis of the topology on 𝐶 (See
Figure 2.3.1 for an illustration).
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Figure 2.3.1: An open circular arc on a circle

Example 2.3.4 (Tangential circles in R2).
For any 𝑛 ∈ N*, we consider the circle 𝐶𝑛 in R2 centered at (1/𝑛, 0) of radius 1/𝑛. Let 𝑋 be the
union

𝑋 =
⋃︁
𝑛∈N*

𝐶𝑛.

This is usually called the Hawaii earring.
We consider the subspace topology on 𝑋 induced by the Euclidean metric topology on R2.

Let 𝑝 ∈ 𝑋 be a point different from 0. There is a unique circle 𝐶𝑛, such that 𝑝 ∈ 𝐶𝑛. The local
picture around 𝑝 in 𝑋 would be the same as that around 𝑝 in 𝐶𝑛.

The difference appears when we consider the neighborhood of the origin 𝑂. A neighborhood
basis of 𝑂 in R2 can be given by open disks. Let 𝐷 be an open disk centered at 𝑂 of radius 𝑟 > 0.
Then for any 𝑛 ∈ N* such that 𝑛−1 < 𝑟, we have

𝐶𝑛 ⊂ 𝐷.

(See Figure 2.3.2 for an illustration.)

Figure 2.3.2: Any neighborhood of 𝑂 contains 𝐶𝑛 from some 𝑁 ∈ N*

Hence, by taking a neighborhood of 𝑂 in each circle 𝐶𝑛 and taking the union of them, we do
not necessary get a neighborhood of 𝑂 (See Example 2.3.24 "Wedge Sum").

Remark 2.3.5.
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If 𝐴 and 𝐵 are both subsets of 𝑋, with

𝐴 ⊂ 𝐵 ⊂ 𝑋,

Then 𝐴 has a subspace topology 𝒯𝐴,𝑋 induced by the topology of 𝑋. At the same time, the set
𝐴 also has a subspace topology 𝒯𝐴,𝐵 induced by the subspace topology of 𝐵 which is a subspace
of 𝑋. Since 𝐴 ⊂ 𝐵, given any open set 𝑈 of 𝑋, we have

𝐴 ∩ 𝑈 = (𝐴 ∩𝐵) ∩ 𝑈 = 𝐴 ∩ (𝐵 ∩ 𝑈).

Hence 𝒯𝐴,𝑋 = 𝒯𝐴,𝐵 .

Initial topology

Let 𝑋 be a non-empty set, and 𝑌 be a topological space. As in Example 2.1.10, for any map

𝑓 : 𝑋 → 𝑌,

we can associate to 𝑋 a topology defined as follows:

• a subset of 𝑋 is open if and only if it is the preimage of an open set of 𝑌 .

By Proposition 2.2.4, this topology is the coarsest topology on 𝑋 with respect to which 𝑓 is
continuous.

This construction can be done in a more general setting. We consider the following set

Π := {((𝑌𝛼, 𝒯𝛼), 𝑓𝛼) | 𝛼 ∈ Ω},

where Ω is the index set, and for each 𝛼 ∈ Ω, (𝑌𝛼, 𝒯𝛼) is a topological space and 𝑓𝛼 is a map from
𝑋 to 𝑌𝛼. We then consider the following set

𝒜 = {𝑈 ∈ 𝒫(𝑋) | ∃𝛼 ∈ Ω, ∃𝑉 ∈ 𝒯𝛼, 𝑈 = 𝑓−1
𝛼 (𝑉 )},

as a subbasis and denote by ℐ the topology on 𝑋 generated by 𝒜.

Definition 2.3.6

The topology ℐ constructed above is called the initial topology on 𝑋 induced by (𝑓𝛼)𝛼∈Ω.

Proposition 2.3.7

If 𝒯 is a topology on 𝑋, and for any 𝛼 ∈ Ω, 𝑓𝛼 is continuous with respect to 𝒯 , then 𝒯 is
finer than ℐ.

Proof. For any 𝛼 ∈ Ω, since 𝑓𝛼 is continuous with respect to 𝒯 , for any 𝑉 open set in 𝑌𝛼, we
have the preimage

𝑈 = 𝑓−1
𝛼 (𝑉 ) ∈ 𝒯 .

Hence we have 𝒜 ⊂ 𝒯 , which implies ℐ ⊂ 𝒯 .

Example 2.3.8 (Subspace topology).
The subspace topology is a special case of the initial topology. Let 𝐴 be a non-empty subspace of
a topological space 𝑋. We consider the embedding map

𝜄 : 𝐴 →˓ 𝑋,

then the subspace topology on 𝐴 is the initial topology induced by 𝜄.
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Example 2.3.9 (Weak topology and Weak-* topology).
Let (𝐸, ‖ · ‖) be a real normed vector space. Notice that ‖ · ‖ induces a distance on 𝐸, which
moreover induces a topology on 𝐸 which we usually called the strong topology. A map from 𝐸 to
a topological space is said to be strongly continuous if it is continuous with respect to the strong
topology on 𝐸.

The dual space 𝐸* of 𝐸 is then defined to be the space of linearly strongly continuous maps
from 𝐸 to R (or linear functionals, linear forms). The initial topology induced by

{𝑙 | 𝑙 ∈ 𝐸*},

is called the weak topology on 𝐸.
Reciprocally, the space 𝐸 can be considered as part of the dual space of 𝐸*. The initial

topology induced by
{𝑥 | 𝑥 ∈ 𝐸},

is called the weak-* topology on 𝐸*.

Remark 2.3.10.
The term "weak topology" may be used in a more general sense, sometimes considered as the
same as initial topology in some references.

How to describe an initial topology

With same notation as above, in practical, we can take a basis ℬ𝛼 of each 𝒯𝛼, then consider the
𝑓𝛼-preimages in 𝑋

{𝑓−1
𝛼 (𝑈) | 𝑈 ∈ ℬ𝛼}.

Then ⋃︁
𝛼∈Ω

{𝑓−1
𝛼 (𝑈) | 𝑈 ∈ ℬ𝛼}

is a subbasis of ℐ.

Product topology

Let (𝑋𝛼)𝛼∈Ω be a family of topological spaces. We consider their Cartesian product

∏︁
𝛼∈Ω

𝑋𝛼 =

⎧⎨⎩ (𝑥𝛼)𝛼∈Ω ∈

(︃⋃︁
𝛼∈Ω

𝑋𝛼

)︃Ω
⃒⃒⃒⃒
⃒⃒∀𝛼 ∈ Ω, 𝑥𝛼 ∈ 𝑋𝛼

⎫⎬⎭ .

For each 𝛼 ∈ Ω, there is a canonical projection map

𝑝𝑟𝛼 :
∏︁
𝛼∈Ω

𝑋𝛼 → 𝑋𝛼,

(𝑥𝛼)𝛼∈Ω ↦→ 𝑥𝛼.

Definition 2.3.11

The initial topology on
∏︀
𝛼∈Ω 𝑋𝛼 induced by (𝑝𝑟𝛼)𝛼∈Ω is called the product topology on∏︀

𝛼∈Ω 𝑋𝛼.
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Final topology

In a similar fashion, we can define the final topology on a non-empty set 𝑋 by setting 𝑋 as the
image space instead of the domain space of a map. More precisely, consider a map

𝑓 : 𝑌 → 𝑋,

where 𝑌 is a topological space. We can associate to 𝑋 a topology defined as follows

• a subset of 𝑋 is open if and only if its preimage is open in 𝑌 .

Remark 2.3.12.
Notice that the map 𝑓 is not necessarily injective, hence the preimage of 𝑈 being open in 𝑌 is
not the same as 𝑈 being the image of an open set in 𝑌 .

We denote this topology by ℱ . Similar to Proposition 2.2.4, we have the following proposition
about the relation between this topology and the continuity of 𝑓 .

Proposition 2.3.13

Given a topology 𝒯 on 𝑋, the map 𝑓 is continuous with respect to 𝒯 if and only if 𝒯 is
coarser than ℱ .

Proof. If 𝑓 is continuous, then for any 𝑈 ∈ 𝒯 , the preimage 𝑓−1(𝑈) is open in 𝑌 , hence by the
definition of ℱ , we have

𝑈 ∈ ℱ .

This implies that
𝒯 ⊂ ℱ .

Conversely, if 𝒯 ⊂ ℱ , for any 𝑈 ∈ 𝒯 , we have 𝑈 ∈ ℱ . By the definition of ℱ , the preimage
𝑓−1(𝑈) is open in 𝑌 . Hence 𝑓 is continuous.

Similar to the initial topology, we can generalize the above discussion and consider a collection of
maps from topological spaces to 𝑋. Let (𝑌𝛼, 𝒯𝛼)𝛼∈Ω be a collection of topological spaces. For
each 𝛼 ∈ Ω, we denote by

𝑓𝛼 : 𝑌𝛼 → 𝑋,

a map from 𝑌𝛼 to 𝑋. Then we consider the following set

ℬ = {𝑈 ∈ 𝒫(𝑋) | ∀𝛼 ∈ Ω, 𝑓−1
𝛼 (𝑈) ∈ 𝒯𝛼},

as a subbasis and denote by ℱ the topology on 𝑋 generated by ℬ.

Definition 2.3.14

The topology ℱ constructed above is called the final topology on 𝑋 induced by (𝑓𝛼)𝛼∈Ω.

A generalization of Proposition 2.3.13 can be stated as follows, which can also be used as the
definition of the final topology on 𝑋 with respect to (𝑓𝛼)𝛼∈Ω.

Proposition 2.3.15

Given any topology 𝒯 on 𝑋, all maps 𝑓𝛼’s are continuous with respect to 𝒯 if and only if
𝒯 is coarser than ℱ .
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Example 2.3.16 (Coherent topology).
Let 𝑋 be a non-empty set and (𝑋𝛼)𝛼∈Ω be a family of subsets of 𝑋 whose union is 𝑋. Denote
by 𝜄𝛼 the inclusion of 𝑋𝛼 into 𝑋. Assume that for each 𝛼, the subset 𝑋𝛼 is equipped with a
topology 𝒯𝛼. Then the final topology on 𝑋 induced by (𝜄𝛼)𝛼∈Ω is called the coherent topology on
𝑋 induced by (𝑋𝛼)𝛼∈Ω, also called the weak topology on 𝑋.

If 𝑋 is a topological space and (𝑋𝛼)𝛼∈Ω is an open cover of 𝑋, then for each 𝛼, the topology
on 𝑋𝛼 is the subspace topology. Then the coherent topology coincides with the given topology
on 𝑋.

How to describe a final topology

It is slightly more complicated to describe a final topology. By the definition of the final topology,
any open set 𝑈 in 𝑋 must have the 𝑓𝛼-preimage open in 𝑌𝛼. Hence 𝑈 is necessarily the 𝑓𝛼-image
of an open set of 𝑌𝛼. Hence with the same notation as above, we start by considering the
𝑓𝛼-images of open sets in ℬ𝛼

{𝑓𝛼(𝑉 ) | 𝑉 ∈ 𝒯𝛼}.
Notice that since 𝑓𝛼 is not necessarily injective, we only have

𝑉 ⊂ 𝑓−1
𝛼 (𝑓𝛼(𝑉 )),

instead of equality in general. Hence we do not necessarily have every 𝑓𝛼(𝑉 ) open in 𝑋 with
respect to the final topology. We need those 𝑉 ∈ 𝒯𝛼, such that 𝑓−1

𝛼 (𝑓𝛼(𝑉 )) is still open in 𝑌𝛼.
Hence we consider the following set

𝒞 =
⋃︁
𝛼∈Ω

{𝑓𝛼(𝑉 ) | 𝑉 ∈ 𝒯𝛼, ∀𝛽 ∈ Ω, 𝑓−1
𝛽 (𝑓𝛼(𝑉 )) ∈ 𝒯𝛽}.

which is a subbasis of the final topology.

Quotient topology

Let 𝑋 be a non-empty set and ℛ ⊂ 𝑋 ×𝑋 be an equivalence relation on 𝑋. We denote by 𝑋/ℛ
the set of ℛ-equivalence classes and

𝜋 : 𝑋 → 𝑋/ℛ,
the canonical projection.

Assume that 𝑋 admits a topology, then the final topology on 𝑋/ℛ induced by 𝜋 is called the
quotient topology on 𝑋/ℛ.

Example I: Quotient by a group action

We have learned groups actions on a set. By considering the orbits decomposition, each group
action on a set 𝑋 induces a partition of 𝑋, hence an equivalent relation on it. If moreover 𝑋
admits a topological structure, then it induces a quotient topology on 𝑋/ℛ. In this following, we
give some explicit examples.

Example 2.3.17 (Circle as a quotient space).
When talking about the circle 𝑆1, we usually consider the unit circle in the complex plane and
define it as the following set

𝑆1 = {𝑒2𝜋𝑖𝜃 | 𝜃 ∈ R}.
Alternative, we can also consider 𝑆1 as a quotient space of R by an action. We consider the

real line R and the group Z of integers acts on it by

𝑓 : Z × R → R
(𝑛, 𝑥) ↦→ 𝑥+ 𝑛
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For any 𝑥 ∈ R, its orbit is
𝑂𝑥 = {𝑥+ 𝑛 | 𝑛 ∈ Z}.

We consider
R/Z := {𝑂𝑥 | 𝑥 ∈ R}.

To describe the final topology, it is enough to describe a collection of subsets of R/Z whose
preimages form a basis of the topology of R.

We first describe a basis of the topology on R. By considering the Euclidean metric on R, a
basis can be given by considering all open intervals. We denote this basis by ℬ.

For any open interval 𝐼 ∈ ℬ of R, we consider its image under 𝜋. Notice that the image of
any open interval of length greater than 1 is R/Z. We only need to consider the open interval
with length smaller or equal to 1. To give an explicit description, we use the following fact: there
is a bijective map

𝜙 : R/Z → [0, 1),

by sending an orbit to its unique representative in [0, 1).
We consider the composition

𝜙 ∘ 𝜋 : R → [0, 1),

then the image of an open interval in R with length smaller or equal to 1 is one of the following
two types:

• either it is an interval (𝑎, 𝑏) ⊂ (0, 1);

• or there are 𝑎 and 𝑏 in (0, 1) with 𝑎 ≤ 𝑏, such that the image is [0, 𝑎) ∪ (𝑏, 1).

Moreover their preimages in R are all open. Hence they can generate the final topology on [0, 1).

Figure 2.3.3: A neighborhood basis of a point in (0, 1) (left); a neighborhood basis of 0 (right)

Consider the topology on [0, 1) generated by these two kinds of open sets, we may find the
resulting topological space is homeomorphic to 𝑆1, and the following map

𝜓 : [0, 1) → 𝑆1,

𝑥 ↦→ 𝑒2𝜋𝑖𝑥.

is an homeomorphism.
In this way, we found that the space R/Z with quotient topology is topologically the same as

𝑆1.

Remark 2.3.18.
In fact, we can even going further to talk about metric geometry in this example. Since Z acts
isometrically on R "properly discontinuously", the metric on R induces a metric on R/Z whose
length is 1.
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Remark 2.3.19.
We will come back to this example when we talk about "fundamental group" and "universal cover".

Example II: Gluing spaces by identifying points

The third way to obtain a circle topologically is familiar to everyone the most in some way. In
our daily life, we can tie two ends of a rope together to get a circle. We will give a mathematical
description of this process.

Example 2.3.20.
We consider the unit interval [0, 1] on R as a subspace. The goal is to "glue" 0 and 1 together.
We consider the following equivalence relation:

ℛ := {(𝑥, 𝑥) | 𝑥 ∈ [0, 1]} ∪ {(0, 1), (1, 0)} ⊂ [0, 1]2.

Then in the quotient space
[0, 1]/ℛ,

the point 0 and 1 are identified together.

Figure 2.3.4: Identifying 0 with 1.

We can show that the set [0, 1]/ℛ with the quotient topology is homeomorphic to the circle.
To be more precise, we notice that the topology on [0, 1] is the subspace topology, hence a basis
can be given by considering the following three types intervals

• open intervals in [0, 1],

• intervals [0, 𝑥) for any 𝑥 ∈ (0, 1],

• intervals (𝑥, 1] for any 𝑥 ∈ [0, 1).

Let 𝜋 denote the quotient map. Notice that the singletons 0 and 1 are not open, hence the set
𝜋([0, 𝑥)) should not be open in the quotient topology, since

𝜋−1(𝜋([0, 𝑥))) = [0, 𝑥) ∪ {1},

which is not open in [0, 1]. A neighborhood basis of 𝜋(0) can be given by

{𝜋([0, 𝑥) ∪ (𝑦, 1]) | 𝑥 ∈ (0, 1], 𝑦 ∈ [0, 1)}.

Under this topology, notice that not only 0 and 1 are glued together, so are their neighborhoods.
Hence, the topological space [0, 1]/ℛ is homeomorphic to 𝑆1.
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Figure 2.3.5: Gluing neighborhoods of 0 with neighborhoods of 1 in [0, 1].

The above example shows how we describe "glue two point together" in a mathematical way
using equivalence relation. A slightly more complicated example is the following way to get torus.

Example 2.3.21.
We consider the unit square 𝐷 in R2 with vertices

𝑣1 = (0, 0), 𝑣2 = (1, 0), 𝑣3 = (1, 1), 𝑣4 = (0, 1).

For any pair of points 𝑝 and 𝑞 in R2, the segment connecting them can be parametrized by [0, 1]
in the following way

𝑝(𝑡) = (1 − 𝑡)𝑝+ 𝑡𝑞, 𝑡 ∈ [0, 1].

We then define the following equivalent relation

ℛ :={(𝑢(𝑡), 𝑣(𝑡)) | ∀ 𝑡 ∈ [0, 1], 𝑢(𝑡) = (1 − 𝑡)𝑣1 + 𝑡𝑣2, 𝑣(𝑡) = (1 − 𝑡)𝑣4 + 𝑡𝑣3}∪
∪ {(𝑢(𝑡), 𝑣(𝑡)) | ∀ 𝑡 ∈ [0, 1], 𝑢(𝑡) = (1 − 𝑡)𝑣1 + 𝑡𝑣4, 𝑣(𝑡) = (1 − 𝑡)𝑣2 + 𝑡𝑣3}∪
∪ {(𝑣(𝑡), 𝑢(𝑡)) | ∀ 𝑡 ∈ [0, 1], 𝑢(𝑡) = (1 − 𝑡)𝑣1 + 𝑡𝑣2, 𝑣(𝑡) = (1 − 𝑡)𝑣4 + 𝑡𝑣3}∪
∪ {(𝑣(𝑡), 𝑢(𝑡)) | ∀ 𝑡 ∈ [0, 1], 𝑢(𝑡) = (1 − 𝑡)𝑣1 + 𝑡𝑣4, 𝑣(𝑡) = (1 − 𝑡)𝑣2 + 𝑡𝑣3}∪
∪ {(𝑣, 𝑣) | 𝑣 ∈ 𝐷} ⊂ 𝐷2.

The quotient space 𝐷/ℛ is then obtained by identifying the sides 𝑣1𝑣2 (resp. 𝑣1𝑣4) and 𝑣4𝑣3
(resp. 𝑣2𝑣3). The resulting surface is a torus which we denote by 𝑇 . Notice that the four vertices
of 𝐷 are identified together and we denote it by 𝑝.

Similar as in the previous example, roughly speaking, when we glue two points on the sides of
𝐷, we also glue their neighborhoods together to get a neighborhoods of the resulting point in 𝑇 ,
and the neighborhoods of four vertices are glued together to get neighborhoods of 𝑝 in 𝑇 (See
Figure 2.3.6 for an illustration).

The following example is more like what we do when making Baozi.

Example 2.3.22.
When we make a baozi, if we forget those pleats, roughly speaking we change a disk into a sphere
by identifying the boundary of the disk to a point. Mathematically, we consider the unit disk D
in C given by

D = {𝑧 ∈ C | |𝑧| ≤ 1}.

We consider the following equivalence relation

ℛ := {(𝑧, 𝑧) | 𝑧 ∈ D} ∪ (𝑆1)2 ⊂ D2
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Figure 2.3.6: Gluing opposite sides of a square step by step.

Then the quotient space D/ℛ is a sphere (See Figure 2.3.7 for an illustration). In particular, we
denote by 𝑝 the resulting point by identifying points in 𝑆1 together, and a neighborhood of 𝑆1 is
then sent to a neighborhood of 𝑝.

D

𝑆1

𝑝

Figure 2.3.7: Identifying all points in 𝑆1 together.

From above examples, we may conclude that by taking quotient, we may identify certain
points together to get a point, and at the same time we also identifying their neighborhoods to
get the neighborhood of the resulting point for the quotient topology.

Question 2.3.23
Consider the unit circle in the Euclidean plane

𝑆1 := {𝑒2𝜋𝑖𝜃 | 𝜃 ∈ R}.

We consider the subgroup ⟨𝑟𝛼⟩ of the isometry group of the Euclidean plane generated by the
rotation 𝑟𝛼 which rotates the plane around the origin for an angle 𝛼 /∈ 2𝜋Q counterclockwise.
Describe the quotient topology on 𝑆1/⟨𝑟𝛼⟩.

In the above examples, what we did was to modify some part of the space to get a new space.
Next we would like to introduce two ways to construct new spaces by connecting several given
spaces together.
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Example 2.3.24 (Wedge sum of spaces).
Let (𝑋𝛼, 𝑥𝛼)𝛼∈Ω be a family of topological spaces 𝑋𝛼 marked by a point 𝑥𝛼. We consider the
disjoint union of these spaces

𝒳 =
⨆︁
𝛼∈Ω

𝑋𝛼.

and the coherent topology on 𝒳 is generated by the topologies on 𝑋𝛼’s (See Example 2.3.16).
We define the following equivalence relation

ℛ := {(𝑥, 𝑥) ∈ 𝒳 2 | 𝑥 ∈ 𝒳 } ∪ {(𝑥𝛼, 𝑥𝛽) ∈ 𝒳 2 | 𝛼, 𝛽 ∈ Ω}.

The quotient space 𝒳/ℛ is called the wedge sum of (𝑋𝛼, 𝑥𝛼)𝛼∈Ω and is denoted by⋁︁
𝛼∈Ω

(𝑋𝛼, 𝑥𝛼).

Intuitively, what we have done is identifying all 𝑥𝛼’s together. Let us denote this resulting point
by 𝑦 ∈ 𝒳 . Roughly speaking, the neighborhood of 𝑦 can be obtained by two steps: first taking
one neighborhood for each 𝑥𝛼, then identifying all 𝑥𝛼’s together.

For example, we consider the wedge sum of two circles, and the resulting space is the figure
eight (See Figure 2.3.8).

Figure 2.3.8: Wedge sum of two circles.

Example 2.3.25 (Connected sum).
Consider two 𝑛-manifolds 𝑀1 and 𝑀2. Let 𝐵1 and 𝐵2 be open 𝑛-balls in 𝑀1 and 𝑀2 respectively,
and denote their boundary in 𝑀1 and 𝑀2 by 𝐴1 and 𝐴2. Since both 𝐴1 and 𝐴2 are (𝑛−1)-spheres,
there is an orientation reversing homeomorphism

𝑓 : 𝐴1 → 𝐴2.

We consider the disjoint union

𝑁 = (𝑀1 ∖𝐵1) ⊔ (𝑀2 ∖𝐵2),

with the coherent topology, and construct the following equivalence relation

ℛ := {(𝑥, 𝑥) ∈ 𝑁2 | 𝑥 ∈ 𝑁} ∪ {(𝑥, 𝑓(𝑥)) ∈ 𝑁2 | 𝑥 ∈ 𝐴1} ∪ {(𝑓(𝑥), 𝑥) ∈ 𝑁2 | 𝑥 ∈ 𝐴1}.

The quotient space 𝑁/ℛ is called the connected sum between 𝑀1 and 𝑀2, and we denote it by

𝑀1#𝑀2.

Figure 2.3.9 is a connected sum of two copies of torus.

Remark 2.3.26.
Notice that the construction of a connected sum can guarrentee that the resulting space is still
an 𝑛-manifold.
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Figure 2.3.9: Connected sum of two torus.

We end this part by one example which is a technique usually called "cone off" part of a space.

Example 2.3.27 (Cone).
Let 𝑋 be a topological space. We consider the following product space

𝑋 × [0, 1].

A cone based on 𝑋 is then defined as the following quotient space

Cone(𝑋) := 𝑋 × [0, 1]/ℛ,

where

ℛ := {((𝑥, 𝑡), (𝑥, 𝑡)) ∈ (𝑋×[0, 1])2 | 𝑥 ∈ 𝑋×[0, 1]}∪{((𝑥, 1), (𝑦, 1)) ∈ (𝑋×[0, 1])2 | 𝑥, 𝑦 ∈ 𝑋×[0, 1]}.

If 𝑋 = 𝑆1, the above construction gives exactly the cone that we are used to know (See Figure
2.3.10 for an illustration).

1

𝑆1
0

Figure 2.3.10: A cone.

The above construction can be done for a part of the space 𝑋. Let 𝐴 be a non empty subset
of 𝑋. We consider the following disjoint union

𝑌 = 𝑋 ⊔ Cone(𝐴).

We define an equivalent relation on it by

ℛ :=
{︀

(𝑦, 𝑦) ∈ 𝑌 2 ⃒⃒ 𝑦 ∈ 𝑌
}︀

∪
{︀

(𝑥, (𝑥, 0)) ∈ 𝑌 2 ⃒⃒𝑥 ∈ 𝐴
}︀
.

Roughly speaking, the space 𝑌/ℛ can be understood as gluing Cone(𝐴) to 𝑋 along 𝐴. The
process of changing 𝑋 to 𝑌/ℛ is called "coning off 𝐴 in 𝑋" (See Figure 2.3.11 for an illustration).

2.4 Connectivity
We recall here three basic properties of topological spaces which we usually discuss. The intuition
of these properties has something to do with the study of Euclidean space. We will discuss them
one by one in this part.
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𝐴

𝐶𝐴

𝑋

Figure 2.3.11: Coning off 𝐴 in 𝑋.

Connected spaces

When we study the continuity in Euclidean space, it is intuitively related to the notion of
connectedness. For example, let

𝑓 : [𝑎, 𝑏] → R,

be a continuous increasing function defined on a closed interval [𝑎, 𝑏] ⊂ R. The intermediate value
theorem tells us for any 𝑦 ∈ [𝑓(𝑎), 𝑓(𝑏)], there exists a point 𝑐 ∈ [𝑎, 𝑏], such that 𝑓(𝑐) = 𝑦. In
other words, the image [𝑓(𝑎), 𝑓(𝑏)] is a interval of R with no gap in the middle which consists
with our impression on connectedness.

When we follow this observation and study the connectedness for a general topological space,
we find that the connectedness can be understood in different ways which are no longer equivalent
when consider a general space. One way to say that something is connected is that it cannot be
described as a union of two disjoint components. More rigorously, we have the following definition
of being connected.

Definition 2.4.1

We say that a topological space 𝑋 is connected if 𝑋 cannot be written as a disjoint union
of two non-empty open subset, i.e. there is NO pair of open sets in 𝑋 denoted by 𝑈 and 𝑉
respectively, which satisfy the following properties:

1) 𝑈 and 𝑉 are non-empty;

2) 𝑈 ∩ 𝑉 = ∅;

3) 𝑈 ∪ 𝑉 = 𝑋.

A subset 𝐴 of 𝑋 is connected if by considering its subspace topology it is a connected
topological space.

Remark 2.4.2.
Alternatively, the above definition can be rewritten as: The space 𝑋 is connected if and only if
the only subsets of 𝑋 both open and closed are 𝑋 and ∅.

Proposition 2.4.3

If 𝐴 is a connected subset of 𝑋, so is 𝐴.

Proof. We prove this proposition by contradiction.
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Let 𝐴 be a connected subset of 𝑋. If 𝐴 is not connected, there are open sets 𝑈 and 𝑉 in 𝑋,
such that

1) 𝑈 ∩𝐴 and 𝑉 ∩𝐴 are not empty;

2) 𝑈 ∩ 𝑉 ∩𝐴 is empty;

3) (𝑈 ∪ 𝑉 ) ∩𝐴 is 𝐴.

Let 𝑥 ∈ 𝑈 ∩𝐴. Notice that 𝑈 is a neighborhood of 𝑥. Since 𝑥 is also a limit point of 𝐴, we have

𝑈 ∩𝐴 ̸= ∅.

Similarly, we have
𝑉 ∩𝐴 ̸= ∅.

Since 𝐴 ⊂ 𝐴, by 2) we have

𝑈 ∩ 𝑉 ∩𝐴 ⊂ 𝑈 ∩ 𝑉 ∩𝐴 = ∅,

and by 3) we have
(𝑈 ∪ 𝑉 ) ∩𝐴 = ((𝑈 ∪ 𝑉 ) ∩𝐴) ∩𝐴 = 𝐴.

The above discussion shows that 𝐴 is not connected which is a contradiction.

This result can be enhanced to the following one.

Corollary 2.4.4

Let 𝐴 be a connected subset of 𝑋. If 𝐵 is a subset of 𝑋 with

𝐴 ⊂ 𝐵 ⊂ 𝐴,

then 𝐵 is connected.

Remark 2.4.5.
The proof is the same. In the previous proof, we only use the fact that points in 𝐴 are limit
points of 𝐴, and 𝐴 ⊂ 𝐴. These are still true, when we replace 𝐴 by 𝐵.

Given a point 𝑥 of 𝑋, there may be many connected subsets of 𝑋 containing 𝑥.

Lemma 2.4.6

Let 𝑥 be a point in 𝑋, and 𝑈 and 𝑉 be two connected subsets containing 𝑥, then 𝑈 ∪ 𝑉 is
still connected.

Proof. We prove this lemma by contradiction. Assume that 𝑈 ∪ 𝑉 is not connected. Let 𝐴 and
𝐵 be two non empty open sets of 𝑈 ∪ 𝑉 , such that

𝐴 ∩𝐵 = ∅, 𝐴 ∪𝐵 = 𝑈 ∪ 𝑉.

Since 𝐴 is non empty and 𝐴 ⊂ 𝑈 ∪ 𝑉 , one of 𝐴∩𝑈 and 𝐴∩ 𝑉 must be non empty. Without loss
of generality, we may assume that

𝐴 ∩ 𝑈 ̸= ∅.
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If 𝐴 ∩ 𝑉 is empty, since 𝑉 ⊂ 𝐴 ∪𝐵, we have 𝑉 ⊂ 𝐵, from which we have

𝑥 ∈ 𝑉 ∩ 𝑈 ⊂ 𝐵 ∩ 𝑈.

Therefore, 𝑈 can be written as a disjoint union of two non empty open sets 𝐴 ∩ 𝑈 and 𝐵 ∩ 𝑈
which contradicts to the fact that 𝑈 is connected.

If 𝐴 ∩ 𝑉 is also non empty, then since one of 𝐵 ∩ 𝑈 and 𝐵 ∩ 𝑉 must be non empty, there is
one of 𝑈 can 𝑉 having non empty intersections with both 𝐴 and 𝐵. Without loss of generality,
we may assume that it is 𝑈 . Therefore, 𝑈 can be written as a disjoint union of two non empty
open sets 𝐴 ∩ 𝑈 and 𝐵 ∩ 𝑈 which contradicts to the fact that 𝑈 is connected.

Remark 2.4.7.
Here we consider connected sets containing 𝑥 which may not be neighborhoods of 𝑥. In the
proof, the existence of 𝑥 can guarantee that 𝑈 ∩ 𝑉 is not empty, which is the condition needed
essentially.

Using this lemma, we may define the following equivalence relation in 𝑋: given any pair of
points 𝑥 and 𝑦 in 𝑋,

• 𝑥 ∼ 𝑦 if and only if there is a connected set 𝑈 containing both 𝑥 and 𝑦.

Definition 2.4.8

An equivalence class of the equivalence relation ∼ in 𝑋 is called a connected component
in 𝑋.

Here are several facts about connected components of 𝑋.

Proposition 2.4.9

The connected components of 𝑋 have the following properties.

1) The space 𝑋 is a disjoint union of its connected components.

2) A subset of 𝑋 is a connected component if and only if it is a maximal connected
subset of 𝑋.

3) A connected component is closed.

Proof. 1) This comes from the fact that each connected component is an equivalent class for an
equivalence relation on 𝑋. By the properties of equivalence classes, we have the statement.

2) Let 𝐶 be a connected component of 𝑋 and 𝑥 be any point in 𝐶. We first show that 𝐶 is
connected. Otherwise, there are two open sets 𝑈 and 𝑉 of 𝑋, such that

• 𝑈 ∩ 𝐶 ̸= ∅, 𝑉 ∩ 𝐶 ̸= ∅;

• 𝑈 ∩ 𝑉 = ∅;

• (𝑈 ∪ 𝑉 ) ∩ 𝐶 = 𝐶.

Let 𝑥 ∈ 𝑈 ∩ 𝐶 and 𝑦 ∈ 𝑉 ∩ 𝐶. Since 𝑥 ∼ 𝑦, we have a connected subset 𝑊 of 𝑋 containing 𝑥
and 𝑦. Notice that all points of 𝑊 are equivalent to 𝑥, hence

𝑊 ⊂ 𝐶.

By the relation among 𝑈 , 𝑉 and 𝐶, we have the following facts
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• 𝑈 ∩𝑊 ̸= ∅, 𝑉 ∩𝑊 ̸= ∅;

• 𝑈 ∩ 𝑉 ∩𝑊 ⊂ 𝑈 ∩ 𝑉 ∩ 𝐶 = ∅;

• (𝑈 ∪ 𝑉 ) ∩𝑊 = (𝑈 ∪ 𝑉 ) ∩ (𝐶 ∩𝑊 ) = 𝐶 ∩𝑊 = 𝑊 .

Therefore 𝑊 is not connected which is a contradiction. Hence 𝐶 is connected.
Now we show the maximality of 𝐶. Let 𝐷 be any connected subset of 𝑋 having non empty

intersection with 𝐶. Let 𝑥 be in this intersection. For any 𝑦 ∈ 𝐷, we have 𝑥 ∼ 𝑦, therefore 𝐷 ⊂ 𝐶.
Hence 𝐶 is a maximal connected subset of 𝑋 (no other connected subset of 𝑋 containing 𝐶).

Conversely, assume that 𝐶 is a maximal connected subset of 𝑋. Let 𝑥 be a point in 𝐶. Since
𝐶 is connected, we have

𝐶 ⊂ [𝑥],
where [𝑥] is the equivalence class of 𝑥.

Let 𝑦 be any point in 𝑋 with 𝑦 ∼ 𝑥. By the definition of the equivalence relation, we have a
connected subset 𝑈 containing both 𝑥 and 𝑦. Then the union 𝑈 ∪ 𝐶 is again a connected subset
containing 𝑥. Since 𝐶 is maximal, we have

𝑈 ∪ 𝐶 = 𝐶.

Therefore 𝑈 ⊂ 𝐶 which implies that 𝑦 ∈ 𝐶. Hence

[𝑥] ⊂ 𝐶.

As a conclusion, we have
𝐶 = [𝑥],

which is a connected component by definition.
3) If 𝐶 is a connected component of 𝑋, 2) shows that 𝐶 is connected. By Proposition 2.4.3,

its closure 𝐶 is also connected and contains 𝐶. By the maximality of 𝐶, we have

𝐶 = 𝐶,

which is closed.

Remark 2.4.10.
The point 2) is an equivalent way to define a connected component in 𝑋.

The above proposition told us that the closedness holds all the time. Since the openness is
preserved by finite intersection, we have the following immediate corollary of the above proposition.

Corollary 2.4.11

If 𝑋 has finitely many connected components, then each of these components is open.

However the openness of a connected component does not hold in general. For example, we
consider Q as a subspace of R (consider the Euclidean metric topology). Let 𝑝 be a rational
number. Then we can show that its connected component is {𝑝}.

In fact, we can always cut R at an irrational number to separate Q and any of its subsets into
two subsets which are both open and closed, unless this subset contains only one element. Notice
that for a basis of the subspace topology on Q can be given by the intersections between Q and
open intervals in R.

The openness can be guaranteed when the space satisfies the following local property, called
local connectedness.
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Definition 2.4.12

The space 𝑋 is said to be locally connected if for any point 𝑥 ∈ 𝑋, for any neighborhood
𝑈 of 𝑥, there is a connected neighborhood 𝑉 of 𝑥 satisfying 𝑉 ⊂ 𝑈 .

Considering a neighborhood basis of a point in 𝑋, the above definition is equivalent to the
following one.

Proposition 2.4.13

The space 𝑋 is locally connected if every point 𝑥 ∈ 𝑋 admits a neighborhood basis consisting
of connected sets.

Remark 2.4.14.
Since this definition is about local property, there is no reason that we should expect that a locally
connected space is connected. For example, the subspace (0, 1) ∪ (2, 3) of R with the Euclidean
metric topology is locally connected, but not connected.

When we check the other direction of implication, it is also not true in general. Notice that in
the definition of local connectedness, we do not require only one connected neighborhood at each
point. Instead, we require the existence of a neighborhood basis formed by connected subsets at
each point which is strictly stronger. We may consider the following example to see this.

Example 2.4.15 (Connected but not locally connected).
This example is usually called the "topologist’s sine curve". We consider the map

𝑓 : (0, 3) → R,

𝑥 ↦→ sin 1
𝑥
.

Consider the graph
Graph(𝑓) := {(𝑥, 𝑓(𝑥)) | 𝑥 ∈ (0, 3)}.

Then we consider the set given by

𝑋 = Graph(𝑓) ∪ {(0, 𝑦) | 𝑦 ∈ [−1, 1]}.

(See Figure 2.4.1 for an illustration.)
Consider it as a subspace of R2. Then given any point

𝑝 ∈ {(0, 𝑡) | 𝑡 ∈ [−1, 1]},

any of its neighborhood basis will essentially contain some disconnected pieces.

Proposition 2.4.16

A space 𝑋 is locally connected if and only if the connected components of any open set in
𝑋 are open.

Proof. If 𝑋 is locally connected, the each point of 𝑥 has a neighborhood basis in which all sets
are connected. Given any open set 𝑈 of 𝑋, by the previous discussion, we may write it into a
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Figure 2.4.1: The set 𝑋.

disjoint union of connected components:

𝑈 =
⨆︁
𝛼∈Ω

𝐶𝛼.

For any 𝛼 ∈ Ω, and any 𝑥 ∈ 𝐶𝛼, since 𝑈 is a neighborhood of 𝑥 and 𝑋 is locally connected, there
is a connected open neighborhood 𝑉𝑥 of 𝑥, such that

𝑉𝑥 ⊂ 𝑈.

Since 𝑉𝑥 is connected, we have
𝑉𝑥 ⊂ 𝐶𝛼.

Hence 𝐶𝛼 is a neighborhood of 𝑥. Since 𝑥 can be choose arbitrarily in 𝐶𝛼, we have 𝐶𝛼 open.
Therefore we may conclude that for any 𝛼 ∈ Ω, the component 𝐶𝛼 is open.

Conversely, for any 𝑥 ∈ 𝑋, we consider a neighborhood 𝑈 of 𝑥 and denote 𝑈𝑥 is an open
neighborhood of 𝑥 contained in 𝑈 . We may write it into a disjoint union of connected components:

𝑈𝑥 =
⨆︁
𝛼∈Ω

𝐶𝛼.

Choose 𝛽 ∈ Ω such that 𝑥 be a point of 𝐶𝛽 . Since all connected components of 𝑈𝑥 are open, we
have 𝐶𝛽 open in 𝑈𝑥. By the definition of subspace topology, there is an open subset 𝑉 of 𝑋, such
that

𝐶𝛽 = 𝑉 ∩ 𝑈𝑥.

Since both 𝑈𝑥 and 𝑉 are open in 𝑋, we have 𝐶𝛼 open in 𝑋. Therefore the neighborhood 𝑈 of 𝑥
contains a connected neighborhood 𝐶𝛽 of 𝑥. Hence 𝑋 is locally connected.

Corollary 2.4.17

If a space 𝑋 is locally connected, then each connected component of 𝑋 is both closed and
open.
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Remark 2.4.18.
If we work with nice topological spaces such as manifold, we can always assume that this is the
case.

Another key feature of connectedness is that it is preserved by a continuous map.

Proposition 2.4.19

Let 𝑋 and 𝑌 be two spaces and
𝑓 : 𝑋 → 𝑌,

be a continuous and surjective map. If 𝑋 is connected, then 𝑌 is connected.

Proof. We prove it by contradiction. If 𝑌 is not connected, then there are two nonempty open
subsets of 𝑌 , denoted by 𝑉1 and 𝑉2, which are disjoint and whose union is 𝑌 .

Since 𝑓 is continuous and surjective, the preimages

𝑈1 = 𝑓−1(𝑉1) ̸= ∅ and 𝑈2 = 𝑓−1(𝑉2) ̸= ∅

are both open in 𝑋. Moreover,
𝑓−1(𝑉1) ∩ 𝑓−1(𝑉2) = 𝑓−1(𝑉1 ∩ 𝑉2) = ∅.
𝑓−1(𝑉1) ∪ 𝑓−1(𝑉2) = 𝑓−1(𝑉1 ∪ 𝑉2) = 𝑋.

Hence 𝑋 is not connected, which is a contradiction.

Corollary 2.4.20

Let 𝑋 and 𝑌 be two spaces and
𝑓 : 𝑋 → 𝑌,

be a continuous. If 𝑋 is connected, then the image 𝑓(𝑋) is a connected subset of 𝑌 .

Using this property, we may have another equivalent definition of connectedness.

Definition 2.4.21

A space 𝑋 is connected if any continuous map from 𝑋 to a space with discrete topology is
constant.

Remark 2.4.22.
For example, we may consider the space {0, 1} with discrete topology.

Path connected spaces

Another way of understanding connectedness is that we can go from any point to another one in
a continuous way (walking along a path). This is actually the notion of being path connected.

Definition 2.4.23

A path in 𝑋 is a continuous map

𝛾 : [0, 1] → 𝑋.
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Definition 2.4.24

The space 𝑋 is said to be path connected if for any pair of points 𝑝 and 𝑞 in 𝑋, there is a
path

𝛾 : [0, 1] → 𝑋,

such that 𝛾(0) = 𝑝 and 𝛾(1) = 𝑞.

Some spaces familiar to us are path connected. We give some examples.

Example 2.4.25 (R𝑛).
We consider R𝑛 equipped with the Euclidean metric topology. Given any pair of points 𝑝 and 𝑞
in R𝑛, we consider the map

𝛾 : [0, 1] → R𝑛

𝑡 ↦→ (1 − 𝑡)𝑝+ 𝑡𝑞.

𝑝 = 𝛾(0)
𝛾(𝑡)

𝑞 = 𝛾(1)

Figure 2.4.2: The segment connecting 𝑝 to 𝑞

The image of 𝛾 is a segment of R𝑛 connecting 𝑝 to 𝑞 (See Figure 2.4.2). We may verify with
the definition that this is a path in R𝑛. Hence R𝑛 is path connected.

Example 2.4.26 (𝑆𝑛).
We use the coordinates in R𝑛+1:

𝑆𝑛 = {(𝑥1, ..., 𝑥𝑛+1) ∈ R𝑛+1 | 𝑥2
1 + · · · + 𝑥2

𝑛+1 = 1}.

Let 𝑝 and 𝑞 be two points in R𝑛, and denote by 𝑃 the plane in R𝑛+1 passing 𝑝, 𝑞 and 𝑂 the
origin. The intersection 𝑆𝑛 ∩ 𝑃 is a circle of radius 1 and passing 𝑝 and 𝑞. It is enough to show
that a circle is path connected (See Figure 2.4.3 for an illustration for 𝑆2).

Figure 2.4.3: Cutting an 2-sphere with a 2-plane

Consider the unit circle 𝑆1 in R2, which can be described as follows:

𝑆1 = {(cos 𝜃, sin 𝜃) ∈ R2 | 𝜃 ∈ R}.
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Assume that
𝑝 = (cos 𝜃1, sin 𝜃1), 𝑞 = (cos 𝜃2, sin 𝜃2),

we can define
𝛾 : [0, 1] → 𝑆1,

𝑡 ↦→ (cos((1 − 𝑡)𝜃1 + 𝑡𝜃1), sin((1 − 𝑡)𝜃1 + 𝑡𝜃1)).
This is a path in 𝑆1 connecting 𝑝 to 𝑞. Hence 𝑆1 is path connected, so is 𝑆𝑛.

Another way to see this is to consider the stereographic projection. Let 𝑁 = (0, ..., 0, 1) ∈ R𝑛+1.
We consider the map

𝜋 : 𝑆𝑛 ∖ {𝑁} → {(𝑥1, ..., 𝑥𝑛, 0) ∈ R𝑛+1 | 𝑥1 ∈ R, ... , 𝑥𝑛 ∈ R},

(𝑦1, ..., 𝑦𝑛+1) ↦→ (0, ..., 0, 1) + 1
1 − 𝑦𝑛+1

(𝑦1, ..., 𝑦𝑛, 𝑦𝑛+1 − 1) .

𝑁

𝑝

𝜋(𝑝)

Figure 2.4.4: The stereographic projection of 𝑆2

One may verify that this map is a homeomorphism. Since R𝑛 is path connected, for any
points 𝑝 and 𝑞 in 𝑆𝑛 ∖ {𝑁}, there is a path 𝛾 in R𝑛 connecting 𝜋(𝑝) and 𝜋(𝑞). We consider the
composition 𝜋−1 ∘𝛾. This is path in 𝑆𝑛 connecting 𝑝 and 𝑞. If one of 𝑝 and 𝑞 is 𝑁 , we may use an
SO(𝑛) element 𝐴 to move 𝑝 and 𝑞 away from 𝑁 . The above discussion works for 𝐴(𝑝) and 𝐴(𝑞),
and we have a path 𝜂 connecting 𝐴(𝑝) and 𝐴(𝑞). Then 𝐴−1 ∘ 𝜂 is a path connecting 𝑝 and 𝑞.

Remark 2.4.27.
The "𝑛" in the notation 𝑆𝑛 stands for the dimension of 𝑆𝑛. Hence 𝑆𝑛 is the unit sphere of R𝑛+1.

Notice that [0, 1] is connected, hence any path in 𝑋 would be connected. This indicated that
the path connectivity may implies the connectivity. In fact, this is true and we state it as follows.

Proposition 2.4.28

If a space 𝑋 is path connected, then it is connected.

Proof. We prove it by contradiction. Assume that 𝑋 is not connected, then there are non-empty
open set 𝑈 and 𝑉 such that

𝑈 ∩ 𝑉 = ∅, 𝑈 ∪ 𝑉 = 𝑋.

Let 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 . Since 𝑋 is path connected, there exists a continuous map

𝛼 : [0, 1] → 𝑋,
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such that 𝛼(0) = 𝑥 and 𝛼(1) = 𝑦.
Let

𝐴 = 𝛼−1(𝑈), 𝐵 = 𝛼−1(𝑉 ).
Since 𝛼 is continuous, both 𝐴 and 𝐵 are open in [0, 1]. Moreover, since

𝑈 ∩ 𝑉 = ∅, 𝑈 ∪ 𝑉 = 𝑋,

we have
𝐴 ∩𝐵 = ∅, 𝐴 ∪𝐵 = [0, 1].

Notice that 0 ∈ 𝐴 and 1 ∈ 𝐵, both 𝐴 and 𝐵 are non empty. Hence [0, 1] is not connected which
is a contradiction.

When we consider manifolds, it seems that there is not much difference between the connect-
edness and the path connectedness. However, the other direction does not hold in general. See
the following example.

Example 2.4.29 (Connected not path connected).
We consider again the "topologist’s sine curve" (See Example 2.4.15). Same as before, the topology
on 𝑋 is the subspace topology by consider 𝑋 as a subset of the Euclidean space R2.

We use the same notation as in Example 2.4.15. Notice that the graph of 𝑓 is path connected,
hence is connected, and a connected component of 𝑋 containing any point of Graph(𝑓) must
contain the entire graph. Since a connected component is also closed, therefor this connected
components must contains all limit points of Graph(𝑓). Notice that points in {(0, 𝑦) | 𝑦 ∈ [−1, 1]}
are all limit points of Graph(𝑓), hence are in its connected component. This means that there is
only one connected component in 𝑋. Hence 𝑋 is connected.

However, the space 𝑋 is not path connected. Let 𝑝 = (0, 0) and 𝑞 = (1, 0). Given any path 𝛾
with 𝛾(0) = 𝑝 and 𝛾(1) = 𝑝, for any

𝑝′ ∈ {(0, 𝑦) | 𝑦 ∈ [−1, 1]},

there is a sequence (𝑡𝑛)𝑛∈N with
lim
𝑛→∞

𝑡𝑛 = 0,

such that
lim
𝑛→∞

𝛾(𝑡𝑛) = 𝑝′.

This contradicts to the fact that 𝛾 is continuous.

Similar to the local connectedness, we also have a notion of local path connectedness which
defined in a similar fashion.

Definition 2.4.30

The space 𝑋 is said to be locally path connected if for any point 𝑥 ∈ 𝑋, for any
neighborhood 𝑈 of 𝑥, there is a path connected neighborhood 𝑉 of 𝑥 satisfying 𝑉 ⊂ 𝑈 .

Similar to the case for the locally connected property, we have the following proposition for the
locally path connected property.

Proposition 2.4.31

The space 𝑋 is locally connected if every point 𝑥 ∈ 𝑋 admits a neighborhood basis consisting
of path connected sets.
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Similar to the relation between connectedness and local connectedness, there is no implication
between path connectedness and local path connectedness in either way. One direction is easy
to understand. The local path connectedness only require conditions in neighborhoods at each
point. Hence it cannot not implies the path connectedness. To see the other direction does not
hold either, we may consider the following example.

Example 2.4.32 (Path connected not locally path connected).
Consider the following subset of R2:

𝑋 = {(𝑡, 0) | 𝑡 ∈ [0, 1]}
⋃︁

{(0, 𝑠) | 𝑠 ∈ [0, 1]}
⋃︁(︃⋃︁

𝑛∈N

{︂(︂
1
𝑛
, 𝑟

)︂⃒⃒⃒⃒
𝑟 ∈ [0, 1]

}︂)︃

(See Figure 2.4.5 for an illustration.)

· · ·

Figure 2.4.5: Being path connected but not locally path connected

We consider the Euclidean metric topology on R2, and consider the subspace topology on 𝑋.
Notice that 𝑋 is not locally path connected in any point on the vertical segment

{(0, 𝑠) | 𝑠 ∈ [0, 1]}

other than (0, 0).

Remark 2.4.33.
Manifolds are nice topological spaces in the sense that they are at the same time connected, path
connected, locally connected and locally path connected.

2.5 Compactness
One fact familiar to us is that a continuous map from an interval [𝑎, 𝑏] to R is uniformly continuous,
which means as along as 𝑥 and 𝑦 are closed enough (< 𝛿), so do their 𝑓 -value (< 𝜖) and this
constant 𝛿 is uniform, i.e. independent of choices of 𝑥 and 𝑦.

In the proof of this fact, we use one properties of [𝑎, 𝑏] which is that any of its open cover
contain a subcover which is finite. Here a cover is a collection of subsets whose union is the entire
space. The notion related to this property is the compactness of a space.



60 CHAPTER 2. GENERAL TOPOLOGY

Compact space

Definition 2.5.1

Let 𝑋 be a topological space. A family 𝒜 = (𝐴𝛼)𝛼∈Ω of open subsets of 𝑋 is called an
open cover of 𝑋 if

𝑋 =
⋃︁
𝛼∈Ω

𝐴𝛼.

If a subfamily 𝒜′ ⊂ 𝒜 is also an open cover of 𝑋, we call 𝒜′ a subcover of a cover 𝒜.

Remark 2.5.2.
In some references, the equality

𝑋 =
⋃︁
𝛼∈Ω

𝐴𝛼

is replaced by
𝑋 ⊂

⋃︁
𝛼∈Ω

𝐴𝛼,

which has some advantage when we discuss compact subsets.

Definition 2.5.3

A topological space 𝑋 is said to be compact if every open cover of 𝑋 admits a finite
subcover.

A subset of a topological space 𝑋 is compact if it is a compact space with respect to
the subspace topology.

Remark 2.5.4.
By considering the relation between open sets and closed sets, we can also define the compactness
by the following condition:

• given any collection of closed sets in 𝑋 with empty intersection, it has a finite subcollection
with empty intersection.

We first give some properties of a compact space.

Proposition 2.5.5

1) A closed subset of a compact space 𝑋 is compact.

2) If a space 𝑋 is Hausdorff, then any compact subset of 𝑋 is closed.

Proof. 1) Let 𝐴 be a closed subset in 𝑋. Hence its complement 𝐴𝑐 is open. Given any open cover
{𝑈𝛼}𝛼∈Ω of 𝐴, for each 𝛼, there is an open set 𝑉𝛼 of 𝑋, such that

𝑈𝛼 = 𝑉𝛼 ∩𝐴.

Then the following collection
{𝑉𝛼}𝛼∈Ω ∪ {𝐴𝑐},
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is a open cover of 𝑋. Since 𝑋 is compact, it contains a finite subcover of 𝑋 denoted by

{𝑊1, ...,𝑊𝑛} ⊂ {𝑉𝛼}𝛼∈Ω ∪ {𝐴𝑐}.

Then by removing empty intersections if exist, the collection

{𝑊1 ∩𝐴, ...,𝑊𝑛 ∩𝐴}

is an open cover on 𝐴. Notice that 𝐴𝑐 ∩𝐴 is empty set, hence we have

{𝑊1 ∩𝐴, ...,𝑊𝑛 ∩𝐴} ⊂ {𝑈𝛼}𝛼∈Ω.

This implies that 𝐴 is compact.

2) Let 𝐾 be a compact subset of 𝑋. We would like to show that its complement is open.
Since 𝑋 is Hausdorff, for any 𝑥 ∈ 𝐾𝑐, for any 𝑦 ∈ 𝐾, there are open neighborhood 𝑈𝑦 of 𝑥 and
open neighborhood 𝑉𝑦 of 𝑦 in 𝑌 , such that

𝑈 ∩ 𝑉 = ∅.

Notice that
𝐾 ⊂

⋃︁
𝑦∈𝐾

𝑉𝑦.

By the compactness of 𝐾, there is a finite collection

{𝑉1, ..., 𝑉𝑛}

associated to points 𝑦1, ..., 𝑦𝑛 ∈ 𝐾, such that

𝐾 =
𝑛⋃︁
𝑖=1

(𝑉𝑖 ∩𝐾).

We denote by 𝑈1, ..., 𝑈𝑛 the open neighborhoods of 𝑥 associated to 𝑦1, ..., 𝑦𝑛. Then we find a
open neighborhood

𝑛⋂︁
𝑖=1

𝑈𝑖

of 𝑥 and an open neighborhood
𝑛⋃︁
𝑗=1

𝑉𝑖

of 𝐾 which are disjoint.
The above construction shows that 𝐾𝑐 is a neighborhood of 𝑥. Since 𝑥 is chosen arbitrarily,

the set 𝐾𝑐 is a neighborhood of any of its points, hence is open. Therefore 𝐾 is closed.

Compactness is also a property preserved by a continuous map.

Proposition 2.5.6

Let 𝑋 and 𝑌 be two spaces and
𝑓 : 𝑋 → 𝑌,

be a continuous and surjective map. If 𝑋 is compact, then 𝑌 is compact.
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Proof. Given any open cover
{𝑉𝛼}𝛼∈Ω

of 𝑌 , we consider the collection of their preimages

{𝑈𝛼 = 𝑓−1(𝑉𝛼)}𝛼∈Ω,

which is an open cover of 𝑋. Since 𝑋 is compact, there is a finite subcover

{𝑈1, ..., 𝑈𝑛},

whose images
𝑉1, ..., 𝑉𝑛

form an open cover of 𝑌 which is a subcover of

{𝑉𝛼}𝛼∈Ω.

Hence 𝑌 is also compact.

This means that similar to the connectedness, the compactness is also preserved by continuous
maps.

One thing that we have seen in analysis course is that any non constant sequence contained in
a compact subset of R has a convergence subsequence. This holds for a general second countable
space, i.e. a topological space with a countable basis.

Proposition 2.5.7

Let 𝑋 be a second countable topological space. Then 𝑋 is compact if and only if any
sequence (𝑥𝑛)𝑛∈N in 𝑋 admits a convergent subsequence.

Proof. Notice that if (𝑥𝑛)𝑛∈N has a constant subsequence, we may always choose this subsequence
which is convergent. Hence we will assume from now on that for any 𝑚,𝑛 ∈ N, we have 𝑥𝑚 ̸= 𝑥𝑛.

Assume that 𝑋 is compact. If the sequence has no convergent subsequence, then for any
𝑥 ∈ 𝑋, there is an open neighborhood of 𝑥 whose intersection with (𝑥𝑛)𝑛∈N has only finitely
many elements. Then such open sets form an open cover of 𝑋. Since 𝑋 is compact, there is a
finite subcover of 𝑋 denoted by

𝑈1, ..., 𝑈𝑛,

associated to points 𝑥1, ..., 𝑥𝑛. Since

𝑋 =
𝑛⋃︁
𝑖=1

𝑈𝑖,

there must be one of 𝑈1, ..., 𝑈𝑛 whose intersection with (𝑥𝑛)𝑛∈N has infinitely many elements,
which is a contradiction.

Conversely, if 𝑋 is not compact, then there is a infinite cover 𝒞 of 𝑋 which does not admit
any finite subcover of 𝑋.

Since 𝑋 is second countable which admits a countable basis

ℬ = {𝑈𝑛 | 𝑛 ∈ N},

we consider
ℬ0 = {𝑈 ∈ ℬ | ∃𝑉 ∈ 𝒞, 𝑈 ⊂ 𝑉 }.

Then ℬ0 is an infinite cover, since ℬ is a basis and 𝒞 is a cover of 𝑋. We denote

ℬ0 = {𝑈 ′
𝑛 | 𝑛 ∈ N}.
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By assumption, 𝒞 does not admit a finite subcover, hence ℬ0 does not admit a finite subcover.
(for otherwise, if 𝑈 ′

1, ..., 𝑈
′
𝑛 in ℬ0 form a cover of 𝑋, denote by 𝑉1, ..., 𝑉𝑛 their corresponding

elements in 𝒞, then 𝑉1, ..., 𝑉𝑛 also form a cover of 𝑋.)
Therefore for any 𝑛 ∈ N, we can find a point

𝑥𝑛 /∈ 𝑈 ′
1 ∪ · · · ∪ 𝑈 ′

𝑛.

Notice that since ℬ0 is a cover, for each 𝑛 ∈ N, there must be a index 𝑁 ∈ N, for any 𝑚 > 𝑁 , we
have

𝑥𝑛 ∈ 𝑈 ′
1 ∪ · · · ∪ 𝑈 ′

𝑚.

Consider this sequence, and we would like to show that this does not have a convergent subsequence
by contradiction. Assume this is the case. Then (𝑥𝑛)𝑛∈N has not constant subsequence. By
taking a subsequence of (𝑥𝑛)𝑛∈N and taking unions of the first several 𝑈 ′

𝑖 ’s if necessary, we may
assume that (𝑥𝑛)𝑛∈N are pairwise distinct, and is convergent.

We denote by 𝑥 a limit point of this sequence. Hence for any neighborhood 𝑈 of 𝑥 contains
all but finitely many points in (𝑥𝑛)𝑛∈N. Since 𝑥 ∈ 𝑋, there is an open set 𝑈 ′

𝑗 ∈ ℬ0, such that
𝑥 ∈ 𝑈 ′

𝑗 . Notice that 𝑈 ′
𝑗 is a neighborhood of 𝑥, hence contains all but finitely many elements in

(𝑥𝑛)𝑛∈N, or more equivalently, there is an 𝑁0 ∈ N, such that for any 𝑛 > 𝑁0, we have

𝑥𝑛 ∈ 𝑈 ′
1 ∪ · · · ∪ 𝑈 ′

𝑗 .

This contradicts to the construction of 𝑥𝑛 with 𝑛 > 𝑗.

Remark 2.5.8.
The property that any sequence admits a convergent subsequence is called the sequential compact-
ness. Notice that a separated metric space equipped with the metric topology is always second
countable. Hence the above equivalence between compactness and the sequential compactness
holds in these cases. In particular, it holds for R𝑛 and any 𝑛-manifolds with 𝑛 ∈ N*.

Now we consider Hausdorff spaces.

Proposition 2.5.9

Consider 𝑋 and 𝑌 two Hausdorff topological spaces, and a map

𝑓 : 𝑋 → 𝑌.

Assume that 𝑌 is compact. Consider a non-empty subset 𝐴 of 𝑋 and assume that 𝑎 ∈ 𝐴.
Then 𝑓 admits at least a limit value 𝑦 ∈ 𝑌 when 𝑥 tends to 𝑎 in 𝐴. If moreover such 𝑦 is
unique, then 𝑓 has 𝑦 as the limit when 𝑥 tends to 𝑎 in 𝐴.

Proof. See Definition 2.1.38 for precise definitions.
Let 𝒱(𝑎) denote the set of all neighborhood of 𝑎, then we consider the following subset of 𝑌 :

Lim(A) =
⋂︁

𝑈∈𝒱(𝑎)

𝑓(𝑈 ∩𝐴).

By definition, if 𝑦 ∈ 𝑌 is a limit value of 𝑓 when 𝑥 tends to 𝑎 in 𝐴, then for any neighborhood 𝑉
of 𝑦 and any neighborhood 𝑈 of 𝑎, we have

𝑓(𝑈 ∩𝐴) ∩ 𝑉 ̸= ∅.
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This is equivalent to 𝑦 ∈ Lim(𝐴).
The firs part of the proposition is equivalent to say that Lim(𝐴) is not empty. We prove it by

contradiction. Assume that it is empty. Since 𝑌 is compact, since 𝑓(𝑈 ∩ 𝑉 )’s are closed, there
are finitely many of them whose intersection is empty:

𝑓(𝑈1 ∩𝐴) ∩ · · · ∩ 𝑓(𝑈𝑘 ∩𝐴) = ∅.

Hence, we have

𝑓(𝑈1 ∩ · · · ∩ 𝑈𝑘 ∩𝐴) ⊂ 𝑓(𝑈1 ∩𝐴) ∩ · · · ∩ 𝑓(𝑈𝑘 ∩𝐴) = ∅.

This implies that
𝑈1 ∩ · · · ∩ 𝑈𝑘 ∩𝐴 = ∅.

However, this is impossible, since 𝑈1 ∩ · · · ∩ 𝑈𝑘 is a neighborhood of 𝑎 and 𝑎 ∈ 𝐴.

Assume that such 𝑦 is unique. Let 𝑉 be an open neighborhood of 𝑦. Hence 𝑉 𝑐 is closed. On
the other hand, the above discussion shows that

{𝑦} = Lim(𝐴) =
⋂︁

𝑈∈𝒱(𝑎)

𝑓(𝑈 ∩𝐴).

Therefore

𝑉 𝑐 ∩

⎛⎝ ⋂︁
𝑈∈𝒱(𝑎)

𝑓(𝑈 ∩𝐴)

⎞⎠ = ∅.

Since 𝑌 is compact, there is a finite collection of neighborhoods 𝑈1, ..., 𝑈𝑘 of 𝑎, such that

𝑉 𝑐 ∩

(︃
𝑘⋂︁
𝑖=1

𝑓(𝑈𝑖 ∩𝐴)
)︃

= ∅,

which implies that
𝑉 𝑐 ∩ 𝑓(𝑈1 ∩ · · · ∩ 𝑈𝑘 ∩𝐴) = ∅,

This is equivalent to
𝑓(𝑈1 ∩ · · · ∩ 𝑈𝑘 ∩𝐴) ⊂ 𝑉.

Notice that 𝑈1 ∩ · · · ∩ 𝑈𝑘 is a neighborhood of 𝑎. Hence 𝑦 is the limit of 𝑓 when 𝑥 tends to 𝑎 in
𝐴.

Here is a corollary discuss the same problem as in Proposition 2.5.7.

Corollary 2.5.10

In a compact Hausdorff space, any sequence admits a limit point. If this point is unique,
then the sequence converges to this point.

Proof. Consider 𝑋 = {(𝑛+ 1)−1 | 𝑛 ∈ N} ∪ {0} as a subspace of R. Given any sequence (𝑦𝑛)𝑛∈N
in a compact Hausdorff space 𝑌 , define

𝑓 : 𝑋 → 𝑌

with 𝑓(𝑛) = 𝑦𝑛 for any 𝑛 ∈ N. Then the corollary can be deduced from the above proposition.

Remark 2.5.11.
Having a limit point (need infinitely many sequence points in any neighborhood) is not exactly the
same as converging to a point (need all but finitely many sequence points in any neighborhood).
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Next we would like to show that the compactness is preserved when taking products among
topological spaces.

Theorem 2.5.12 (Tychonov Theorem)

Any product of compact spaces is compact.

Proof. Let {𝑋𝛼}𝛼∈Ω be a collection of compact topological spaces. We denote by

𝑋 =
∏︁
𝛼∈Ω

𝑋𝛼

their product space (equipped with the product topology). The goal is to show that this is a
compact space.

By the definition of product topology, it is generated by the following subbasis

𝒜 = {pr−1
𝛼 (𝑉 ) | 𝑉 open in 𝑋𝛼}.

Lemma 2.5.13

If a topological space 𝑌 is not compact, then any subbases covering 𝑌 admits a subcover
with no finite subcovers.

Remark 2.5.14.
Here the requirement on a subbasis of covering 𝑌 is due to Definition 2.1.19 used previously,
where we do not require a subbasis cover the whole space.

In other words, the above tries to say that if 𝑌 is not compact, then given any subbasis ℬ
covering 𝑌 , it has a subset 𝒞 ⊂ ℬ which covers 𝑌 and has no finite subcover.

Proof of Lemma 2.5.13. We consider the collection Θ of all open covers of 𝑌 with no finite
subcover which form a subset of 𝒫(𝒫(𝑌 )):

Θ := {𝒞 ⊂ 𝒫(𝑌 ) | 𝒞 is a cover of 𝑌 with no finite subcover}.

Since 𝑌 is not compact, the set Θ is no empty. Now we consider the partial order induced
by inclusion in 𝒫(𝒫(𝑌 )). Notice that each chain has a maximal element. Hence by Zorn lemma
there is a maximal element in Θ denoted by 𝒞𝑚𝑎𝑥.

Consider any subbasis ℬ which covers 𝑌 . For any 𝑦 ∈ 𝑌 , there is 𝑉 ∈ 𝒞𝑚𝑎𝑥, such that

𝑦 ∈ 𝑉.

By the definition of a subbasis, there are finitely many elements

𝑈1, ..., 𝑈𝑘 ∈ ℬ,

such that
𝑥 ∈ 𝑈1 ∩ · · · ∩ 𝑈𝑘 ⊂ 𝑉.

By the maximality, we have 𝑈1, ..., 𝑈𝑘 ∈ 𝒞𝑚𝑎𝑥. For otherwise, without loss of generality, we may
assume that 𝑈1 /∈ 𝒞𝑚𝑎𝑥. Then since 𝒞𝑚𝑎𝑥 is maximal, the cover

{𝑈1} ∪ 𝒞𝑚𝑎𝑥,
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has a finite cover of 𝑌 , denoted by
𝑈1, 𝑉1, ..., 𝑉𝑙.

Since 𝑈1 ⊂ 𝑉 , the collection
{𝑉, 𝑉1, ..., 𝑉𝑙} ⊂ 𝒞𝑚𝑎𝑥

is a finite cover of 𝑌 which is a contradiction.
Now we consider ℬ ∩ 𝒞𝑚𝑎𝑥, this is a subset of ℬ which covers 𝑌 . Moreover it has no finite

subcover.

Now we go back to the proof of Tychonov Theorem. We consider the subbasis 𝒜 describe
above. We would like to show that this subbasis has no subcover of 𝑋 with no finite subcover.
More precisely, given any subcover 𝒞 in 𝒜, there is 𝛼Ω, such that there are

{pr−1
𝛼 (𝑉 ) | 𝑉 ∈ ℒ ⊂ 𝒯𝛼} ⊂ 𝒞,

where 𝒯𝛼 is the topology on 𝑋𝛼, ℒ is a subset of proper open sets in 𝒯𝛼 such that ∪ℒ = 𝑋𝛼.
Such an 𝛼 does exists, otherwise 𝒞 is not a covering of 𝑋.

Notice that ℒ is an open cover of 𝑋𝛼, since 𝑋𝛼 is compact, there is a finite subcover

{𝑉1, ..., 𝑉𝑘}

of 𝑋𝛼. This moreover implies that their preimages under pr𝛼 form an open cover of 𝑋, which is
a finite subcover of 𝒞. Hence 𝑋 is compact.

Remark 2.5.15.
The proof of Tychonov Theorem uses the Zorn Lemma which is equivalent to the Axiom of
Choice.

Locally compact spaces

There is also notion of local compactness, however the way with which we define it is different
from what is used previously for local (path) connectedness.

Definition 2.5.16

A space 𝑋 is locally compact at a point 𝑥 ∈ 𝑋 if there is a compact neighborhood 𝑈 of
𝑥. A space is locally compact if it is locally compact at every point 𝑥 ∈ 𝑋.

Example 2.5.17.
If the space 𝑋 is equipped with the discrete, topology, then every point 𝑥 in 𝑋 is a compact
subset. This is not difficult to see. The subspace topology of {𝑥} has only two open sets: ∅ and
{𝑥}. Hence {𝑥} is compact. At the same time {𝑥} is a neighborhood of 𝑥. Hence 𝑋 is locally
compact.

Notice the first half argument works in any topological space. A single point subset in any
topological space is compact. However such a subset is not always open in an arbitrary topological
space.

Example 2.5.18.
Here is another extremal case. If 𝑋 is a compact topological space, then 𝑋 is locally compact,
since 𝑋 is a neighborhood of any of its points. Moreover, any closed subset in 𝑋 is compact (See
2.5.5).
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Example 2.5.19.
Let 𝑋 be the 𝑛-dimensional Euclidean space with 𝑛 ∈ N*, and consider its metric topology. Then
it is locally compact, since any closed ball is compact in R𝑛, and it contains an open ball which is
open, hence it is a neighborhood of its center. We may show that every sequence in a closed ball
has a converges subsequence. Then Proposition 2.5.7 shows that a closed ball in R𝑛 is compact.

Proposition 2.5.20

In fact, if 𝑋 is Hausdorff and locally compact at 𝑥 ∈ 𝑋, then it has a compact neighborhood
basis of 𝑥.

Proof. Since 𝑋 is locally compact at 𝑥, there is a compact neighborhood 𝐾 of 𝑥. Let 𝑈 be an
open subset in 𝑥 contained in 𝐾, we would like to show that there is a compact neighborhood of
𝑥 contained in 𝑈 .

Notice that 𝑋 is Hausdorff. Let 𝑦 be a different from 𝑥 in 𝐾, then there are open neighborhoods
𝑈𝑦 and 𝑉𝑦 of 𝑥 and 𝑦 respectively, such that

𝑈𝑦 ∩ 𝑉𝑦 = ∅.

Figure

Notice that ⋂︁
𝑦∈𝐾∖{𝑥}

𝑈𝑦 = {𝑥}.

We denote
𝑊𝑦 = ̂̊︁𝑈 𝑐𝑦 .

Notice that 𝑦 ∈ 𝑊𝑦 for any 𝑦 ∈ 𝐾 ∖ {𝑥}. Hence

{𝑈} ∪ {𝑊𝑦 ∩𝐾 | 𝑦 ∈ 𝐾 ∖ {𝑥}}

is an open cover of 𝐾. Since 𝐾 is compact, hence there is a finite subcover. Hence there is a
subcover of 𝐾:

{𝑈,𝑊𝑦1 ∩𝐾, ...,𝑊𝑦𝑛 ∩𝐾}.

Then
𝑊 = (𝑊𝑦1 ∪ · · · ∪𝑊𝑦𝑛) ∩𝐾

is open in 𝐾, whose complement is closed in 𝐾. Since 𝑋 is Hausdorff, so is 𝐾. Hence 𝐾 ∖𝑊 is
also compact. Moreover

𝑊 ∪ 𝑈 = 𝐾

implies that
𝐾 ∖𝑊 ⊂ 𝑈.

Notice that we have
𝐾 ∖𝑊 = (𝑈𝑦1 ∪ · · · ∪ 𝑈𝑦𝑛) ∩𝐾

hence it is a neighborhood of 𝑥, since 𝑈𝑦1 is a neighborhood of 𝑥.

Corollary 2.5.21

Any open subset of a locally compact Hausdorff space is locally compact.
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Compactness and continuous maps

In this part, we discuss the relation between compactness and continuous maps.

Proposition 2.5.22

Let 𝑋 and 𝑌 be compact Hausdorff topological spaces, and 𝑓 : 𝑋 → 𝑌 be a continuous
map. If 𝑓 is bijective, then 𝑓 is a homeomorphism.

Proof. It is enough to show that 𝑓−1 is also continuous. We can show that 𝑓 sends closed subsets
in 𝑋 to closed subsets in 𝑌 . Since both spaces are Hausdorff and compact, a closed subset in 𝑋
is compact, hence 𝑓(𝑋) is also compact and hence closed in 𝑌 . (See Proposition 2.5.5)

2.6 Topological properties/Topological invariants
When 𝑓 is a homeomorphism from 𝑋 to 𝑌 , its inverse 𝑓−1 is a homeomorphism from 𝑌 to 𝑋.
Given any set Ω of topological spaces, we can verify that "being homeomorphic" satisfies the
reflexivity, the symmetry and the transitivity, therefore induces an equivalence relation in Ω.

Definition 2.6.1

A property 𝑃 of a topological space 𝑋 is said to be a topological property if it is satisfied
by any other topological space 𝑌 which is homeomorphic to 𝑋.

Remark 2.6.2.
In the study of topology, we mainly consider topological properties of a topological space.
Therefore, if two spaces are homeomorphic, they cannot be distinguished from the topological
point of view.



Chapter 3

Homotopy and Fundamental
Groups

From this chapter, we begin to study spaces from the topological point of view. In the other
words, we consider topological spaces and study what are not changed (also called topological
invariants) when we modify the space globally or locally in a continuous way. The first topological
invariant that we would like to introduce in this chapter is the fundamental group.

3.1 Homotopy
Continuous deformations are everywhere either in our daily life or in various areas of mathematics.
For example, folding a piece of paper and blowing up a balloon are continous deformations of a
piece of paper and balloon respectively. On the other hand, neither tearing a piece of paper into
small prices nor puncturing a balloon is a continuous deformation.

Since we are going to considering spaces under continuous deformations, we start this chapter
by making a mathematical description, which relates to the notion of homotopy.

Definition 3.1.1

Two continuous maps 𝑓 and 𝑔 from the space 𝑋 to the space 𝑌 are said to be homotopic
if there is a continuous map

𝐻 : 𝑋 × [0, 1] → 𝑌,

(𝑥, 𝑡) ↦→ 𝐻(𝑥, 𝑡),
such that for each 𝑥 ∈ 𝑋, we have

𝐻(𝑥, 0) = 𝑓(𝑥), 𝐻(𝑥, 1) = 𝑔(𝑥).

We call such a map 𝐻 a homotopy between 𝑓 and 𝑔, and for each 𝑡 ∈ [0, 1], we have the
map

𝐻𝑡 : 𝑋 → 𝑌,

𝑥 ↦→ 𝐻(𝑥, 𝑡).

Example 3.1.2 (Path as a homotopy).
Let 𝑋 = {𝑥} be a single point set. Then any point 𝑦 ∈ 𝑌 can be consider as the image of the map

𝑓 : {𝑥} → 𝑌

𝑥 ↦→ 𝑦
.

69
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Notice that such maps are always continuous.
Given two points 𝑝 and 𝑞 in 𝑌 , we consider the map 𝑓 and 𝑔 from {𝑥} to 𝑌 , such that

𝑓(𝑥) = 𝑝 and 𝑔(𝑥) = 𝑞.
Consider the map

𝜑 : [0, 1] → {𝑥} × [0, 1]
𝑡 ↦→ (𝑥, 𝑡)

.

This is a homeomorphism.
If 𝑓 and 𝑔 are homotopic to each other, we have a continuous map

𝐻 : {𝑥} × [0, 1] → 𝑌,

such that 𝐻(𝑥, 0) = 𝑓(𝑥) and 𝐻(𝑥, 1) = 𝑔(𝑥) (hence for any 𝑥′ ∈ {𝑥}).
If we define

𝛾 : [0, 1] → 𝑌

𝑡 ↦→ 𝛾(𝑡) := 𝐻(𝑥, 𝑡)
,

then 𝛾 = 𝐻 ∘ 𝜑 is continuous with 𝛾(0) = 𝑝 and 𝛾(1) = 𝑞. Hence it is a path in 𝑌 connecting 𝑝
and 𝑞.

𝑌

{𝑥}

𝑓 𝑔𝐻𝑡

𝑝 𝑞
𝛾(𝑡)

Figure 3.1.1: A path as a homotopy

Conversely, if 𝑝 and 𝑞 can be connected by a path

𝛾 : [0, 1] → 𝑌,

such that 𝛾(0) = 𝑝 and 𝛾(1) = 𝑞, then we can define a map

𝐻 : {𝑥} × [0, 1] → 𝑌

(𝑥, 𝑡) ↦→ 𝐻(𝑥, 𝑡) := 𝛾(𝑡).

Hence 𝐻 = 𝛾 ∘ 𝜑−1 is continuous with 𝐻(𝑥, 0) = 𝑝 = 𝑓(𝑥) and 𝐻(𝑥, 1) = 𝑞 = 𝑔(𝑥) (hence for any
𝑥′ ∈ {𝑥}). Therefore 𝐻 is a homotopy between 𝑓 and 𝑔 continuous maps from 𝑋 to 𝑌 . (See
Figure for an illustration of the above discussions.)

Informally speaking, a homotopy between two maps 𝑓 and 𝑔 from 𝑋 to 𝑌 can be understood
in the following way. Instead of two points (end points of a path) in 𝑌 , we consider two subsets
𝑓(𝑋) and 𝑔(𝑋) of 𝑌 "parametrized" 1 by a model space 𝑋. Instead of moving a point from one

1Although the maps 𝑓 and 𝑔 may not be injective, we borrow the terminology here.
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place to another, we now move the all points in 𝑓(𝑋) to points in 𝑔(𝑋) at the same time in a
continuous way.

Notice that for any point 𝑥 in 𝑋, we have a continuous map

𝐻𝑥 : [0, 1] → 𝑌,

𝑡 ↦→ 𝐻(𝑥, 𝑡).

In other words, the point 𝑓(𝑥) is moved in 𝑌 continuously as time passing and stop at 𝑔(𝑥) at
time 1. (See Figure 3.1.2 for an illustration.)

𝑌

𝑋

𝑓 𝑔𝐻𝑡

𝑥

𝑓(𝑥) 𝑔(𝑥)

𝑓(𝑋) 𝑔(𝑋)𝐻𝑡(𝑋)

Figure 3.1.2: An illustration of a homotopy between 𝑓 and 𝑔

Of course, for the map 𝐻, being continuous is a stronger condition than having all maps 𝐻𝑥’s
continuous, (or every point 𝑓(𝑥) being moved in a continuous way). Notice that the homotopy
produces, at each moment 𝑡, a subspace 𝐻𝑡(𝑋) of 𝑌 , which is again "parametrized" by 𝑋. When
we deform 𝑓(𝑋) = 𝐻0(𝑋) to 𝑔(𝑋) = 𝐻1(𝑋), there are certain properties should also be preserved.
For example, if 𝑋 is connected, then all 𝐻𝑡(𝑋) should be connected. There are other things that
should be considered as well.

To be more precise, we may consider the set of all continuous maps from 𝑋 to 𝑌 , associate to
it a topology and talk about path in it. The topology is called the open compact topology, and its
precise description will be given below. The rough idea is that we want not only to moving points
continuously, but also to move any compact subset of 𝑋 continuously (a single point subset is
always compact).

Open-compact topology

More precisely, assume that 𝑋 is locally compact, and let

𝒞(𝑋,𝑌 ) := {continuous maps from 𝑋 to 𝑌 },

denote the set of all continuous maps from 𝑋 to 𝑌 . Let 𝐾 be any compact subset of 𝑋, and 𝑈
be any open subset of 𝑌 . We consider the following subset of 𝒞(𝑋,𝑌 ):

𝑉 (𝐾,𝑈) := {𝑓 ∈ 𝒞(𝑋,𝑌 ) | 𝑓(𝐾) ⊂ 𝑈}.
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The open compact topology on 𝒞(𝑋,𝑌 ) is generated by the following subset (as a subbasis)

{𝑉 (𝐾,𝑈) | 𝐾 ⊂ 𝑋 is compact and 𝑈 ⊂ 𝑌 is open}.

We now try to understand why

Φ : [0, 1] → 𝒞(𝑋,𝑌 )
𝑡 ↦→ 𝐻𝑡

.

is a path in 𝒞(𝑋,𝑌 ). Let us assume that 𝑋 and 𝑌 are both Hausdorff for simplicity. We consider
an open set 𝑉 (𝐾,𝑈) in the subbasis for some compact subset 𝐾 ⊂ 𝑋 and some open subset
𝑈 ⊂ 𝑌 . Now we would like to show that Φ−1(𝑉 (𝐾,𝑈)) is open in [0, 1]. In the other words, for
any 𝑡 ∈ Φ−1(𝑉 (𝐾,𝑈)), there is an 𝜖 > 0, such that

{𝑠 ∈ [0, 1] | |𝑠− 𝑡| < 𝜖} ⊂ Φ−1(𝑉 (𝐾,𝑈)).

This is not difficult to understand if 𝐾 = {𝑥} for some 𝑥 ∈ 𝑋. Now consider the general case and
we will discuss by contradiction. Assume the above fact is not true. Then for any 𝜖, there is an
𝑠 ∈ [0, 1], such that |𝑠− 𝑡| < 𝜖 and 𝑠 /∈ Φ−1(𝑉 (𝐾,𝑈)). In particular, we consider 𝜖 = (𝑛+ 1)−1

and denote 𝑠𝑛 ∈ [0, 1] associated to it. Notice that

𝑆 = {𝑠𝑛 | 𝑛 ∈ N} ∪ {𝑡}.

is compact. For any 𝑠𝑛, we have
𝐻𝑠𝑛

(𝐾) ∩ 𝑈 𝑐 ̸= ∅.

Hence we have (𝑥𝑛, 𝑠𝑛) ∈ 𝐾 × 𝑆, such that

𝐻(𝑥𝑛, 𝑠𝑛) ∈ 𝑈 𝑐.

𝑈 𝑈
𝐻𝑡(𝐾)

𝐻𝑡(𝐾)𝐻𝑠1(𝐾)

𝐻𝑠1(𝑥1)
𝐻𝑠2(𝐾)

𝐻𝑠2(𝑥2)

· · ·

𝐻𝑠𝑛
(𝐾)

𝐻𝑠𝑛
(𝑥𝑛)

𝐻𝑡(𝑥)

Figure 3.1.3: Not continuous (Left); Continuous (Right)

Now since 𝐾 and 𝑆 are compact, the sequence (𝑥𝑛, 𝑠𝑛)𝑛∈N has a limit point (𝑥, 𝑡) ∈ 𝐾 × 𝑆.
On the other hand, by the continuity of 𝐻, we have

𝐻(𝐾 × 𝑆) ⊂ 𝑌,

compact. Since 𝐻 is continuous at (𝑥, 𝑡), for any neighborhood 𝑍 of 𝐻(𝑥, 𝑡) ∈ 𝑌 , there is a
neighborhood 𝑊 of (𝑥, 𝑡) in 𝐾 × 𝑆, such that

𝐻(𝑊 ) ⊂ 𝑍.
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Since (𝑥, 𝑡) is a limit point of {(𝑥𝑡, 𝑠𝑡) ∈ 𝐾 × 𝑆 | 𝑛 ∈ N}, we have

𝑍 ∩ {𝐻(𝑥𝑛, 𝑠𝑛) | 𝑛 ∈ N} ̸= ∅.

This shows that 𝐻(𝑥, 𝑡) is a limit point of {𝐻(𝑥𝑛, 𝑠𝑛) | 𝑛 ∈ N} which is contained in 𝑈 𝑐. On the
other hand 𝑈 𝑐 is closed, hence

𝐻(𝑥, 𝑡) = 𝐻𝑡(𝑥) ∈ 𝐻𝑡(𝐾) ∩ 𝑈 𝑐 ⊂ 𝑈 ∩ 𝑈 𝑐 = ∅,

which is impossible (See Figure 3.1.3 for an illustration).

Examples

We give some elementary examples of homotopies between maps.

Example 3.1.3 (Constant homotopy).
An immediate observation from the definition of homotopy is that any continuous map is homotopic
to itself. More precisely, let 𝑋 and 𝑌 be two spaces and

𝑓 : 𝑋 → 𝑌

be a continuous map. We consider the map

𝐻 : 𝑋 × [0, 1] → 𝑌

(𝑥, 𝑡) ↦→ 𝑓(𝑥)
.

which is continuous with 𝐻(𝑥, 0) = 𝑓(𝑥) and 𝐻(𝑥, 1) = 𝑓(𝑥) for any 𝑥 ∈ 𝑋. We call it a constant
homotopy (See Figure 3.1.4 for an illustration).

𝑌

𝑋

𝐻𝑡 = 𝑓, ∀ 𝑡 ∈ [0, 1]

𝐻𝑡(𝑋) = 𝑓(𝑋), ∀ 𝑡 ∈ [0, 1]

Figure 3.1.4: An illustration of a constant homotopy

Example 3.1.4 (Cylinder in R3).
Now let us consider an example where 𝑆1 is not a single point set. Consider the following cylinder
in R3 described using the coordinates of R3:

𝐶 = {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝑥2 + 𝑦2 = 1, 0 ≤ 𝑧 ≤ 1}.
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Consider the unit circle 𝑆1 in R2:

𝑆1 = {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 = 1}.

We can define two continuous maps

𝑓 : 𝑆1 → 𝐶

(𝑥, 𝑦) ↦→ (𝑥, 𝑦, 0)
,

and
𝑔 : 𝑆1 → 𝐶

(𝑥, 𝑦) ↦→ (𝑥, 𝑦, 1)
.

𝑆1

𝑓

𝐻𝑡

𝑔

{(𝑥, 𝑦, 0) ∈ R3 | 𝑥2 + 𝑦2 = 1}

{(𝑥, 𝑦, 1) ∈ R3 | 𝑥2 + 𝑦2 = 1}

Figure 3.1.5: Moving 𝑆1 from the bottom of the cylinder to the top.

Moving the circle from one boundary of 𝐶 to another in a parallel way gives a homotopy
between 𝑓 and 𝑔. More precisely, we consider the map

𝐻 : 𝑆1 × [0, 1] → 𝐶

((𝑥, 𝑦), 𝑡) ↦→ (𝑥, 𝑦, 𝑡)
.

Notice that this is a continuous map (in fact a homeomorphism) with

𝐻((𝑥, 𝑦), 0) = 𝑓(𝑥, 𝑦) and 𝐻((𝑥, 𝑦), 1) = 𝑔(𝑥, 𝑦)

for any (𝑥, 𝑦) ∈ 𝑆1.

So far in all examples all maps 𝐻𝑡’s are homeomorphisms which is not necessary for a homotopy.
Let us see one simple example.

Example 3.1.5 (A disk shrinks to a point).
Consider the closed unit disk in R2:

𝐷2 = {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 ≤ 1}.

We consider the identity map:
id : 𝐷2 → 𝐷2

(𝑥, 𝑦) ↦→ (𝑥, 𝑦)
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and the constant map:
Const : 𝐷2 → 𝐷2

(𝑥, 𝑦) ↦→ (0, 0)
.

Both of them are continuous maps, which is true for any topological spaces. We can define the
following maps

𝐻 : 𝐷2 × [0, 1] → 𝐷2

((𝑥, 𝑦), 𝑡) ↦→ 𝑡(𝑥, 𝑦)
.

This is a continuous map with 𝐻((𝑥, 𝑦), 0) = id(𝑥, 𝑦) and 𝐻((𝑥, 𝑦), 1) = Const for any (𝑥, 𝑦) ∈ 𝐷2.
Hence we have a homotopy between id and Const (See Figure 3.1.6).

𝑆1

id

𝐻𝑡

Const

Figure 3.1.6: A disk shrinks to a point.

Example 3.1.6 (Homotopy of a path).
Take one rubber rope and fix two ends on the ground. The rope gives a path on the ground. We
may move the rope without moving the two ends on the grounds. This gives homotopies between
paths.

More precisely, consider 𝛾0 and 𝛾1 are two path in R2 such that

𝛾0(0) = 𝛾1(0) = 𝑝 and 𝛾0(0) = 𝛾1(0) = 𝑞.

We can define a homotopy in the following way:
𝐻 : [0, 1] × [0, 1] → R2

(𝑠, 𝑡) ↦→ 𝛾0(𝑠) + 𝑡(𝛾1(𝑠) − 𝛾0(𝑠))
.

(See Figure 3.1.7 for an illustration.)
Notice that by the definition we have in particular

𝐻(0, 𝑡) = 𝑝 and 𝐻(1, 𝑡) = 𝑞,

for any 𝑡 ∈ [0, 1], which means that the end points are fixed during the homotopy process.

Remark 3.1.7.
In the above examples, the constructions of the homotopies uses the linear structure of R𝑛 which
may not exist in other topological spaces.

A homotopy between two continuous maps is not unique

The key point in the definition of being homotopic is the existence of the homotopy map 𝐻,
rather than the map 𝐻 itself. Normally such a homotopy map 𝐻 is never unique for several
reasons.



76 CHAPTER 3. HOMOTOPY AND FUNDAMENTAL GROUPS

𝑝

𝛾0

𝑞

𝛾1

Figure 3.1.7: A homotopy between two paths with end points fixed.

-Reparametrization of a homotopy The maps 𝐻𝑡’s changes as the time 𝑡 passes. Consider
the following map

𝜙 : [0, 1] → [0, 1],

which is continuous and increasing with 𝜙(0) = 0 and 𝜙(1) = 1. Then the following map

Φ : 𝑋 × [0, 1] → 𝑋 × [0, 1]
(𝑥, 𝑡) ↦→ (𝑥, 𝜙(𝑡))

is continuous with Φ(𝑥, 0) = (𝑥, 0) and Φ(𝑥, 1) = (𝑥, 1). We call it a reparametrization map.
Given 𝑓 and 𝑔 two homotopic continuous maps from 𝑋 to 𝑌 , and denote by 𝐻 a homotopy

between them, the composition ̃︀𝐻 = 𝐻 ∘ Φ is again a homotopy between 𝑓 and 𝑔. In this case,
for any 𝑡 ∈ [0, 1], we have ̃︀𝐻𝑡 = 𝐻𝜙(𝑡).

For example, we consider
𝜙 : [0, 1] → [0, 1]

𝑡 ↦→ max{0, 2𝑡− 1}
.

0 1
2 1 𝑡

𝑓 𝑔

𝑓 𝑔

𝐻

̃︀𝐻

Figure 3.1.8: A reparametrization of a homotopy.
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Then the new homotopy map ̃︀𝐻 can be given as follows: for any (𝑥, 𝑡) ∈ 𝑋 × [0, 1], we have

̃︀𝐻(𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑓(𝑥) 𝑡 ∈

[︂
0, 1

2

]︂
𝐻(𝑥, 2𝑡− 1) 𝑡 ∈

[︂
1
2 , 1
]︂

Roughly speaking, for 𝑡 ∈ [0, 1/2], the map 𝑓 is not changed, while for 𝑡 ∈ [1/2, 1], the map 𝑓 is
changed to the map 𝑔 according to the homotopy 𝐻, but with double speed (See Figure 3.1.8 for
an illustration).

-Different choices of homotopy Another reason is that the collection of maps {𝐻𝑡}𝑡∈[0,1]
could be different. This is not difficult to understand, if we check Example 3.1.6. The set
{𝐻𝑡}𝑡∈[0,1] used to pass from 𝛾0 and 𝛾1 could be quite random and far from being unique (See
Figure 3.1.9 for an illustration).

0 1
2 1 𝑡

𝑓 𝑔

𝑓 𝑔

𝐻

𝐻 ′

Figure 3.1.9: A different homotopy between two maps.

Inverse of a homotopy

Another thing that one may notice is that although the definition of a homotopy between maps
from 𝑋 to 𝑌 relies on a time parameter which seems to give an direction for the homotopy
process, the notion of being homotopic is symmetric.

To be more precise, let 𝑓 and 𝑔 be two continuous maps from a space 𝑋 to a space 𝑌 homotopic
to each other, and let 𝐻 be a homotopy between them as in the above definition. We can define
another map

𝐻 : 𝑋 × [0, 1] → 𝑌,

(𝑥, 𝑡) ↦→ 𝐻(𝑥, 1 − 𝑡).

Roughly speaking the map 𝐻 gives a deformation which is given by backward playing the
deformation given by 𝐻 (See Figure 3.1.10 for an illustration).

Definition 3.1.8

The map 𝐻 is called the inverse of 𝐻.
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0 𝑠 1
2 1 − 𝑠 1 𝑡

𝑓 𝑔

𝑔 𝑓

𝐻

𝐻

Figure 3.1.10: The inverse of a homotopy.

Induced equivalence relation on the set of continuous maps

We consider the set of all continuous maps from 𝑋 to 𝑌 , denoted by

𝒞(𝑋,𝑌 ) := {Continuous maps from 𝑋 to 𝑌 } ⊂ 𝒫(𝑋 × 𝑌 ).

Proposition 3.1.9

The following relation on 𝒞(𝑋,𝑌 ) is an equivalence relation: for any 𝑓, 𝑔 ∈ 𝒞(𝑋,𝑌 ),

𝑓 ∼ 𝑔 ⇔ 𝑓 and 𝑔 are homotopic.

Proof. We have to verify the three properties: reflexivity, symmetry and transitivity. We will
omit the verification of the continuity of all homotopies appearing below.

Firstly, given any 𝑓 ∈ 𝒞(𝑋,𝑌 ), we consider the constant homotopy (see Example 3.1.3)

𝐻 : 𝑋 × [0, 1] → 𝑌,

(𝑥, 𝑡) ↦→ 𝑓(𝑥)

and have 𝑓 ∼ 𝑓 .
Secondly, by considering the inverse of a homotopy (see Definition 3.1.8), if two maps 𝑓 and 𝑔

in 𝒞(𝑋,𝑌 ) satisfy 𝑓 ∼ 𝑔, then 𝑔 ∼ 𝑓 .
Finally, let 𝑓 , 𝑔 and ℎ be three maps in 𝒞(𝑋,𝑌 ). Assume that 𝑓 ∼ 𝑔 and 𝑔 ∼ ℎ. We denote

by 𝐹 be the homotopy between 𝑓 and 𝑔 and 𝐺 be the homotopy between 𝑔 and ℎ, then we can
define the following map 𝐻: for any (𝑥, 𝑡) ∈ 𝑋 × [0, 1]

𝐻(𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝐹 (𝑥, 2𝑡) 𝑡 ∈

[︂
0, 1

2

]︂
𝐺(𝑥, 2𝑡− 1) 𝑡 ∈

[︂
1
2 , 1
]︂

and this is a homotopy between 𝑓 and ℎ (see Figure 3.1.11 for an illustration).
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𝑌

𝑋

𝑓
𝑔 ℎ

𝐹 𝐺

𝑓(𝑋) 𝑔(𝑋) ℎ(𝑋)

Figure 3.1.11: A composition between two homotopies.

Remark 3.1.10.
In the proof, we construct a homotopy 𝐻 from the homotopy 𝐹 and 𝐺. Informally speaking, if
we can modify 𝑓 to 𝑔 in a continuous way and modify 𝑔 to ℎ in a continuous way, then we modify
𝑓 to ℎ in a continuous way through 𝑔. We denote the homotopy 𝐻 constructed in the proof by

𝐻 = 𝐹 *𝐺,

(first 𝐹 , then 𝐺) and call it the composition between 𝐹 and 𝐺.

Definition 3.1.11

A space 𝑋 is said to be contractible, if the identity map

id𝑋 : 𝑋 → 𝑋

𝑥 ↦→ 𝑥

is homotopic to a constant map
Const𝑐 : 𝑋 → 𝑋

𝑥 ↦→ 𝑐

where 𝑐 ∈ 𝑋.

Example 3.1.12 (Star-like subsets in R2).
A subset 𝐷 in R2 is star-like if there is a point 𝑐 ∈ 𝐷, such that for which 𝑝 ∈ 𝐷, we have

{𝑐+ 𝑡(𝑝− 𝑐) | 𝑡 ∈ [0, 1]} ⊂ 𝐷.

We call such a point 𝑐 a center of 𝐷 (see Figure 3.1.12).
A convex subset of R2 is in particular is a star-like subset. In a convex subset, we may choose

any point as the center.
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Figure 3.1.12: A convex (also star-like) set (left); a non-convex star-like set (right).

Not every star-like region is convex. For example, if we consider the union 𝐷 of any three
distinct rays issued from (0, 0). Then 𝐷 is not convex, but (0, 0) could be the center to make 𝐷
star-like.

Similar to the connectedness property, we also have a local version of this notion.

Definition 3.1.13

A space 𝑋 is said to be locally contractible if every point 𝑥 ∈ 𝑋 admits a neighborhood
basis consisting of only contractible set.

Remark 3.1.14.
All manifolds are locally contractible.

3.2 Homotopy equivalence
We know that two homeomorphic spaces are topologically equivalent, meaning that we cannot
distinguish them by any topological method. However, for some topological properties, being
homeomorphic is too strong. Using homotopy we can given a weaker equivalence relation among
topological spaces which are more suitable for studying certain topological properties or topological
invariants.

Definition 3.2.1

Two spaces 𝑋 and 𝑌 are said to be homotopy equivalent if there exists continuous maps

𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑋,

such that 𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .

Example 3.2.2.
If 𝑋 and 𝑌 are homeomorphic to each other, we have a homeomorphism

𝑓 : 𝑋 → 𝑌.
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This means that there is a continuous map

𝑔 : 𝑌 → 𝑋,

such that
𝑓 ∘ 𝑔 = id𝑌 and 𝑔 ∘ 𝑓 = id𝑋 .

Considering the constant homotopy (See Example 3.1.3), given any continuous map ℎ from a
topological space 𝑊 to itself, we have ℎ homotopic to ℎ. Therefore, two homeomorphic topological
spaces are homotopy equivalent to each other.

The two examples below show that being homotopy equivalent is a condition strictly weaker
than being homeomorphic.

Example 3.2.3.
Let 𝑋 be the closed unit disk in R2 and 𝑌 be {𝑂} with 𝑂 the origin. Since 𝑋 is uncountable
and 𝑌 is finite, they cannot be homeomorphic to each other. Consider the following two maps

𝑓 : 𝑋 → 𝑌

𝑝 ↦→ 𝑂
and

𝑔 : 𝑌 → 𝑋

𝑂 ↦→ 𝑂

Then
𝑓 ∘ 𝑔 = id𝑌 ,

and
𝑔 ∘ 𝑓 = 𝑓

which is homotopic to id𝑋 as shown in Example 3.1.5 (see Figure 3.2.1). Hence 𝑋 and 𝑌 are
homotopy equivalent.

𝑋 𝑌 𝑋

𝑌 𝑋 𝑌

𝑓 𝑔

𝑔 𝑓

Figure 3.2.1: Homotopy equivalence between the unit disk and its center.

Example 3.2.4.
Similar, we consider 𝑋 to be whole space R2 and 𝑌 be {𝑂} the origin. Consider the following
two maps

𝑓 : 𝑋 → 𝑌

𝑝 ↦→ 𝑂
and

𝑔 : 𝑌 → 𝑋

𝑂 ↦→ 𝑂

Then same as in the previous example, we have

𝑓 ∘ 𝑔 = id𝑌 ,
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and
𝑔 ∘ 𝑓 = 𝑓

which is homotopic to id𝑋 by the following homotopy:

𝐻 : 𝑋 × [0, 1] → 𝑋

(𝑝, 𝑡) ↦→ 𝑡𝑝
.

If we examine the topological properties of these spaces, we have the following table:

connected path connected compact contractible

{𝑂} Yes Yes Yes Yes

𝐷2 Yes Yes Yes Yes

R2 Yes Yes No Yes

Example 3.2.5.
Let 𝑋 be the annulus in C defined by

𝑋 := {𝑧 ∈ C | 1 ≤ |𝑧| ≤ 2},

and 𝑌 be the unit circle.
First we would like show that 𝑋 and 𝑌 are not homeomorphic to each other. This follows

from the following facts: a restriction of a bijection is bijective to its image, and a restriction of a
continuous map is continuous. Hence a restriction of a homeomorphism is a homeomorphism to
its image.

We can remove a pair of antipodal points on 𝑌 and the resulting space is no longer connected.
On the other hand, removing two points in 𝑋 will not disconnect the space. Since being connected
is preserved by continuous maps and in particular by homeomorphisms, we conclude that there is
no homeomorphism between 𝑋 and 𝑌 .

Secondly, we show that 𝑋 and 𝑌 are homotopy equivalent to each other. Let 𝑓 be the following
map

𝑓 : 𝑋 → 𝑌

𝑝 ↦→ 𝑝

|𝑝|
,

where |𝑝| is the Euclidean distance between 𝑝 and the origin, and 𝑔 be the inclusion map

𝑔 : 𝑌 → 𝑋

𝑝 ↦→ 𝑝

See Figure 3.2.2.
We have on one hand

𝑓 ∘ 𝑔 = id𝑌 .
At the same time, we can define the homotopy

𝐻 : 𝑋 × [0, 1] → 𝑋,

(𝑟𝑒𝑖𝜃, 𝑡) ↦→ (𝑡+ (1 − 𝑡)𝑟)𝑒𝑖𝜃,

between 𝑔 ∘ 𝑓 and id𝑋 (see Figure 3.2.3). Hence 𝑋 and 𝑌 are homotopy equivalent.

Similar to homeomorphisms, just as its name suggests, in any set of topological spaces,
homotopy equivalence induces an equivalence relation.
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𝑋 𝑌 𝑋

𝑌 𝑋 𝑌

𝑓 𝑔

𝑔 𝑓

Figure 3.2.2: Homotopy equivalence between an annulus and the unit circle.

Figure 3.2.3: Homotopy between 𝑔 ∘ 𝑓 and id𝑋 .

Proposition 3.2.6

Given any non empty set 𝒳 of topological spaces, the following relation is an equivalent
relation: for any 𝑋,𝑌 ∈ 𝒳

𝑋 ∼ 𝑌 ⇔ 𝑋 and 𝑌 are homotopy equivalent.

Proof. For any 𝑋 ∈ 𝒳 , we consider the identity map on 𝑋. Using the constant homotopy, we
have 𝑋 ∼ 𝑋.

By the symmetry of the definition of the homotopy equivalence, for any 𝑋,𝑌 ∈ 𝒳 , if 𝑋 ∼ 𝑌 ,
then 𝑌 ∼ 𝑋.

Let 𝑋, 𝑌 and 𝑍 be three topological spaces in 𝒳 . Assume that 𝑋 and 𝑌 are homotopy
equivalent, at the same time 𝑌 and 𝑍 are homotopy equivalent. By definition, there are continuous
maps

𝑓1 : 𝑋 → 𝑌, 𝑔1 : 𝑌 → 𝑋,

𝑓2 : 𝑌 → 𝑍, 𝑔2 : 𝑍 → 𝑌,

such that
𝑓1 ∘ 𝑔1 ∼ id𝑌 , 𝑔1 ∘ 𝑓1 ∼ id𝑋 ,
𝑓2 ∘ 𝑔2 ∼ id𝑍 , 𝑔2 ∘ 𝑓2 ∼ id𝑌 .

Now we consider the following continuous maps

𝑓2 ∘ 𝑓1 : 𝑋 → 𝑍,

𝑔1 ∘ 𝑔2 : 𝑍 → 𝑋.
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Here we need the following technical lemma.

Lemma 3.2.7

Let 𝑊 , 𝑊 ′ and 𝑊 ′′ be three topological spaces. If ℎ and ̃︀ℎ are two continuous map from
𝑊 to 𝑊 ′ homotopic to each other, and ℎ′ and ̃︀ℎ′ be two continuous maps from 𝑊 ′ to 𝑊 ′′

homotopic to each other, then we have

ℎ′ ∘ ℎ ∼ ̃︀ℎ′ ∘ ̃︀ℎ.
Proof of Lemma 3.2.7. Since a composition of continuous maps is still continuous, we have

ℎ′ ∘ ℎ, ̃︀ℎ′ ∘ ̃︀ℎ ∈ 𝒞(𝑊,𝑊 ′′)
Let 𝐻 be a homotopy between ℎ and ℎ′, and ̃︀𝐻 be a homotopy between ̃︀ℎ and ̃︀ℎ′. We now
construct the following map

𝐹 : 𝑊 × [0, 1] → 𝑊 ′′

by defining

𝐹 (𝑎, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
(ℎ′ ∘𝐻)(𝑎, 2𝑡) 𝑡 ∈

[︂
0, 1

2

]︂
̃︀𝐻(̃︀ℎ(𝑎), 2𝑡− 1) 𝑡 ∈

[︂
1
2 , 1
]︂

It is a continuous map, such that for any 𝑎 ∈ 𝑊 , we have
𝐹 (𝑎, 0) = (ℎ′ ∘ ℎ)(𝑎) and 𝐹 (𝑎, 1) = (̃︀ℎ′ ∘ ̃︀ℎ)(𝑎).

See Figure 3.2.4 for an illustration. Hence the lemma.

𝒞(𝑊,𝑊 ′)

𝐹0 = ℎ′ ∘ ℎ 𝐹 1
2

= ℎ′ ∘ ̃︀ℎ

𝐹1 = ̃︀ℎ′ ∘ ̃︀ℎ

Figure 3.2.4: Homotopy in 𝒞(𝑊,𝑊 ′) given by 𝐹 .

By this lemma, in 𝒞(𝑋,𝑋) we have
(𝑔1 ∘ 𝑔2) ∘ (𝑓2 ∘ 𝑓1) =𝑔1 ∘ (𝑔2 ∘ 𝑓2) ∘ 𝑓1

∼𝑔1 ∘ id𝑌 ∘ 𝑓1

=𝑔1 ∘ 𝑓1

∼id𝑋 .
Similarly, in 𝒞(𝑍,𝑍) we have

(𝑓2 ∘ 𝑓1) ∘ (𝑔1 ∘ 𝑔2) =𝑓2 ∘ (𝑓1 ∘ 𝑔1) ∘ 𝑔2

∼𝑓2 ∘ id𝑌 ∘ 𝑔2

=𝑓2 ∘ 𝑔2

∼id𝑍 .
Hence 𝑋 and 𝑌 are homotopy equivalent.
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Definition 3.2.8

If a space 𝑌 is homotopy equivalent to a space 𝑋, we say that 𝑌 is of the homotopy type
𝑋.

To have an idea of properties preserved under homotopy equivalence, we give several non-
examples to see what is preserved under the homotopy equivalence.

Example 3.2.9.
Consider the following subspaces of C

𝑋 = {1,−1} and 𝑌 = {0}.

We would like to show that 𝑋 and 𝑌 are not homotopy equivalent.
Since 𝑌 has a single point, the only map 𝑓 from 𝑋 to 𝑌 is defined by sending both 1 and −1

to 0. On the other hand, a map from 𝑌 to 𝑋 is determined by the image of 0. Without loss of
generality, we may consider the map

𝑔 : 𝑌 → 𝑋,

with 𝑔(0) = 1.
Notice that 𝑓 ∘ 𝑔 = id𝑌 . Now we turn to study 𝑔 ∘ 𝑓 and we will show that the composition

𝑔 ∘ 𝑓 is not homotopic to id𝑋 . To see this, we assume that there is a homotopy

𝐻 : 𝑋 × [0, 1] → 𝑋,

between 𝑔 ∘ 𝑓 and id𝑋 , and see what would go wrong.
Consider the restriction 𝐻 ′ of 𝐻 on {−1} × [0, 1]. Notice that this is a connected subspace of

the product space 𝑋 × [0, 1]. Moreover, by the definition of 𝐻, we have

𝐻(−1, 0) = 1, 𝐻(−1, 1) = −1.

Hence the map
𝐻 ′ : {−1} × [0, 1] → 𝑋,

is continuous and surjective. However 𝑋 is a not connected, which is a contradiction. (See Figure
3.2.5 for an illustration.)

?

0

1
𝑡

−1 1

−1 1

𝐻0 = 𝑔 ∘ 𝑓

𝐻1 = id𝑋

Figure 3.2.5: Where should the orange point go, if 𝐻 is continuous?
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In fact here we can use either {−1} × [0, 1] is connected or path connected to get the
contradiction. Now if we consider the point is a connected component or a path connected
component, we can generalize this arguments to show that the connectedness and the path
connectedness are both preserved by the homotopy equivalence.

Proposition 3.2.10

If two spaces 𝑋 and 𝑌 are homotopy equivalent and 𝑋 is connected, then 𝑌 is connected.

It can be considered as a corollary of the following proposition.

Proposition 3.2.11

If two spaces 𝑋 and 𝑌 are homotopy equivalent, then they have the same number of
connected components.

Proof. By definition of homotopy equivalence, there are continuous maps

𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑋,

such that 𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .
The decomposition of connected components of 𝑋 and 𝑌 are denoted respectively by

𝑋 =
⨆︁
𝛼∈𝒜

𝑋𝛼, 𝑌 =
⨆︁
𝛽∈ℬ

𝑌𝛽 .

Since 𝑓 is continuous, for any 𝛼 ∈ 𝒜, the image 𝑓(𝑋𝛼) is connected hence is contained in some
connected component 𝑌𝛽 of 𝑌 . This gives a map

𝜑𝑓 : 𝒜 → ℬ.

We would like to show that this map is injective by contradiction. Assume that two distinct
induces 𝛼 and 𝛼′ in 𝒜 are mapped to 𝛽.

Since 𝑔 is continuous, the image

(𝑔 ∘ 𝑓)(𝑋𝛼 ∪𝑋𝛼′) ⊂ 𝑔(𝑌𝛽)

is contained in the connected component 𝑋𝛼′′ . Notice that we have either 𝛼 ≠ 𝛼′′ or 𝛼′ ≠ 𝛼′′.
Without loss of generality, we may assume that 𝛼 ̸= 𝛼′′.

Let 𝐻 denote the homotopy between 𝑔 ∘ 𝑓 and id𝑋 . Since

𝐻(𝑋𝛼 × {0}) ⊂ 𝑋 ′′
𝛼, 𝐻(𝑋𝛼 × {1}) = 𝑋𝛼,

we have
𝐻(𝑋𝛼 × [0, 1]) ∩𝑋𝛼 ̸= ∅, 𝐻(𝑋𝛼 × [0, 1]) ∩𝑋 ′′

𝛼 ̸= ∅.

Hence 𝐻(𝑋𝛼 × [0, 1]) is not connected. On the other hand, the product space 𝑋𝛼 × [0, 1] is
connected. This contradict to the fact that 𝐻 is continuous. Hence 𝜑𝑓 is injective.

Now we would like to show that 𝜑𝑓 is surjective. Assume that 𝛽 is not in the image 𝜑𝑓 (𝒜).
Let 𝛼 ∈ 𝒜 and 𝛽′ ∈ ℬ, such that

𝑔(𝑌𝛽) ⊂ 𝑋𝛼 and 𝑓(𝑋𝛼) = 𝑌𝛽′ .

Notice that 𝛽′ ̸= 𝛽 by the hypothesis. Now we consider the homotopy 𝐹 between 𝑓 ∘ 𝑔 and id𝑌 .
Then since 𝑌𝛽 × [0, 1] is connected, we have 𝐹 (𝑌𝛽 × [0, 1]) connected. Notice that

𝐹 (𝑌𝛽 × {0}) ⊂ 𝑌𝛽′ and 𝐹 (𝑌𝛽 × {1}) = 𝑌𝛽 ,
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which is a contradiction. Hence 𝛽′ = 𝛽.
As a conclusion, the map 𝜑𝑓 is a bijective between 𝒜 and ℬ. In particular, we have

|𝒜| = |ℬ|.

Remark 3.2.12.
In fact, we can consider

𝜑𝑔 : ℬ → 𝒜
constructed in a similar way as for 𝜑𝑓 . By a similar discussion, we can show that 𝜑𝑔 is a injective.
Hence we have

|𝒜| = |ℬ|.
In the above proof, we show a stronger result that the map 𝜑𝑓 is bijective. In fact, we can

work more to show that 𝜑𝑓 and 𝜑𝑔 are inverse to each other.
In particular, when 𝑋 is connected, we have 𝑌 connected.

We also have a similar result for path connectedness and its generalization. They can be proved
in an exact same way, by considering path connectedness instead of connectedness in the proof.

Proposition 3.2.13

If two spaces 𝑋 and 𝑌 are homotopy equivalent and 𝑋 is path connected, then 𝑌 is path
connected.

Proposition 3.2.14

If two spaces 𝑋 and 𝑌 are homotopy equivalent, they have the same number of path
connected components.

Remark 3.2.15.
We have a remark for the path connectedness similar to Remark 3.2.12 for the connectedness.

Remark 3.2.16.
The above discussion shows that there are certain topological properties which are not only
preserved by homeomorphisms, but also preserved by homotopy equivalence. Later we will see
that the main object introduced in this chapter so called the fundamental group is also preserved
under homotopy equivalence, up to isomorphism.

Remark 3.2.17.
We should mention that not all topological properties are preserved by homotopy equivalence.
For example, the compactness is not always preserved by a homotopy equivalence. The real line
and a single point are homotopic equivalent, yet the real line is not compact, while any space of a
single point is.

Example 3.2.18.
Recall the topologist’s sine curve. Let 𝑓 defined on 𝐼 = (0, 1] by

𝑓(𝑥) = sin
(︁𝜋
𝑥

)︁
.
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We consider the following subspaces of R2

𝑋 = Graph(𝑓), 𝑌 = 𝑋.

Notice that 𝑋 is path connected, while 𝑌 is not. By Proposition 3.2.13, they are not homotopy
equivalent.

3.3 Relative homotopy
Sometimes, we do not require a deformation globally on a space but only locally. Here comes the
notion of relative homotopy.

Definition 3.3.1

Let 𝑋 and 𝑌 be two topological spaces and 𝐴 be a subspace of 𝑋. We say that maps

𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑌,

are homotopic relative to 𝐴, if there is a continuous map

𝐻 : 𝑋 × [0, 1] → 𝑌,

such that for any 𝑥 ∈ 𝑋, we have

𝐻(𝑥, 0) = 𝑓(𝑥) and 𝐻(𝑥, 1) = 𝑔(𝑥),

moreover for any 𝑥 ∈ 𝐴, for any 𝑡 ∈ [0, 1], we have 𝐻(𝑥, 𝑡) = 𝑓(𝑥).

Remark 3.3.2.
Informally speaking, the map 𝑔 is obtained from 𝑓 by changing 𝑓 -image of points in 𝑋 ∖𝐴 in a
continuous way.

One application of such homotopy is to simplify the space that we would like to discuss. In
particular, we have the following several definition.

Definition 3.3.3

Let 𝐴 ba a subspace of a topological space 𝑋, and

𝜄 : 𝐴 → 𝑋

be the inclusion map. We say that 𝐴 is a retraction of 𝑋, if there is a continuous map

𝑟 : 𝑋 → 𝐴,

such that 𝑟 ∘ 𝜄 = id𝐴. With the above notation,

1) if 𝜄 ∘ 𝑟 ∼ id𝑋 , then we say that 𝐴 is a deformation retraction of 𝑋;

2) if 𝜄 ∘ 𝑟 ∼ id𝑋 relative to 𝐴, then we say that 𝐴 is a strong deformation retraction
of 𝑋;
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Example 3.3.4.
Let 𝑋 be a two point subset of R2

𝑋 = {𝑝, 𝑞},

and 𝐴 = {𝑝}. Then we consider
𝑟 : 𝑋 → 𝐴

𝑝 ↦→ 𝑝

𝑞 ↦→ 𝑝

and 𝐴 is a retraction of 𝑋.

Example 3.3.5.
For any 𝑛 ∈ N*, we consider the Euclidean space R𝑛+1. Let 𝑋 be the subspace R𝑛+1 ∖ {𝑂} and
its subspace the 𝑛-sphere 𝑆𝑛. Consider the map

𝑟 : 𝑋 → 𝐴,

𝑥 ↦→ 𝑥

|𝑥|
,

where |𝑥| is the Euclidean norm in R𝑛+1.
Notice that 𝜄 ∘ 𝑟 = id𝐴, and we can verify that the following map:

𝐻 : 𝑋 × [0, 1] → 𝑋

(𝑥, 𝑡) ↦→ (1 − 𝑡)𝑥+ 𝑡
𝑥

|𝑥|
,

is a homotopy relative to 𝐴 between 𝜄 ∘ 𝑟 and id𝑋 . Hence 𝐴 is a strong deformation retraction of
𝑋.

The difference between retraction and deformation retraction is easy to tell. In particular, if 𝐴
is a deformation retraction of 𝑋, then 𝑋 is of the homotopy type of 𝐴, which is not always then
case when 𝐴 is only a retraction of 𝑋, as we can see in the above examples. Informally speaking,
a retraction only care about the result, while a deformation retraction also care about how space
retracts. In particular, when we focus on any point 𝑥 ∈ 𝑋, its trace under this homotopy will be
a path in 𝑋.

The difference between a deformation retraction and a strong deformation retraction is more
difficult to tell.

Example 3.3.6.
We consider the topological space 𝑋 in Example 2.4.32:

𝑋 = [0, 1] × {0}
⋃︁

{0} × [0, 1]
⋃︁
𝑛∈N*

{︂
1
𝑛

}︂
× [0, 1] ⊂ R2.

There is a strong deformation retraction of 𝑋 to {(0, 0)}. This can be realized by first taking a
strong deformation retraction from 𝑋 to

[0, 1] × {0},

then applying a strong deformation retraction of this horizontal segment to (0, 0) (see Figure
3.3.1 for an illustration). In fact this also shows that there is a strong deformation retraction
from 𝑋 to any point on

[0, 1] × {0}.
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Figure 3.3.1: A strong deformation retraction to (0, 0).

Using this strong deformation retraction, we can moreover show that the space 𝑋 has a
deformation retraction to any of its point.

Let 𝐴 = {(0, 1)}. Now we would like to show that 𝐴 is not a strong deformation retraction of
𝑋. For any 𝑛 ∈ N*, we denote by 𝑝𝑛 the point (1/𝑛, 1) and denote by 𝑝∞ the point (0, 1).

Notice that the sequence (𝑝𝑛)𝑛∈N* converges to 𝑝∞ as 𝑛 goes to infinity in 𝑋.
Assume that the deformation retraction of 𝑋 to 𝐴 is given by some map 𝑟, and 𝐻 is the

homotopy between 𝜄 ∘ 𝑟 and id𝑋 . If this is a homotopy relative to 𝐴, then we should have

𝐻(𝑝∞, 𝑡) = 𝑝∞

for all 𝑡 ∈ [0, 1]. We will show that this is impossible.
For each 𝑛 ∈ N*, consider the subset

{𝑝𝑛} × [0, 1],

whose image under 𝐻 is path connected. Notice that

𝐻 (𝑝𝑛, 0) = 𝑝𝑛,

and
𝐻 (𝑝𝑛, 1) = 𝑝∞.

Hence there is a time 𝑡𝑛 ∈ [0, 1], such that

𝐻 (𝑝𝑛, 𝑡𝑛) = (0, 0),

since every path connecting 𝑝𝑛 and 𝑝∞ must pass (0, 0) (see Figure 3.3.2). Now we consider the
sequence

(𝑝𝑛, 𝑡𝑛)𝑛∈N* .

Since 𝑋 is a compact subspace of R2 (hence is sequential compact), there is a convergent
subsequence whose limit point is

(𝑝∞, 𝑠) ∈ 𝑋 × [0, 1],

such that 𝐻(𝑝∞, 𝑠) = (0, 0) by the continuity of 𝐻. Hence 𝐻 is not a homotopy relative to
𝐴 = {𝑝∞}, and 𝐴 is not a strong deformation retraction of 𝑋.
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· · ·

𝑝∞ 𝑝1𝑝2𝑝3𝑝4𝑝5

Figure 3.3.2: A deformation retraction to {𝑝∞} is not strong.

3.4 Path homotopy
Given one topological space, it is easy to tell that there is a difference between a (path) connected
space and a space which is not (path) connected. However, only knowing a space is (path)
connected is still not enough to characterize (even roughly) a space.

From now on, we will focus on the path connectedness. Let 𝐷2 be the unit disk in R2. Notice
that it is path connected. Even when we remove the center, the rest part denoted by 𝑋 is still
path connected. However, there is some difference between 𝐷2 and 𝑋. For example, we consider
𝑝 and 𝑞 two points in 𝐷2 different from the center. Notice that given any path in a space, it
always has a strong deformation retraction to one of its end point. Hence either in 𝐷2 or 𝑋, two
paths from 𝑝 to 𝑞 are always homotopic to each other.

𝑝
𝑞

𝑝
𝑞

Figure 3.4.1: Different "path connected spaces".

However, if we fix endpoints when we perform a homotopy on a path, things are different. In
𝐷2, we can still deform one path form 𝑝 to 𝑞 to another one in a continuous way. This is no long
the case when we consider paths in 𝑋. There are certain pair of path from 𝑝 to 𝑞, such that when
we try to deform one to the other continuously, we must pass the center which has been removed.

This observation gives us a way to have a next level classification in the category of path
connected spaces. Notice that when we deform a path fixing its endpoints, we actually perform a
relative homotopy. To be more precise, recall that given any topological space 𝑋, a path in 𝑋 is
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a continuous map
𝛼 : [0, 1] → 𝑋.

Definition 3.4.1

Consider two paths 𝛼 and 𝛽 in 𝑋 with

𝛼(0) = 𝛽(0) = 𝑝,

𝛼(1) = 𝛽(1) = 𝑞.

A path homotopy between 𝛼 and 𝛽 is a continuous map

𝐻 : [0, 1] × [0, 1] → 𝑋,

such that for any 𝑠, 𝑡 ∈ [0, 1], we have

𝐻(𝑠, 0) = 𝛼(𝑠), 𝐻(𝑠, 1) = 𝛽(𝑠),
𝐻(0, 𝑡) = 𝑝, 𝐻(1, 𝑡) = 𝑞.

Remark 3.4.2.
In other words, a path homotopy between 𝛼 and 𝛽 is a homotopy relative to {0, 1}. In Example
3.1.6, the two paths 𝛾0 and 𝛾1 are path homotopic.

𝑝

𝛾0

𝑞

𝛾1

Figure 3.4.2: The paths 𝛾0 and 𝛾1 are path homotopic.

From now on, unless specified, when we say that two paths with the same endpoints are
homotopic, we mean that they are path homotopic, and we denote this by 𝛼 ∼ 𝛽.

Since the path homotopy is a special kind of homotopy, most of the discussions made before
for homotopy still work here.

First notice that for each time parameter 𝑡 ∈ [0, 1], the map 𝐻𝑡 is also a path from 𝑝 to 𝑞.
Secondly, given two paths in 𝑋 homotopic to each other, the homotopy is not unique for the
same reasons as before.

Reparametrizations give new homotopies between two given paths.
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Definition 3.4.3

A reparametrization of 𝛼 is given by 𝛼 ∘ 𝜙, where

𝜙 : [0, 1] → [0, 1]

is a increasing continuous map with 𝜙(0) = 0 and 𝜙(1) = 1.

Figure 3.4.3 is an illustration of a reparametrization.

0 1
2 1 𝑡

𝐻

̃︀𝐻

Figure 3.4.3: A reparametrization of a homotopy between two paths.

Two homotopies between two given paths can also be completely different, meaning that the
collection of path {𝐻𝑡}𝑡∈[0,1] are different. See Figure 3.4.4 for an illustration.

0 1
2 1 𝑡

𝐻

𝐻 ′

Figure 3.4.4: A "completely different" homotopy between two paths.

Inverse of a path homotopy

We can also define the inverse of a path homotopy.
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Definition 3.4.4

The inverse of the path 𝛼 is defined to be the following path

𝛼 : [0, 1] → 𝑋,

𝑡 ↦→ 𝛼(1 − 𝑡).

Figure 3.4.5 is an illustration of the inverse of a path homotopy.

0 1
2 1 𝑡

𝐻

𝐻

Figure 3.4.5: The inverse of a homotopy between two paths with end points fixed.

Induced equivalence relation on the set of path with same endpoints

Given any pair of points 𝑝 and 𝑞 in a path connected space 𝑋, we denote

𝒫(𝑋, 𝑝, 𝑞) := {paths in 𝑋 going 𝑝 to 𝑞}.

As a special case of Proposition 3.1.9, we have

Corollary 3.4.5

The following relation on 𝒫(𝑋, 𝑝, 𝑞) is an equivalence relation: for any paths 𝛼 and 𝛽

𝛼 ∼ 𝛽 ⇔ 𝛼 and 𝛽 are homotopic.

For any 𝛼 ∈ 𝒫(𝑋, 𝑝, 𝑞), we denote by [𝛼] the equivalence class of 𝛼, and call it the homotopy
class of 𝛼.

Composition between (the homotopy classes of) paths

Let 𝑋 be a path connected space and 𝑝, 𝑝′ and 𝑝′′ be three points in it. Let 𝛼 be a path going
from 𝑝 to 𝑝′ and 𝛼′ be a path going from 𝑝′ to 𝑝′′, then we can construct the following path in 𝑋
going from 𝑝 to 𝑝′′.

𝛼 * 𝛼′ : [0, 1] → 𝑋,

defined by

(𝛼 * 𝛼′)(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝛼(2𝑡) 𝑡 ∈

[︂
0, 1

2

]︂
𝛼′(2𝑡− 1) 𝑡 ∈

[︂
1
2 , 1
]︂
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Roughly speaking, to get the path 𝛼 * 𝛼′, we first go along 𝛼, then go along 𝛼′.

Definition 3.4.6

We call the path 𝛼 * 𝛼′ the composition of 𝛼 and 𝛼′.

Using the composition of paths, we can define the following map

* : 𝒫(𝑋, 𝑝, 𝑝′) × 𝒫(𝑋, 𝑝′, 𝑝′′) → 𝒫(𝑋, 𝑝, 𝑝′′)
(𝛼, 𝛼′) ↦→ 𝛼 * 𝛼′.

Moreover, if we have paths 𝛼, 𝛽 ∈ 𝒫(𝑋, 𝑝, 𝑝′) and 𝛼′, 𝛽′ ∈ 𝒫(𝑋, 𝑝′, 𝑝′′), such that 𝛼 ∼ 𝛽 and
𝛼′ ∼ 𝛽′, we denote by 𝐻 and 𝐻 ′ the two homotopy respectively.

𝛼 𝛼′

𝛽
𝛽′

𝑝 𝑝′ 𝑝′′

Figure 3.4.6: Composition of paths.

Then we have
𝛼 * 𝛼′ ∼ 𝛽 * 𝛽′,

for which a homotopy ̃︀𝐻 satisfies

̃︀𝐻(𝑠, 𝑡) = ̃︀𝐻𝑡(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
(𝐻𝑡 * 𝛼′)(𝑠) 𝑡 ∈

[︂
0, 1

2

]︂
(𝛽 *𝐻 ′

𝑡)(𝑠) 𝑡 ∈
[︂

1
2 , 1
]︂

where 𝑠 is the path parameter, and 𝑡 is the time parameter for the homotopy.

𝛼 𝛼′ 𝛼′

𝛽 𝛽 𝛽′

0 1
2 1 𝑡

Figure 3.4.7: The homotopy ̃︀𝐻.

We call this homotopy the composition of 𝐻 and 𝐻 ′

̃︀𝐻 = 𝐻 *𝐻 ′.
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Remark 3.4.7.
The homotopy between 𝛼 * 𝛼′ and 𝛽 * 𝛽′ here can also be chosen to be the one such that for any
𝑡 ∈ [0, 1], we have: ̃︀𝐹𝑡 = 𝐻𝑡 *𝐻 ′

𝑡.

In other words, we apply the homotopies 𝐻 and 𝐻 ′ at the same time, instead of first 𝐻, then 𝐻 ′.

Using the composition between two homotopy classes of two paths, we have the following map
well-define:

* : 𝒫(𝑋, 𝑝, 𝑝′)/ ∼ × 𝒫(𝑋, 𝑝′, 𝑝′′)/ ∼ → 𝒫(𝑋, 𝑝, 𝑝′′)/ ∼
([𝛼], [𝛽]) ↦→ [𝛼 * 𝛽].

Definition 3.4.8

We call the class [𝛼 * 𝛽] the composition of [𝛼] and [𝛽].

For any point 𝑝 ∈ 𝑋, we call a constant map

𝑐𝑥 : [0, 1] → 𝑋

𝑡 ↦→ 𝑝

a constant path.
Using reparametrizations of paths, we have the following facts.

Proposition 3.4.9

Let 𝛼, 𝛼′ and 𝛼′′ be three paths in 𝑋.

1) If 𝛼(1) = 𝛼′(0) and 𝛼′(1) = 𝛼′′(0), then we have

(𝛼 * 𝛼′) * 𝛼′′ ∼ 𝛼 * (𝛼′ * 𝛼′′),

2) If 𝑝 = 𝛼(0) and 𝑞 = 𝛼(1), we have

(a) 𝑐𝑝 * 𝛼 ∼ 𝛼 ∼ 𝛼 * 𝑐𝑞,
(b) 𝛼 * 𝛼 ∼ 𝑐𝑝,
(c) 𝛼 * 𝛼 ∼ 𝑐𝑞.

Proof. 1) The path (𝛼 * 𝛼′) * 𝛼′′ comes from taking first the composition 𝛼 * 𝛼′, then the
composition (𝛼*𝛼′)*𝛼′′, while the path 𝛼*(𝛼′ *𝛼′′) comes from taking first the composition
𝛼′ * 𝛼′′, then the composition 𝛼 * (𝛼′ * 𝛼′′). Therefore for any 𝑠 ∈ [0, 1], we have

((𝛼 * 𝛼′) * 𝛼′′)(𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼(4𝑠), 𝑠 ∈
[︂
0, 1

4

]︂
𝛼′(4𝑠− 1), 𝑠 ∈

[︂
1
4 ,

1
2

]︂
𝛼′′(2𝑠− 1), 𝑠 ∈

[︂
1
2 , 1
]︂
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and

(𝛼 * (𝛼′ * 𝛼′′))(𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼(2𝑠), 𝑠 ∈
[︂
0, 1

2

]︂
𝛼′(4𝑠− 2), 𝑠 ∈

[︂
1
2 ,

3
4

]︂
𝛼′′(4𝑠− 3), 𝑠 ∈

[︂
3
4 , 1
]︂

(See Figure 3.4.8 for an illustration)

𝛼 𝛼′ 𝛼′′

𝛼 𝛼′

𝛼′′

0 1
4

1
2

3
4

1 𝑡

Figure 3.4.8: The paths (𝛼 * 𝛼′) * 𝛼′′ (top) and 𝛼 * (𝛼′ * 𝛼′′) (bottom).

We consider the following continuous map 𝐻 (illustrated in Figure 3.4.9) defined by

𝐻(𝑠, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛼

(︂
4𝑠

1 + 𝑡

)︂
, 0 ≤ 𝑠 ≤ 1 + 𝑡

4

𝛼′ (4𝑠− 1 − 𝑡) , 1 + 𝑡

4 ≤ 𝑠 ≤ 2 + 𝑡

4

𝛼′′
(︂

4
2 − 𝑡

(︂
𝑠− 2 + 𝑡

4

)︂)︂
,

2 + 𝑡

4 ≤ 𝑠 ≤ 1

for any (𝑠, 𝑡) ∈ [0, 1] × [0, 1], which is a homotopy between (𝛼 * 𝛼′) * 𝛼′′ and 𝛼 * (𝛼′ * 𝛼′′)

0 1
4

1
2

3
4

1
𝑠

1
𝑡

𝐻

𝛼
𝛼′

𝛼′′

Figure 3.4.9: A homotopy between (𝛼 * 𝛼′) * 𝛼′′ and 𝛼 * (𝛼′ * 𝛼′′).

2) We consider the path 𝛼. By the definition of the composition, we first give the maps involved
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in these relations: for any 𝑠 ∈ [0, 1], we have

(𝑐𝑥 * 𝛼)(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝑥, 𝑠 ∈

[︂
0, 1

2

]︂
𝛼(2𝑠− 1), 𝑠 ∈

[︂
1
2 , 1
]︂

(𝛼 * 𝑐𝑦)(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝛼(2𝑠), 𝑠 ∈

[︂
0, 1

2

]︂
𝑦, 𝑠 ∈

[︂
1
2 , 1
]︂

(𝛼 * 𝛼)(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝛼(2𝑠), 𝑠 ∈

[︂
0, 1

2

]︂
𝛼(2𝑠− 1), 𝑠 ∈

[︂
1
2 , 1
]︂

(𝛼 * 𝛼)(𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝛼(2𝑠− 1), 𝑠 ∈

[︂
0, 1

2

]︂
𝛼(2𝑠), 𝑠 ∈

[︂
1
2 , 1
]︂

We consider the following homotopies.

(a) a homotopy between 𝛼 and 𝑐𝑝 * 𝛼 (see Figure 3.4.10, spending more and more time in
the beginning staying at 𝑝):

𝐻(𝑠, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑝, 0 ≤ 𝑠 ≤ 𝑡

2

𝛼

(︂
2

2 − 𝑡
(𝑠− 𝑡

2)
)︂
,

𝑡

2 ≤ 𝑠 ≤ 1
;

0 1
2

1
𝑠

1
𝑡

𝐻

𝛼

𝑝 𝑞

Figure 3.4.10: A homotopy between 𝛼 and 𝑐𝑝 * 𝛼.

(b) a homotopy between 𝛼 and 𝛼 * 𝑐𝑞 (see Figure 3.4.11, spending more and more time in
the end staying at 𝑞):

𝐻(𝑠, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝛼

(︂
2𝑠

2 − 𝑡

)︂
, 0 ≤ 𝑠 ≤ 1 − 𝑡

2

𝑞, 1 − 𝑡

2 ≤ 𝑠 ≤ 1
;
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0 1
2

1
𝑠

1
𝑡

𝐻

𝛼

𝑝 𝑞

Figure 3.4.11: A homotopy between 𝛼 and 𝛼 * 𝑐𝑞.

(c) a homotopy between 𝛼 * 𝛼 and 𝑐𝑝 (see Figure 3.4.13, turning back earlier and earlier):

𝐻(𝑠, 𝑡) =

⎧⎪⎨⎪⎩
𝛼(2𝑠(1 − 𝑡)), 0 ≤ 𝑠 ≤ 1

2
𝛼(2𝑠(1 − 𝑡)), 1

2 ≤ 𝑠 ≤ 1
;

0 1
2

1
𝑠

1
𝑡

𝐻0

𝐻𝑡

𝐻1

Figure 3.4.12: A homotopy between 𝛼 * 𝛼 and 𝑐𝑝.

(d) a homotopy between 𝛼 * 𝛼 and 𝑐𝑞 (see Figure 3.4.13, turning back earlier and earlier):

𝐻(𝑠, 𝑡) =

⎧⎪⎨⎪⎩
𝛼(2𝑠(1 − 𝑡)), 0 ≤ 𝑠 ≤ 1

2
𝛼(2𝑠(1 − 𝑡)), 1

2 ≤ 𝑠 ≤ 1
.

This proposition can also be written as follows by considering homotopy classes of paths and
their compositions.
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0 1
2

1
𝑠

1
𝑡

𝐻0

𝐻𝑡

𝐻1

Figure 3.4.13: A homotopy between 𝛼 * 𝛼 and 𝑐𝑞.

Corollary 3.4.10

Let 𝛼, 𝛽 and 𝛾 be three paths in 𝑋.

1) If 𝛼(1) = 𝛽(0) and 𝛽(1) = 𝛾(0), then we have

([𝛼] * [𝛽]) * [𝛾] = [𝛼] * ([𝛽] * [𝛾]) ,

2) If 𝑥 = 𝛼(0) and 𝑦 = 𝛼(1), we have

(a) [𝑐𝑥] * [𝛼] = [𝛼] = [𝛼] * [𝑐𝑦],
(b) [𝛼] * [𝛼] = [𝑐𝑥],
(c) [𝛼] * [𝛼] = [𝑐𝑦].

Remark 3.4.11.
With first point in the above proposition, when we taking a composition of finitely many paths,
the order for which composition is done first is no longer important. Hence let 𝑛 > 1 be a natural
number, and 𝛼1, ..., 𝛼𝑛 be 𝑛 paths in 𝑋 satisfying that for any 1 ≤ 𝑖 ≤ 𝑛− 1, we have

𝛼𝑖(1) = 𝛼𝑖+1(0).

Then we denote their composition by

[𝛼1] * · · · * [𝛼𝑛]

omitting the parentheses.

3.5 Fundamental Group
Now we are ready to introduce the fundamental group of a path connected space, which is
constructed by studying loops based at a same point up to path homotopy.

Let 𝑋 be a path connected space.
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Definition 3.5.1

If a path 𝛼 in 𝑋 satisfies
𝛼(0) = 𝛼(1) = 𝑝,

then we say that 𝛼 is a loop based at 𝑝 ∈ 𝑋.

Figure 3.5.1: A loop in a disk based at its center.

We denote the space of loops in 𝑋 based at 𝑝 ∈ 𝑋 by

ℒ(𝑋, 𝑝) := {loops in 𝑋 based at 𝑝}.

As special paths, the path homotopy induces an equivalence relation in ℒ(𝑋, 𝑝): for any loops
𝛼 and 𝛼′ in ℒ(𝑋, 𝑝), we define

𝛼 ∼ 𝛼′ ⇔ 𝛼 and 𝛼′ are homotopic.

Given any loop 𝛼 ∈ ℒ(𝑋, 𝑝), the equivalence class containing 𝛼 is given by

[𝛼] := {𝛼′ ∈ ℒ(𝑋, 𝑝) | 𝛼′ ∼ 𝛼}

and is called the homotopy class of 𝛼, and any loop in [𝛼] is a representative of [𝛼]. In particular,
the loop 𝛼 is a representative of [𝛼].

Remark 3.5.2.
By its definition, if we have a path homotopy 𝐻 of loops in a topological space 𝑋, all maps
𝐻𝑡’s are loops in 𝑋 based at a same point. In other words, when we deform a loop with a path
homotopy, not only we have a loop at each time 𝑡, we also never move the base point.

We denote the space of homotopy classes of loops by

𝜋1(𝑋, 𝑝) := ℒ(𝑋, 𝑝)/ ∼ .

The composition between paths introduced previously then induces a binary operator on the
ℒ(𝑋, 𝑝), then a binary operator on 𝜋1(𝑋, 𝑝). We then have an immediate corollary of Corollary
3.4.10.

Corollary 3.5.3

The set 𝜋1(𝑋, 𝑝) with the composition operator is a group.



102 CHAPTER 3. HOMOTOPY AND FUNDAMENTAL GROUPS

Proof. By 1) of Corollary 3.4.10, the composition operator satisfies the associativity.
By 2.a) of Corollary 3.4.10, the homotopy class [𝑐𝑝] is an identity element.
By 2.b) and 2.c) of Corollary 3.4.10, for any loop 𝛼 based at 𝑝, the homotopy class [𝛼] is the

inverse of [𝛼].

Definition 3.5.4

The group 𝜋1(𝑋, 𝑝) is called the fundamental group of 𝑋 based at 𝑝.

Remark 3.5.5.
This group is also called the Poincaré group or the first homotopy group of 𝑋 based at 𝑝.

One important application of the fundamental group is to classifies topological spaces. In
general, as we will see later that if two path connected spaces have non isomorphic fundamental
groups, they are not homeomorphic, neither homotopy equivalent. The other direction is not
true, two homotopy non-equivalent spaces may have isomorphic fundamental groups. As an
elementary example, we can compare the 2-disk 𝐷2 and the 2-sphere 𝑆2. Both spaces have trivial
fundamental groups based at any point. More information needs to be considered in order to
distinguish them.

In fact the "first" stands for the dimension 1. We can also think a loop in 𝑋 as the image
of a continuous map from 𝑆1 to 𝑋. The construction of 𝜋1(𝑋, 𝑝) can also be generalized by
considering continuous maps from 𝑛-sphere 𝑆𝑛 to 𝑋 and their maps. The resulting group is
called the 𝑛-th homotopy group of 𝑋 and denoted by 𝜋𝑛(𝑋, 𝑝).

Consider the above example where we compare 𝐷2 amd 𝑆2. Notice that their second homotopy
groups are different. Any continuous map from 𝑆2 to 𝐷2 is homotopic to a constant map, which
is not true for any continuous map from 𝑆2 to 𝑆2 (for example, the identity map). Even when we
consider 𝜋𝑛(𝑋, 𝑝) for all 𝑛 ∈ N*, we still cannot tell if two path connected spaces are homotopy
equivalent. There are still more information needed.

Example 3.5.6 (Interval).
Consider 𝐼 = [0, 1] the closed interval in R. We consider the fundamental group of 𝐼 based at
𝑝 = 0.

𝜋1(𝐼, 𝑝) := {Loops in 𝐼 based at 𝑝}/ ∼ .

In the previous sections, we have seen that 𝐼 is a contractible space. In particular, there is a
strong deformation retraction of 𝐼 to {𝑝}. We denote a homotopy between id𝐼 and 𝑐𝑝 by 𝐻.

Given any loop 𝛼 ∈ ℒ(𝐼, 𝑝), we consider the following map

̃︀𝐻 : [0, 1] × [0, 1] → 𝐼

(𝑠, 𝑡) ↦→ 𝐻(𝛼(𝑠), 𝑡)

which is continuous, such that ̃︀𝐻0 = 𝛼 and ̃︀𝐻1 = 𝑐𝑝 and for any 𝑡 ∈ [0, 1]

̃︀𝐻(0, 𝑡) = ̃︀𝐻(1, 𝑡) = 𝑝,

thus a path homotopy between 𝛼 and 𝑐𝑝. Therefore we have

𝜋1(𝐼, 𝑝) := {[𝑐𝑝]}

The fundamental group of 𝐼 based at 𝑝 is trivial.
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Informally speaking, when we apply the strong deformation retraction of 𝐼 to 𝑝, we retract
the whole space to 𝑝, including the image of 𝛼. By slightly modifying the discussion, we can show
that this also holds for any contractible space.

Proposition 3.5.7

If a topological space 𝑋 is contractible, then for any 𝑝 ∈ 𝑋, the fundamental group 𝜋1(𝑋, 𝑝)
is trivial.

Proof. The space 𝑋 is contractible, by definition there is a homotopy 𝐻

𝐻 : 𝑋 × [0, 1] → 𝑋

between the identity map id𝑋 and the constant map Const𝑝0 for some 𝑝0 ∈ 𝑋. By considering
the restriction of 𝐻 to {𝑞} × [0, 1] for any 𝑞 ∈ 𝑋, we have a path in 𝑋 connecting 𝑞 to 𝑝0. Hence
𝑋 is path connected.

Since 𝑋 is path connected, for any 𝑝, 𝑞 ∈ 𝑋, the constant maps Const𝑝 and Const𝑞 are
homotopic to each other. By taking composition of homotopies, for any 𝑝 ∈ 𝑋, the identity map
id𝑋 is homotopic to Const𝑝.

Therefore to show the proposition, it is enough to show that 𝜋1(𝑋, 𝑝0) is trivial. We first
consider the path

𝛽 : [0, 1] → 𝑋

𝑡 ↦→ 𝐻(𝑝0, 𝑡)
.

For each 𝑡 ∈ [0, 1], we denote
𝛽𝑡 : [0, 1] → 𝑋

𝑠 ↦→ 𝛽(𝑠𝑡)
.

𝑋

𝑝0

𝛽

𝛽𝑡

𝐻𝑡

𝛽𝑡

𝛼

Figure 3.5.2: Deform a loop to a constant loop via a general homotopy.

Let 𝛼 be any loop in 𝑋 based at 𝑝0. Consider the following map

𝐹 : [0, 1] × [0, 1] → 𝑋

(𝑠, 𝑡) ↦→ (𝛽𝑡 *𝐻𝑡 * 𝛽𝑡)(𝑠)
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We can verify that this is a path homotopy between 𝑐𝑝0 * 𝛼 * 𝑐𝑝0 and 𝛽 * 𝑐𝑝0 * 𝛽, where 𝑐𝑝0 is the
constant path with image {𝑝0}. Hence we have

𝛼 ∼ 𝑐𝑝0 .

This shows that 𝜋1(𝑋, 𝑝0) is trivial.

Remark 3.5.8.
This shows that although there could be many loops based at 𝑝0 in 𝑋 which look quite different
from each other, their homotopy classes could be quite few.

Fundamental group of 𝑆1

Now we consider the space 𝑆1 as the next example, which is at the same time elementary and
important in the whole story of fundamental groups.

For our convenience, we consider

𝑆1 = {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 = 1}.

Let 𝑝 = (1, 0). We would like to study loops in 𝑆1 based at 𝑝.

The fundamental group 𝜋1(𝑆1, 𝑝) is cyclic.

Notice that a loop in 𝑆1 could be quite arbitrary. For example, if as the time parameter 𝑡 moves
0 to 1, the moving direction of the point 𝛼(𝑡) can switch between counterclockwise and clockwise
infinitely many times (See Figure 3.5.3 for an illustration).

Figure 3.5.3: A loop with infinite backtracks in the shadowed area.

The first step is to show that all loops are homotopic to some loops standard in certain way.
The compactness of [0, 1] plays an essential role here.

Let 𝛼 be such a loop. For any 𝑡 ∈ [0, 1], we consider 𝜖 > 0 such that the neighborhood

𝑈𝑡 = (𝑡− 𝜖, 𝑡+ 𝜖) ∩ [0, 1]

of 𝑡 is contained in a half circle in 𝑆1. Since [0, 1] is compact, there are finitely many of these
open sets in [0, 1] forming an open cover of [0, 1]. We denote them by

{𝑈1, ..., 𝑈𝑛}.
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Consider their end points
0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑚 = 1.

Hence the restriction of 𝛼 to [𝑡𝑗 , 𝑡𝑗+1] is contained in a half circle for any integer 0 ≤ 𝑗 ≤ 𝑚− 1,
since each (𝑡𝑗 , 𝑡𝑗+1) is contained in some 𝑈𝑘.

0 1

Figure 3.5.4: A partition of [0, 1] with the desired property.

For each integer 0 ≤ 𝑗 ≤ 𝑚− 1, we denote the restriction of 𝛼 by

𝛼𝑗 = 𝛼|[𝑡𝑗 ,𝑡𝑗+1].

Denote
𝛼𝑗(𝑡𝑗) = 𝑒2𝜋𝑖𝑠𝑗 .

Then for any 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], there is a 𝑠 ∈ [𝑠𝑗 − 1/2, 𝑠𝑗 + 1/2], such that

𝛼𝑗(𝑡) = 𝑒2𝜋𝑖𝑠,

moreover, since the image of 𝛼𝑗 is contained in a half circle, the map

𝜙𝑗 : 𝛼𝑗([𝑡𝑗 , 𝑡𝑗+1]) → [𝑠𝑗 − 1/2, 𝑠𝑗 + 1/2]
𝑒2𝜋𝑖𝑠 ↦→ 𝑠

is continuous. We consider the composition

𝜓𝑗 = 𝜙𝑗 ∘ 𝛼𝑗 : [𝑡𝑗 , 𝑡𝑗+1] → R,

and perform a homotopy relative to {𝑡𝑗 , 𝑡𝑗+1} using linear maps in R to get the following one

𝜌𝑗 : [𝑡𝑗 , 𝑡𝑗+1] → [𝜃𝑗 , 𝜃𝑗 + 1]

𝑡 ↦→ 𝜓𝑗(𝑡𝑗) + 𝑡− 𝑡𝑗
𝑡𝑗+1 − 𝑡𝑗

(𝜓𝑗(𝑡𝑗+1) − 𝜓𝑗(𝑡𝑗))

Consider the map
Φ : R → 𝑆1

𝑠 ↦→ 𝑒2𝑠𝜋𝑖.

Now we consider the following map 𝛼′ such that for any 𝑗 and any 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗 ],

𝛼′(𝑡) = Φ ∘ 𝜌𝑗(𝑡).
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Notice that for any 0 ≤ 𝑗 ≤ 𝑚− 1, we have

Φ ∘ 𝜌𝑗(𝑡𝑗+1) = Φ ∘ 𝜌𝑗+1(𝑡𝑗+1),

hence 𝛼′ is well defined and is a loop based at 𝑝. Now we consider

𝛼′−1({𝛼′(𝑡0), ..., {𝛼′(𝑡𝑚)}),

and denote it by
0 = 𝑠0 < 𝑠1 < ... < 𝑠𝑁 = 1.

By our construction, for each 1 ≤ 𝑗 ≤ 𝑁 − 1, the images

𝛼′(𝑠𝑗−1, 𝑠𝑗) and 𝛼′(𝑠𝑗 , 𝑠𝑗+1)

are either same or disjoint.

Figure 3.5.5: Pull the loop tight locally.

Now we start by comparing 𝛼′(𝑠0, 𝑠1) and 𝛼′(𝑠1, 𝑠2). If

𝛼′(𝑠0, 𝑠1) = 𝛼′(𝑠1, 𝑠2)

then we can apply a homotopy to get a new loop

𝛼′
1(𝑡) =

{︃
𝑝, 𝑡 ∈ [0, 𝑠2]
𝛼′(𝑡), 𝑡 ∈ [𝑠2, 1]

Otherwise, let 𝛼′
1 = 𝛼′ and we consider 𝑠1 and compare 𝛼′(𝑠1, 𝑠2) and 𝛼′(𝑠2, 𝑠3). If they are the

same, we can apply a homotopy to get a new loop

𝛼′
2(𝑡) =

⎧⎪⎨⎪⎩
𝛼′

1(𝑡), 𝑡 ∈ [0, 𝑠1]
𝛼′

1(𝑠1), 𝑡 ∈ [𝑠1, 𝑠3]
𝛼′

1(𝑡), 𝑡 ∈ [𝑠3, 1]

We repeat this process for all 1 ≤ 𝑗 ≤ 𝑁 − 1, then we have a path 𝛼′′ such that in each interval
(𝑠𝑗 , 𝑠𝑗+1), it either stays at 𝛼′′(𝑠𝑗) or moving to a fixed direction as parameter 𝑡 increases. Then
after a reparametrization, the loop 𝛼′′ is homotopic to the following standard one

𝛾𝑘 : [0, 1] → 𝑆1

𝑡 ↦→ 𝑒2𝑘𝑡𝜋𝑖
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for some integer 𝑘 ∈ Z, such that |𝑘| is the times that 𝛼′′ passes 𝑝 and the sign of 𝑘 is determined
by how 𝛼′′ passes 𝑝 (clockwise or counterclockwise). This is the end of the first step.

From the first step, we can see that

𝜋1(𝑆1, 𝑝) = {[𝛾𝑘] | 𝑘 ∈ Z}.

Notice that for any integers 𝑘1 and 𝑘2, we can define an explicit path homotopy to show that

𝛾𝑘1 * 𝛾𝑘2 ∼ 𝛾𝑘1+𝑘2 .

Hence this shows that
𝜋1(𝑆1, 𝑝) = ⟨𝛾1⟩.

The fundamental group 𝜋1(𝑆1, 𝑝) is isomorphic to Z.

After the previous discussion, there is one last problem whose answer is unclear. Is it possible
that there is a 𝑘 ∈ N* such that 𝛾𝑘 ∼ 𝑐𝑝, or equivalently is the generator [𝛾1] of finite order?

Notice that the above construction depends on the choice of representative 𝛼 in a homotopy
class of loops in ℒ(𝑆1, 𝑝) and the choice of finite covers of [0, 1] associated to 𝛼. Hence we cannot
get the answer directly.

To study this problem, we consider the continuous map

Φ : R → 𝑆1

𝜃 ↦→ 𝑒2𝜃𝜋𝑖.

Notice that for any 𝑞 ∈ 𝑆1, there is a unique point ̃︀𝑞 ∈ [0, 1) such that Φ(̃︀𝑞) = 𝑞, and

Φ−1(𝑞) = {̃︀𝑞𝑘 = ̃︀𝑞 + 𝑘 | 𝑘 ∈ Z}.

Moreover the map Φ has the following property:

Observation 3.5.9
Given any point 𝑞 ∈ 𝑆1, it has a neighborhood 𝑉 such that for any ̃︀𝑞𝑘 ∈ Φ−1(𝑞) it has a
neighborhood 𝑈𝑘, such that

(i) for any 𝑘 ∈ Z, the restriction
Φ|𝑈𝑘

: 𝑈𝑘 → 𝑉

is a homeomorphism;

(ii) for different integers 𝑘1 and 𝑘2, we have 𝑈𝑘1 ∩ 𝑈𝑘2 = ∅.

Remark 3.5.10.
Later we will see that with this property, the space R is called a covering space of 𝑆1, and the
map Φ is called a covering map.

For any point 𝑞 ∈ 𝑆1, we call a neighborhood of 𝑞 satisfying the property in the definition a
covering neighborhood of 𝑞 (See Figure 3.5.6 for an illustration).

The following two facts are applications of two general results for covering maps to our case.
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̃︀𝑞−1 ̃︀𝑞0 ̃︀𝑞1 ̃︀𝑞2 ̃︀𝑞3

𝑈−1 𝑈0 𝑈1 𝑈2 𝑈3

Φ

𝑞𝑉

Figure 3.5.6: A covering neighborhood 𝑉 of 𝑞.

Observation 3.5.11
Let 𝛼 be any loop in 𝑆1 based at 𝑝. Let ̃︀𝑝 ∈ Φ−1(𝑝). Then there is a unique path

̃︀𝛼 : [0, 1] → R,

such that ̃︀𝛼(0) = ̃︀𝑝 and the following diagram commutes:

[0, 1] ̃︀𝛼 //

𝛼
!!

R

Φ
��

𝑆1

Observation 3.5.12
Let 𝐻 be any path homotopy between loops in 𝑆1 based at 𝑝. Let ̃︀𝑝 ∈ Φ−1(𝑝). Then there is a
unique path homotopy ̃︀𝐻 : [0, 1] × [0, 1] → R,

such that ̃︀𝐻(0, 0) = ̃︀𝑝 and the following diagram commutes:

[0, 1] × [0, 1] ̃︀𝐻 //

𝐻
%%

R

Φ
��

𝑆1

Remark 3.5.13.
The objects ̃︀𝑞, ̃︀𝑝, ̃︀𝛼 and ̃︀𝐻 are called lifts of 𝑝, 𝑞, 𝛼 and 𝐻 respectively.

The proof of these facts are constructive, and we skip them for the moment and only provide
some rough idea of the proof for Observation 3.5.11. The complete proof for general cases will be
given in the later sections.

The rough idea is to use Φ−1 to construct a map ̃︀𝛼 from [0, 1] to R which is a lift of a path
𝛼 in 𝑆1. However, since Φ is not injective, taking Φ-preimage is not a map. Hence we cannot
obtain ̃︀𝛼 by just taking Φ-preimage.

To get over this problem, we use the property satisfied by the covering map Φ listed in
Observation 3.5.9. Instead of lifting 𝛼 directly as a whole, we may consider lifting restriction of 𝛼
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on subintervals of [0, 1], and then show that all these lifts can be "glued" together and gives a lift̃︀𝛼 of 𝛼.

More precisely, for any 𝑡 ∈ [0, 1], let 𝑞 = 𝛼(𝑡), from Observation 3.5.9, there is 𝑉 a covering
neighborhood of 𝑞. Then by the continuity of 𝛼, the parameter 𝑡 has a path connected open
neighborhood 𝐼𝑡 such that

𝛼(𝐼𝑡) ⊂ 𝑉.

The collection {𝐼𝑡 | 𝑡 ∈ 𝐼} of such open subsets in [0, 1] is an open cover of [0, 1]. By the
compactness of [0, 1], there is a finite subcover

𝐽1, ..., 𝐽𝑚.

We denote by 𝑉1, ..., 𝑉𝑚 the associated open covering neighborhood.
To simplify the argument, up to taking subinterval of 𝐽𝑗 ’s and relabeling the indices, we can

moreover assume that for any 1 ≤ 𝑗 ≤ 𝑚− 1, we have

𝐽𝑗 ∩ 𝐽𝑗+1 ̸= ∅

and for any 1 ≤ 𝑗, 𝑘 ≤ 𝑚 with |𝑗 − 𝑘| ≥ 2, we have

𝐽𝑗 ∩ 𝐽𝑘 = ∅.

At same time, we may assume that 0 ∈ 𝐽1 and 1 ∈ 𝐽𝑚.
To construct ̃︀𝛼, we start from 𝑡1 = 0. Let ̃︀𝑝 is a chosen lift of 𝛼(0). Then we have a unique

lift 𝑈1 of 𝑉1. Consider the map
Φ|𝑈1 : 𝑈1 → 𝑉1

which is a homeomorphism. Then we consider the following composition

̃︀𝛼1 = (Φ|𝑈1)−1 ∘ 𝛼|𝐽1 .

Then consider a point 𝑡2 ∈ 𝐽1 ∩ 𝐽2. There is a unique lift ̃︀𝛼1(𝑡2) of 𝛼(𝑡2) in 𝑈1. Now we consider
the lifts of 𝑉2, there is a unique one containing ̃︀𝛼1(𝑡2) and we denote it by 𝑈2. We have a
homeomorphism

Φ|𝑈2 : 𝑈2 → 𝑉2.

We define ̃︀𝛼2 = (Φ|𝑈2)−1 ∘ 𝛼|𝐽2 .

0 𝐽1 𝐽2 1

𝛼|𝐽1

𝛼|𝐽2

𝑝
𝑉1

𝑉2

𝑈1
𝑈2

(Φ|𝑈1)−1 (Φ|𝑈2)−1

̃︀𝑝

Figure 3.5.7: Construct ̃︀𝛼 piece by piece.
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Repeating this process, we have a collection of maps ̃︀𝛼𝑗 for 1 ≤ 𝑗 ≤ 𝑚. Then we define

̃︀𝛼(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

̃︀𝛼1(𝑡), 𝑡 ∈ 𝐽1̃︀𝛼2(𝑡), 𝑡 ∈ 𝐽2

...̃︀𝛼𝑚(𝑡), 𝑡 ∈ 𝐽𝑚

By the construction of ̃︀𝛼𝑗 ’s, the map ̃︀𝛼 is well-defined and continuous, and satisfies the desired
commutative diagram. The uniqueness is obtained by the uniqueness of each ̃︀𝛼𝑗 .

The proof for the existence and uniqueness of homotopy lifting is similar. The difference is that
instead of considering decomposing [0, 1] into subinterval, we have to consider the square [0, 1]2
and decompose it into subsquares. Using the compactness of [0, 1]2, by a similar construction as
above, we obtain a unique lift of a homotopy for a given lift of the base point.

By the definition of Φ and 𝑝 = 1 ∈ C, we have Φ−1(𝑝) = Z. We choose ̃︀𝑝 = 0. By Observation
3.5.11, we have a well defined map

𝑓 : ℒ(𝑆1, 𝑝) → 𝒫(R, ̃︀𝑝)
𝛼 ↦→ ̃︀𝛼 .

By Observation 3.5.12, we have

𝑓 : ℒ(𝑆1, 𝑝)/ ∼ → 𝒫(R, ̃︀𝑝)/ ∼
[𝛼] ↦→ [̃︀𝛼]

.

Here we consider the path homotopy (relative to {0, 1}). Hence the starting and the ending
points of ̃︀𝛼 will be fixed during the homotopy. We consider the endpoint ̃︀𝛼(1), and have a map

𝑔 : ℒ(𝑆1, 𝑝)/ ∼ → Z
𝛼 ↦→ ̃︀𝛼(1)

.

0 1

̃︀𝛾2

𝛾2 1

0 = ̃︀𝛾2(0) 2 = ̃︀𝛾2(1)

Figure 3.5.8: Lifting 𝛾2 to R.

Now we consider the lift ̃︁𝛾𝑘 of 𝛾𝑘 with ̃︁𝛾𝑘(0) = 0. Then we have

̃︁𝛾𝑘(1) = 𝑘 ∈ Z.

Therefore for different integers 𝑘1 ̸= 𝑘2, we have

𝛾𝑘1 ≁ 𝛾𝑘2 ,
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for otherwise we should have 𝑘1 = ̃︁𝛾𝑘1(1) = ̃︁𝛾𝑘2(1) = 𝑘2, which is a contradiction.
Hence the generator [𝛾1] of 𝜋1(𝑆1, 𝑝) is of infinite order, and

𝜋1(𝑆1, 𝑝) ∼= Z.

Change the base point

From its construction, the group 𝜋1(𝑋, 𝑝) depends on the choice of 𝑝. One may continue to ask
what happens when we change the base point 𝑝 to a different point, say 𝑞 ∈ 𝑋, and if there is
any relation between 𝜋1(𝑋,𝑥) and 𝜋1(𝑋, 𝑦). To answer these questions, we consider the following
construction to relate loops based at 𝑝 and those based at 𝑞.

Let 𝛼 be a path in 𝑋 with 𝛼(0) = 𝑞 and 𝛼(1) = 𝑝, which is chosen once and for all. For any
loop 𝛾 in ℒ(𝑋, 𝑝), we consider the composition 𝛼 * 𝛾 * 𝛼 which is a loop based at 𝑞 (See Figure
3.5.9 for an illustration).

𝑋

𝑞 𝑝
𝛼

𝛼

𝛾

𝛾

Figure 3.5.9: Change the base point from 𝑝 to 𝑞.

This induces a map
𝜙𝛼 : ℒ(𝑋, 𝑝) → ℒ(𝑋, 𝑞),

𝛾 ↦→ 𝛼 * 𝛾 * 𝛼,

which in turn induces a map
Φ𝛼 : 𝜋1(𝑋, 𝑝) → 𝜋1(𝑋, 𝑞),

[𝛾] ↦→ [𝛼 * 𝛾 * 𝛼].

Proposition 3.5.14

The map Φ𝛼 is an isomorphism.

Proof. It is enough to show that Φ𝛼 is bijective and it is a group homomorphism.
We first show that the map Φ𝛼 is bijective. We consider another map constructed in a similar

way
Φ𝛼 : 𝜋1(𝑋, 𝑞) → 𝜋1(𝑋, 𝑝)

[𝜂] ↦→ [𝛼 * 𝜂 * 𝛼]
.
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For any [𝛾] ∈ 𝜋1(𝑋, 𝑝), we have
(Φ𝛼 ∘ Φ𝛼)([𝛾]) = Φ𝛼([𝛼 * 𝛾 * 𝛼])

= [𝛼 * (𝛼 * 𝛾 * 𝛼) * 𝛼]
= [𝑐𝑝 * 𝛾 * 𝑐𝑝] = [𝛾].

Hence
Φ𝛼 ∘ Φ𝛼 = id𝜋1(𝑋,𝑝).

Similarly, we have
Φ𝛼 ∘ Φ𝛼 = id𝜋1(𝑋,𝑞).

Therefore Φ𝛼 is bijective.
To show that it is a group homomorphism, we consider any pair [𝛾] and [𝛾′] in 𝜋1(𝑋, 𝑝) and

have
Φ𝛼([𝛾] * [𝛾′]) = Φ𝛼([𝛾 * 𝛾′])

= [𝛼 * 𝛾 * 𝛾′ * 𝛼]
= [𝛼 * 𝛾 * 𝑐𝑝 * 𝛾′ * 𝛼]
= [𝛼 * 𝛾 * 𝛼 * 𝛼 * 𝛾′ * 𝛼]
= [𝛼 * 𝛾 * 𝛼] * [𝛼 * 𝛾′ * 𝛼]
= Φ𝛼([𝛾]) * Φ𝛼([𝛾′]).

Hence Φ𝛼 is a group homomorphism.

Remark 3.5.15.
By this proposition, up to isomorphism, the fundamental group of 𝑋 based at a point is
independent of choice of the base point. Hence we may omit the base point and call it the
fundamental group of 𝑋, denote it by 𝜋1(𝑋).

However, when we try to do computation in details with loops, we have to choose a base point
𝑝 ∈ 𝑋 and consider the corresponding fundamental group 𝜋1(𝑋, 𝑝) based at 𝑝.

Notice the above construction of Φ𝛼 seems to depend on the choice of 𝛼 or at least the
homotopy class of [𝛼]. If we choose another path 𝛽 in 𝑋 with 𝛽(0) = 𝑞 and 𝛽(1) = 𝑝, by the
same construction, we have the map 𝜙𝛽 and the isomorphism Φ𝛽 .

Proposition 3.5.16

For any [𝛾], we have
Φ𝛽([𝛾]) = [𝛽 * 𝛼] * Φ𝛼([𝛾]) * [𝛽 * 𝛼]−1.

In another word, the two group homomorphisms Φ𝛼 and Φ𝛽 are different by a conjugation
in 𝜋1(𝑋, 𝑞) given by [𝛽 * 𝛼].

Proof. The proof is a direct computation.
Notice that

[𝛽 * 𝛼] ∈ 𝜋1(𝑋, 𝑞).
Given any 𝛾 ∈ ℒ(𝑋, 𝑝), we have

Φ𝛽([𝛾]) = [𝛽 * 𝛾 * 𝛽]
= [𝛽] * [𝑐𝑥 * 𝛾 * 𝑐𝑥] * [𝛽]
= [𝛽] * [𝛼 * 𝛼] * [𝛾] * [𝛼 * 𝛼] * [𝛽]
= [𝛽 * 𝛼] * [𝛼 * 𝛾 * 𝛼] * [𝛼 * 𝛽]
= [𝛽 * 𝛼] * Φ𝛼([𝛾]) * [𝛽 * 𝛼]−1
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Hence the two isomorphisms are different by a global conjugacy by [𝛽 * 𝛼] ∈ 𝜋1(𝑋, 𝑞).

As a corollary, we have

Corollary 3.5.17

If 𝜋1(𝑋, 𝑝) is abelian, the isomorphism between 𝜋1(𝑋, 𝑝) and 𝜋1(𝑋, 𝑞) given by changing
the base point is canonical, i.e. for any paths 𝛼 and 𝛽 in 𝑋 going from 𝑞 to 𝑝, we have

Φ𝛼 = Φ𝛽 .

Example 3.5.18.
Both circle 𝑆1 and torus 𝑇 2 have abelian fundamental groups. On the other hand, the fundamental
group of a disk with more than 1 holes is not abelian. For example, let 𝑋 be a disk with 2
holes. Let 𝑝 and 𝑞 be two points in 𝑋. Consider two paths 𝛼 and 𝛽 going from 𝑞 to 𝑝 as in the
picture, such that 𝛽 * 𝛼 is a loop based at 𝑞 going around another hole counterclockwise once.
We consider the change of base point induced by 𝛼 and that induced by 𝛽 (See Figure 3.5.10 for
an illustration).

𝑞
𝑝

𝛼

𝛽

𝛾

Φ𝛼

Φ𝛽

𝑞

𝑞

𝛼 * 𝛾 * 𝛼

𝛽 * 𝛾 * 𝛽

Figure 3.5.10: Different ways of change the base point from 𝑝 to 𝑞.

Informally speaking to have a path homotopy between 𝛼 * 𝛾 * 𝛼 and 𝛽 * 𝛾 * 𝛽, we should be
able to go over the hole on the left which is impossible. After we discuss the Seifert-Van-Kampen
Theorem, we will be able to compute the fundamental group of 𝑋 in a simple way. Then we will
see the two elements [𝛼 * 𝛾 * 𝛼] and [𝛼 * 𝛽] do not commute with each other, hence

[𝛽 * 𝛾 * 𝛽] = [𝛼 * 𝛽]−1 * [𝛼 * 𝛾 * 𝛼] * [𝛼 * 𝛽] ̸= [𝛼 * 𝛾 * 𝛼].

3.6 Fundamental groups and continuous maps
From the topological point of view, different spaces can be related through continuous maps. In
this part, we would like to discuss this kind of relation in the fundamental group level.

Let 𝑋 and 𝑌 be two path connected topological spaces. Denote by 𝑓 a continuous map from
𝑋 to 𝑌 . Since the composition of any pair of continuous maps (if possible) is still a continuous
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map, we have a natural way to relate paths in 𝑋 to paths in 𝑌 which can be described by the
following map (See Figure 3.6.1 for an illustration)

𝑓* : 𝒫(𝑋, 𝑝, 𝑞) → 𝒫(𝑌, 𝑓(𝑝), 𝑓(𝑞)),
𝛼 ↦→ 𝑓 ∘ 𝛼.

0 1
𝛼 𝑝

𝑞

𝑋 𝑌

𝑓
𝑓(𝑞)

𝑓(𝑝)

Figure 3.6.1: The continuous map 𝑓 "sends" a path in 𝑋 to a path in 𝑌 .

Moreover, if 𝛼 and 𝛽 are homotopic in 𝑋 through the homotopy 𝐻, then 𝑓 ∘ 𝛼 and 𝑓 ∘ 𝛽
are homotopic in 𝑌 through the homotopy 𝑓 ∘𝐻. Therefore, the map 𝑓* can descend to a map
between the two spaces of the homotopy classes of paths which we will still denote by 𝑓*:

𝑓* : 𝒫(𝑋, 𝑝, 𝑞)/ ∼ → 𝒫(𝑌, 𝑓(𝑝), 𝑓(𝑞))/ ∼,
[𝛼] ↦→ [𝑓 ∘ 𝛼].

In particular, if 𝑓 is a homeomorphism, then 𝑓* should be a bijective map between 𝒫(𝑋, 𝑝, 𝑞)/ ∼
and 𝒫(𝑌, 𝑓(𝑝), 𝑓(𝑞))/ ∼.

0

1

1

𝐻 𝑝
𝑞

𝑋 𝑌

𝑓
𝑓(𝑞)

𝑓(𝑝)

Figure 3.6.2: The continuous map 𝑓 "sends" a path homotopy in 𝑋 to a path homotopy in 𝑌 .

In particular, we consider loops in𝑋 and in 𝑌 , and have the following map between fundamental
groups:

𝑓* : 𝜋1(𝑋, 𝑝) → 𝜋1(𝑌, 𝑓(𝑝)),
[𝛾] ↦→ [𝑓 ∘ 𝛾].

Moreover we can verify the following fact.

Proposition 3.6.1

The map
𝑓* : 𝜋1(𝑋,𝑥) → 𝜋1(𝑌, 𝑓(𝑥))

is a group homomorphism.
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Proof. Given any loops 𝛼 and 𝛽 in ℒ(𝑋, 𝑝), we have

𝑓 ∘ (𝛼 * 𝛽) = (𝑓 ∘ 𝛼) * (𝑓 ∘ 𝛽).

Now let 𝛼1, 𝛼2, 𝛽1, 𝛽2 be loops in ℒ(𝑋, 𝑝), such that 𝛼1 ∼ 𝛼2 and 𝛽1 ∼ 𝛽2. We denote by 𝐻1 the
homotopy between 𝛼1 and 𝛼2, and by 𝐻2 the homotopy between 𝛽1 and 𝛽2. Then since we have

𝑓 ∘ (𝐻1 *𝐻2) = (𝑓 ∘𝐻1) * (𝑓 ∘𝐻2),

we have
𝑓*([𝛼1] * [𝛽1]) = 𝑓*([𝛼1]) * 𝑓*([𝛽1]).

Hence 𝑓* is a group homomorphism.

Let 𝑋, 𝑌 and 𝑍 be three path connected spaces, and

𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑍,

be two continuous maps. Let 𝑥 be a point in 𝑋, then by the previous proposition, we have three
group homomorphisms

𝑓* : 𝜋1(𝑋,𝑥) → 𝜋1(𝑌, 𝑓(𝑥)),
𝑔* : 𝜋1(𝑌, 𝑓(𝑥)) → 𝜋1(𝑍, 𝑔(𝑓(𝑥)),

(𝑔 ∘ 𝑓)* : 𝜋1(𝑋,𝑥) → 𝜋1(𝑍, 𝑔(𝑓(𝑥))).

We can verify the following fact.

Proposition 3.6.2

The three homomorphisms satisfy the following relation:

(𝑔 ∘ 𝑓)* = 𝑔* ∘ 𝑓*.

Proof. Let 𝛼1 and 𝛼2 be two homotopic loops in ℒ(𝑋,𝑥), and 𝐻 be the path homotopy between
them. Then consider the composition of maps, we have

(𝑔 ∘ 𝑓) ∘𝐻 = 𝑔 ∘ (𝑓 ∘𝐻),

which is a path homotopy between 𝑔 ∘ 𝑓 ∘ 𝛼1 and 𝑔 ∘ 𝑓 ∘ 𝛼2.
Hence, we have

(𝑔* ∘ 𝑓*)([𝛼1]) = 𝑔*(𝑓*([𝛼1])).

Now we consider a simple case where 𝑋 = 𝑌 and 𝑓 is the identity map. As a first guess, the
corresponding homomorphism 𝑓* should be an isomorphism, since nothing is changed under an
identity map.

Lemma 3.6.3

For any path connected topological space 𝑋 with a base point 𝑝, the identity map id𝑋
induces the identity isomorphism

id𝜋1(𝑋,𝑝) = (id𝑋)* : 𝜋1(𝑋, 𝑝) → 𝜋1(𝑋, 𝑝).
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Proof of Lemma 3.6.3. Let 𝛼 be a loop in ℒ(𝑋, 𝑝), we have

id𝑋 ∘ 𝛼 = 𝛼.

Hence for any [𝛼] ∈ 𝜋1(𝑋, 𝑝), we have

(id𝑋)*([𝛼]) = ([𝛼]).

In fact, we have the following more general statement.

Proposition 3.6.4

If the map
𝑓 : 𝑋 → 𝑌,

is a homeomorphism, then
𝑓* : 𝜋1(𝑋, 𝑝) → 𝜋1(𝑌, 𝑓(𝑝)),

is an isomorphism.

Proof. Since 𝑓 is a homeomorphism, it admits an inverse

𝑓−1 : 𝑌 → 𝑋,

which is also a homeomorphism. In the following, we will show that 𝑓* and (𝑓−1)* are inverse to
each other.

Since we have
𝑓 ∘ 𝑓−1 = id𝑌 , 𝑓−1 ∘ 𝑓 = id𝑋 .

Combining Proposition 3.6.2 and Lemma 3.6.3, we have
𝑓* ∘ (𝑓−1)* = (𝑓 ∘ 𝑓−1)* = (id𝑌 )* = id𝜋1(𝑌,𝑓(𝑥)).

(𝑓−1)* ∘ 𝑓* = (𝑓−1 ∘ 𝑓)* = (id𝑋)* = id𝜋1(𝑋,𝑥).

this implies that the homomorphism 𝑓* is both injective and surjective, hence an isomorphism.

Invariance of fundamental group under homotopy

The fact that the fundamental group is invariant by an homeomorphism is not surprising, since
two homeomorphic spaces are considered the same in the topological point of view and the
fundamental group is an topological invariant.

In fact, the fundamental group is invariant under a homotopy equivalence which is strictly
weaker than a homeomorphism. (Here by being invariant, we mean that up to isomorphism it is
the same.)

Let 𝑋 and 𝑌 be two path connected topological spaces. Assume that there are two continuous
maps

𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑌.

Choose 𝑝 ∈ 𝑋 as a base point. We consider the homomorphisms induced by them
𝑓* : 𝜋1(𝑋, 𝑝) → 𝜋1(𝑌, 𝑓(𝑝)),
𝑔* : 𝜋1(𝑋, 𝑝) → 𝜋1(𝑌, 𝑔(𝑝)).

We assume that 𝑓 and 𝑔 are homotopic to each other, and denote by 𝐻 the homotopy between
them. Then we have the following path in 𝑌 by considering the trace of 𝑝:

𝛽 : [0, 1] → 𝑌

𝑡 ↦→ 𝐻(𝑝, 𝑡)
.

With these notation, we have the following proposition.
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Proposition 3.6.5

If 𝑓 and 𝑔 are homotopic, then 𝑓* = [𝛽] * 𝑔* * [𝛽].

Proof. For any 𝑡 ∈ [0, 1], we consider the path

𝛽𝑡 : [0, 1] → 𝑌

𝑠 ↦→ 𝛽(𝑠𝑡)
.

Let 𝛼 be a loop in ℒ(𝑋, 𝑝). The homotopy 𝐻 between 𝑓 and 𝑔 induces a general homotopy
between 𝑓 ∘ 𝛼 and 𝑔 ∘ 𝛼, denoted by 𝐻 ′. For each 𝑡 ∈ [0, 1], we have

𝐻 ′
𝑡 = 𝐻𝑡 ∘ 𝛼.

Then we define the following map

𝐹 : [0, 1] × [0, 1] → 𝑌

(𝑠, 𝑡) ↦→ (𝛽𝑡 *𝐻 ′
𝑡 * 𝛽𝑡)(𝑠)

This is a path homotopy between 𝑓 ∘ 𝛼 and 𝛽 * (𝑔 ∘ 𝛼) * 𝛽 (See Figure 3.6.3 for an illustration).

𝑓 ∘ 𝛼

𝑔 ∘ 𝛼

𝛽𝑡 𝛽𝑡

𝐻𝑡

𝛽 𝛽

𝑔 ∘ 𝛼

𝑓 ∘ 𝛼

Figure 3.6.3: The homotopy between 𝑓 ∘ 𝛼 and 𝛽 * (𝑔 ∘ 𝛼) * 𝛽.

If 𝛼′ ∈ ℒ(𝑋, 𝑝) be a loop homotopic to 𝛼, and 𝛽′ be a path from 𝑓(𝑝) to 𝑔(𝑝) homotopic to 𝛽,
then we have the following sequences of homotopic loops in 𝑌 :

𝑓 ∘ 𝛼′ ∼ 𝑓 ∘ 𝛼 ∼ 𝛽 * (𝑔 ∘ 𝛼) * 𝛽 ∼ 𝛽′ * (𝑔 ∘ 𝛼′) * 𝛽′.

Therefore, we have the desired identity

𝑓*([𝛼]) = [𝛽] * 𝑔*([𝛼]) * [𝛽],

which holds for any [𝛼] ∈ 𝜋1(𝑋, 𝑝). Hence

𝑓* = [𝛽] * 𝑔* * [𝛽].

The above proposition tells us that the two maps 𝑓* and 𝑔* are different by a change of base
point given by 𝛽. Using the same notation as in previous section, we denote by Φ𝛽 the change of
base point isomorphism between 𝜋1(𝑌, 𝑓(𝑝)) and 𝜋1(𝑌, 𝑔(𝑝)) induced by 𝛽. The above proposition
is equivalence to the existence of the following commutative diagram.
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Proposition 3.6.6

With the notation introduced above, we have the following commutative diagram

𝜋1(𝑋, 𝑝) 𝑓* //

𝑔*
&&

𝜋1(𝑌, 𝑓(𝑝))

𝜋1(𝑌, 𝑔(𝑝))

Φ𝛽

OO

Applying the above proposition to maps in 𝐶(𝑋) and maps in 𝐶(𝑌 ), we have the following
invariance of fundamental groups under homotopy.

Theorem 3.6.7

If 𝑋 and 𝑌 are two homotopy equivalent path connected topological spaces, we have

𝜋1(𝑋,𝑥) ∼= 𝜋1(𝑌, 𝑦),

for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .

Proof. By the definition of homotopy equivalence, we have maps

𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋.

satisfying
𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .

By considering the isomorphism induced by a change of base point, it is enough to prove the
statement for a special choice of 𝑥 and 𝑦. For our convenience, we choose 𝑥 to be in the image of
𝑔, and we denote by 𝑦 ∈ 𝑌 with 𝑔(𝑦) = 𝑥. We would like to show that

𝑓* : 𝜋1(𝑋,𝑥) → 𝜋1(𝑌, 𝑓(𝑥))

is an isomorphism.
Let 𝐻 denote the hotomopy between 𝑔 ∘ 𝑓 and id𝑋 . Let 𝛽 denote the path

𝛽 : [0, 1] → 𝑋

𝑡 ↦→ 𝐻(𝑥, 𝑡)

which is the trace of 𝑥 under the homotopy 𝐻. Then by Proposition 3.6.6, we have

Φ𝛽 ∘ (𝑔 ∘ 𝑓)* = (id𝑋)* = id𝜋1(𝑋,𝑥),

and the following commutative diagram

𝜋1(𝑋,𝑥) 𝑓* //

(id𝑋 )*
++

𝜋1(𝑌, 𝑓(𝑥)) 𝑔* // 𝜋1(𝑋, 𝑔(𝑓(𝑥)))

Φ𝛽

��

𝜋1(𝑋,𝑥)

Hence we have
(Φ𝛽 ∘ 𝑔*) ∘ 𝑓* = id𝜋1(𝑋,𝑥).

which implies that 𝑓* is injective.
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Let 𝐻 ′ denote the homotopy between 𝑓 ∘ 𝑔 and id𝑌 . Let 𝛽′ denote the path

𝛽′ : [0, 1] → 𝑌

𝑡 ↦→ 𝐻 ′(𝑦, 𝑡)

which is the trace of 𝑦 = 𝑓(𝑥) under the homotopy 𝐻 ′. Then by Proposition 3.6.6, we have

Φ𝛽′ ∘ (𝑓 ∘ 𝑔)* = (id𝑌 )* = id𝜋1(𝑌,𝑦),

and the following commutative diagram

𝜋1(𝑌, 𝑦) 𝑔* //

(id𝑌 )*
**

𝜋1(𝑋,𝑥) 𝑓* // 𝜋1(𝑌, 𝑓(𝑥))

Φ𝛽′

��

𝜋1(𝑌, 𝑦)

Therefore, we have
(Φ𝛽′ ∘ 𝑓*) ∘ 𝑔* = (id𝑌 )* = id𝜋1(𝑌,𝑦).

This implies that
Φ𝛽′ ∘ 𝑓* : 𝜋1(𝑋,𝑥) → 𝜋1(𝑌, 𝑦),

is surjective. Notice that Φ𝛽′ is an isomorphism, hence if 𝑓* is not surjective, then neither is
Φ𝛽′ ∘ 𝑓* which is a contradiction. Hence we have 𝑓* is surjective. Together with the injectivity of
𝑓*, we may conclude that 𝑓* is an isomorphism, hence the theorem.

As discussed before, applying deformation retraction is a special way to get two spaces which are
homotopy equivalent to each other. We first consider certain examples of this kind.

Example 3.6.8.
Let D denote the closed unit disk in C, and 𝑂 denote its center. Then {𝑂} is a deformation
retraction of D. Hence for any point 𝑧 ∈ D, we have

𝜋1(D, 𝑧) ∼= 𝜋1({𝑂}, 𝑂) ∼= {𝑒}.

Hence the fundamental group of D is trivial.

This example is in fact a special case for a more general fact.

Proposition 3.6.9

Let 𝑋 be a path connected topological space. If 𝑋 is contractible, then for any 𝑥 ∈ 𝑋, we
have 𝜋1(𝑋,𝑥) is trivial.

Proof. By Definition 3.1.11, the space 𝑋 is contractible if and only if there is a homotopy between
the identity map id𝑋 and the constant map 𝑐𝑥 for some point 𝑥. Consider the inclusion map

𝜄𝑥 : {𝑥} → 𝑋,

𝑥 ↦→ 𝑥.

On one hand, we have
𝑐𝑥 ∘ 𝜄𝑥 = 𝑐𝑥,

at the same time, by definition, we have

𝜄𝑥 ∘ 𝑐𝑥 ∼ id𝑋 .
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Hence 𝑋 and {𝑥} are homotopy equivalent. Therefore, their fundamental groups are isomorphic
to each other. Hence for any 𝑥 ∈ 𝑋, we have

𝜋1(𝑋,𝑥) = {𝑒}.

Remark 3.6.10.
The converse is not true. For example, the 2-sphere has trivial fundamental group, but is not
contractible. In fact two homotopy equivalent space have isomorphic 𝑛th homotopy group for
any 𝑛 ∈ N. We can see that 𝜋2(𝑆2) is not trivial and a single point has trivial 𝑛th homotopy
group for any 𝑛 ∈ N. One may continue to ask if having isomorphic 𝑛th homotopy group for any
𝑛 ∈ N can tell the homotopy equivalence. The answer is not true. One counter-example is given
by 𝑆3 × RP2 and 𝑆2 × RP3. Notice that one is orientable while the other is not. All these will be
explained in details in the future.

Definition 3.6.11

A path connected topological space 𝑋 is said to be simply connected if its fundamental
group is trivial.

By the Proposition 3.6.9, we have the following fact.

Corollary 3.6.12

If a path connected topological space 𝑋 is contractible, then it is simply connected.

Previously, we introduce the construction of a cone based on a space. Notice that topologically
the disk can be consider as a cone based on 𝑆1. With this observation, we have the following
criteria to detect which loop in ℒ(𝑋,𝑥) has trivial homotopy class.

Proposition 3.6.13

A loop
𝛼 : 𝑆1 → 𝑋,

is homotopic to a point in 𝑋 if and only if 𝛼 can be extended to a continuous map

̃︀𝛼 : D → 𝑋.

Proof. A loop 𝛼 is homotopic to the constant loop

𝑐𝑥 : 𝑆1 → 𝑋,

𝑡 ↦→ 𝑥,

if and only if there is a homotopy

𝐻 : 𝑆1 × [0, 1] → 𝑋,

between 𝛼 and 𝑐𝑥 for some 𝑥 ∈ 𝑋, or equivalently there is a homotopy

𝐻 : 𝑆1 × [0, 1] → 𝑋,
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such that
𝐻(𝑆1 × {1}) = 𝑥.

This moreover is equivalent to the existence of the following commutative diagram

𝑆1 × [0, 1]

𝜋

��

𝐻 // 𝑋

Cone(𝑆1)
𝐻

;;

Hence we have the proposition.

Example 3.6.14.
Consider the region in C defined as follows:

𝐴 := {𝑧 ∈ C | 1 ≤ |𝑧| ≤ 2}.

Notice that
𝑆1 := {𝑧 ∈ C | |𝑧| = 1}

is a strong deformation retraction of 𝐴. With the retraction map

𝑟 : 𝐴 → 𝑆1

𝑧 ↦→ 𝑧

|𝑧|

The homotopy between 𝜄 ∘ 𝑟 and id𝐴 can be given as follows:

𝐻 : 𝐴× [0, 1] → 𝐴

(𝑧, 𝑡) ↦→ 𝑧

1 − 𝑡+ 𝑡|𝑧|
.

Hence 𝐴 and 𝑆1 are homotopy equivalent. We have

𝜋1(𝐴) ∼= 𝜋1(𝑆1) ∼= Z.

3.7 First glance on Seifert-Van-Kampen’s Theorem
As we can see from the previous discussion, the fundamental group is a both elementary and
important invariant of a topological space. Once it is defined, an immediate question is how we
can compute it.

Previously, we have computed fundamental groups of some spaces such as single point sets,
disks, which are topologically simple. We also introduce the homotopy invariance of fundamental
groups. With this property, we can deform th space without changing the isomorphic type of the
fundamental group.

But we still have the problem: how to compute the fundamental group of a topologically
complicated space. In the following, we will introduce an important tool for studying fundamental
groups of complicated spaces which is called the Seifert van Kampen Theorem.

To study the fundamental group, we have to consider loops in a space up to homotopy, which,
as one could imagine, is difficult in general. For example, in the previous part, we have spent
quite some time to compute even the fundamental group of 𝑆1.

When studying a complicated space, one natural ideal is to decompose it into simple pieces.
Then we study the fundamental group of each piece. Finally, we study how to glue the fundamental
groups of all pieces back to that for the entire space. The Seifert van Kampen Theorem (the



122 CHAPTER 3. HOMOTOPY AND FUNDAMENTAL GROUPS

SVK Theorem) serves as a tool for the last step, i.e telling us how to glue fundamental groups of
pieces together.

In this part, we will have a first glance to get a rough idea about the SVK theorem. The
statement for general cases will be given after introducing some necessary background in the
group theory. We start by discussing a simple case.

Proposition 3.7.1

Let 𝑋 be a path connected topological space. Let 𝑈 and 𝑉 be two path connected open
subset such that

• 𝑈 ∪ 𝑉 = 𝑋,

• 𝑈 ∩ 𝑉 is non-empty and path connected,

• all 𝑈 , 𝑉 are simply connected.

Then 𝑋 is simply connected.

Proof. The rough idea is to rewrite any path in 𝑋 (after a homotopy) into a composition of
finitely many paths, each one of which is in either 𝑈 or 𝑉 . Then we use the simple connectivity
in either 𝑈 , 𝑉 or 𝑈 ∩ 𝑉 to show the path in 𝑋 is homotopic to a point. A key property used
here is the compactness of [0, 1].

Since 𝑋 is path connected, we will choose 𝑝 ∈ 𝑈 ∩ 𝑉 to be a base point and consider the
associated fundamental group with base point 𝜋1(𝑋, 𝑝). With this choice, all fundamental groups
𝜋1(𝑈, 𝑝), 𝜋1(𝑉, 𝑝), 𝜋1(𝑈 ∩ 𝑉, 𝑝) and 𝜋1(𝑋, 𝑝) are well defined.

𝑋

𝑈 𝑉𝑈 ∩ 𝑉

𝑝 = 𝛼(𝑎1) = 𝛼(𝑏4)

𝛼(𝑏1)
𝛼(𝑎2)

𝛼(𝑏2)

𝛼(𝑎3)

𝛼(𝑏3)

𝛼(𝑎4)

Figure 3.7.1: An open covering of the loop.

Let 𝛼 be any loop in ℒ(𝑋, 𝑝). We consider 𝛼−1(𝑈) and 𝛼−1(𝑉 ) which are unions of intervals
in [0, 1], each of which is open in [0, 1]. These intervals form an open cover of [0, 1]. By the
compactness of [0, 1], there is a finite cover of [0, 1] denote by

{𝐼1, ..., 𝐼𝑘},
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with 𝑘 ∈ N*, such that for any 1 ≤ 𝑖 ≤ 𝑘, we have 𝛼(𝐼𝑖) ⊂ 𝑈 or 𝛼(𝐼𝑖) ⊂ 𝑉 . Denote by 𝑎𝑖 and 𝑏𝑖
the end points of 𝐼𝑖 with 𝑎𝑖 < 𝑏𝑖 (See Figure 3.7.1 for an illustration).

We will find finitely many points to cut [0, 1] into finitely many pieces. The cutting points are
constructed inductively as follows. Assume that 0 ∈ 𝐼𝑖1 . Let 𝑡0 = 𝑎𝑖0 = 0. Let 𝑖1 be the index
such that 𝑏𝑖0 ∈ 𝐼𝑖1 . Then the intersection 𝐼𝑖0 ∩ 𝐼𝑖1 is non empty. Choose

𝑡1 ∈ 𝐼𝑖0 ∩ 𝐼𝑖1 .

with 𝑡1 > 𝑡0.
If we determine 𝑡𝑗 ∈ 𝐼𝑖𝑗 , then consider the 𝐼𝑖𝑗+1 such that 𝑏𝑖𝑗 ∈ 𝐼𝑖𝑗+1 . Then if 𝑏𝑖𝑗+1 = 1, let

𝑡𝑗+1 = 1, otherwise, choose
𝑡𝑗+1 ∈ 𝐼𝑖𝑗 ∩ 𝐼𝑖𝑗+1 ,

with 𝑡𝑗+1 > 𝑡𝑗 .
In this inductive way, we find a sequence of parameters

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑠 = 1,

with 0 < 𝑠 ≤ 𝑘 + 1. Moreover, we have

𝛼([𝑡𝑗 , 𝑡𝑗+1]) ⊂ 𝑈 or 𝛼([𝑡𝑗 , 𝑡𝑗+1]) ⊂ 𝑉.

𝑋

𝑈 𝑉𝑈 ∩ 𝑉

𝑝 = 𝛼(𝑡0) = 𝛼(𝑡4)

𝑓1

𝛼(𝑡1)

𝑓2

𝛼(𝑡2)
𝑓3

𝛼(𝑡3)

Figure 3.7.2: A partition of the loop.

For any 0 ≤ 𝑗 ≤ 𝑠− 1, we denote by 𝐽𝑗 the closed interval [𝑡𝑗 , 𝑡𝑗+1], and by 𝛼𝑗 the restriction
of 𝛼 on 𝐽𝑗 . Next we would like to connect 𝛼(𝑡𝑗+1) to 𝑝 by a path 𝑓𝑗+1 of 𝑋. We choose the path
in the following way.

• if 𝛼𝑗 and 𝛼𝑗+1 are both in 𝑈 , then 𝑓𝑗 is a path in 𝑈 ;

• if 𝛼𝑗 and 𝛼𝑗+1 are both in 𝑉 , then 𝑓𝑗 is a path in 𝑉 ;

• if 𝛼𝑗 is in 𝑈 and 𝛼𝑗+1 is in 𝑉 , or if 𝛼𝑗 is in 𝑉 or 𝛼𝑗+1 is in 𝑈 , then 𝛼𝑗+1 is in 𝑈 ∩ 𝑉 , and
we choose 𝑓𝑗 to be in 𝑈 ∩ 𝑉 .
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𝑋

𝑈 𝑉𝑈 ∩ 𝑉

𝑝 = 𝛼(𝑡0) = 𝛼(𝑡4)

𝑓2

𝑓3

𝛼2

Figure 3.7.3: Decompose the loop.

Let 𝑓0 and 𝑓𝑠 be the constant path 𝑐𝑥. Then for any 0 ≤ 𝑗 ≤ 𝑠−1, we consider the composition

𝛽𝑗 = 𝑓𝑗+1 * 𝛼𝑗 * 𝑓𝑗 .

(See Figure 3.7.3 for an illustration.)
From the construction, we have 𝛽𝑗 either in ℒ(𝑈, 𝑝) or in ℒ(𝑉, 𝑝). Since both 𝑈 and 𝑉 are

simply connected, we have 𝛽𝑗 is homotopic to 𝑝.
On the other hand, in 𝑋, we know that 𝛼 is homotopic to the path

𝛽𝑠−1 * · · · * 𝛽0

=(𝑓𝑠 * 𝛼𝑠−1 * 𝑓𝑠−1) * (𝑓𝑠−1 * 𝛼𝑠−2 * 𝑓𝑠−2) * · · · * (𝑓1 * 𝛼0 * 𝑓0) ∼ 𝛼

Hence 𝛼 is homotopic to 𝑐𝑝. We then can conclude that 𝑋 is simply connected.

The construction in the above proof can be used to show something more. Let 𝑋 be a path
connected topological space. For any path connected subset 𝐴 ⊂ 𝑋, we have the inclusion map

𝜄𝐴 : 𝐴 → 𝑋,

𝑦 ↦→ 𝑦,

which induces a group homomorphism:

(𝜄𝐴)* : 𝜋1(𝐴, 𝑝) → 𝜋1(𝑋, 𝑝),
[𝛼]𝐴 ↦→ [𝛼]𝑋 ,

where 𝑝 ∈ 𝐴, 𝛼 ∈ ℒ(𝐴, 𝑝) ⊂ ℒ(𝑋, 𝑝), [𝛼]𝐴 the homotopy class of 𝛼 in 𝐴, and [𝛼]𝑋 the homotopy
class of 𝛼 in 𝑋. Since 𝐴 is a subset of 𝑋, and any path homotopy in 𝐴 is also a path homotopy
in 𝑋, the above homomorphism is well defined. (Also, one may notice that the inclusion map is a
continuous map.)

With these notation, we have the following fact.
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Proposition 3.7.2

Let 𝑈 and 𝑉 be two path connected open subsets of 𝑋 such that

• 𝑈 ∪ 𝑉 = 𝑋,

• 𝑈 ∩ 𝑉 is non-empty and path connected,

Let 𝑝 ∈ 𝑈 ∩ 𝑉 . Then the fundamental group 𝜋1(𝑋, 𝑝) is generated by

(𝜄𝑈 )*(𝜋1(𝑈, 𝑝)) ∪ (𝜄𝑉 )*(𝜋1(𝑉, 𝑝)).

Proof. Given any loop 𝛼 in ℒ(𝑋, 𝑝), as in the proof of the previous proposition, it is homotopic
to a composition

𝛽𝑠−1 * · · · * 𝛽0,

where fore each 0 ≤ 𝑗 ≤ 𝑠− 1, we have 𝛽𝑗 either in ℒ(𝑈, 𝑝) or in ℒ(𝑉, 𝑝), hence [𝛽𝑠−1] is contained
in

(𝜄𝑈 )*(𝜋1(𝑈, 𝑝)) ∪ (𝜄𝑉 )*(𝜋1(𝑉, 𝑝)).
Therefore, we have the proposition.

A presentation of a group is in general a way of describing a group using generators. In order
to know how to compute group operations, a presentation of a group also involves the information
satisfied by the generators, which will be called relations.

With this being said, the SVK theorem is all about giving a presentation of 𝜋1(𝑋, 𝑝) using
𝜋1(𝑈, 𝑝) and 𝜋1(𝑉, 𝑝). The above proposition gives a generating set of 𝜋1(𝑋, 𝑝), hence only half of
the actual SVK Theorem (for an open cover of two subsets). Another half is about the relation
satisfied by the elements in (𝜄𝑈 )*(𝜋1(𝑈, 𝑝)) ∪ (𝜄𝑉 )*(𝜋1(𝑉, 𝑝)).

In order to be able to talk about this, we have to introduce first some necessary background
in group theory on amalgamations and HNN extensions of groups. Before that, let us first see
how to use these baby versions of SVK theorem to study some topological spaces.

Corollary 3.7.3

For any 𝑛 ≥ 2, the 𝑛-sphere 𝑆𝑛 is simply connected.

Proof. We would like to find a suitable pair of open subsets 𝑈 and 𝑉 for 𝑆𝑛. Recall that

𝑆𝑛 = {(𝑥1, ..., 𝑥𝑛+1) ∈ R𝑛+1 | 𝑥2
1 + · · · + 𝑥2

𝑛+1 = 1}.

The topology on 𝑆𝑛 is the subspace topology induced by the Euclidean metric topology on R𝑛+1.
Let 𝑝 = (1, 0, ..., 0) and 𝑞 = (0, ..., 0, 1), and let

𝑈 = 𝑆𝑛 ∖ {𝑝}, 𝑉 = 𝑆𝑛 ∖ {𝑞}.

Both 𝑈 and 𝑉 are open subsets and form an open cover of 𝑆𝑛.
We consider the stereographic projection Pr𝑝 from 𝑈 to

𝑃𝑝 := {(𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ R𝑛+1 | 𝑥1 = 0}.

Notice that 𝑃𝑝 is homeomorphic to R𝑛 which is simply connected.
Since Pr𝑝 is a homeomorphism from 𝑈 to 𝑃𝑝, we have 𝑈 is simply connected. By considering

the stereographic projection from 𝑞, we prove in the same way that 𝑉 is simply connected.
The intersection 𝑈 ∩ 𝑉 is path connected. To see this, we consider its image under Pr𝑝 which

is
𝑃𝑝 ∖ {(0, ..., 0)} = {(𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ R𝑛+1 | 𝑥1 = 0} ∖ {(0, ..., 0)}.

By Proposition 3.7.1, we have 𝑆𝑛 is simply connected.
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Now we consider the wedge sum between spheres.

Corollary 3.7.4

For any 𝑘 ≥ 2, for any natural numbers 𝑛1, ..., 𝑛𝑘 all greater or equal to 2, the space

𝑆𝑛1 ∨ · · · ∨ 𝑆𝑛𝑘

is simply connected.

Proof. Exercise.

3.8 SVK Theorem
As mentioned in the previous section, the whole SVK theorem is about how to glue fundamental
groups of pieces of a space together to get the fundamental group of the entire space. More
precisely, Let 𝑋 be a path connected space. Let 𝑈 and 𝑉 be two path connected open subset of
𝑋 which form a cover of 𝑋. Moreover, assume that 𝑈 ∩ 𝑉 is path connected. Let 𝑝 be a point in
𝑈 ∩ 𝑉 . The inclusion maps among these sets form a commutative diagram:

𝑈
𝜄𝑈

  

𝑈 ∩ 𝑉

𝑗𝑈

;;

𝑗𝑉
##

𝑋

𝑉

𝜄𝑉

>>

Since all inclusions are continuous map which induce homomorphisms between fundamental
groups, we have another commutative diagram in the fundamental group level:

𝜋1(𝑈, 𝑝)
(𝜄𝑈 )*

%%

𝜋1(𝑈 ∩ 𝑉, 𝑝)

(𝑗𝑈 )*
88

(𝑗𝑉 )* &&

𝜋1(𝑋, 𝑝)

𝜋1(𝑉, 𝑝)
(𝜄𝑉 )*

99

Previously, we have shown that the fundamental group 𝜋1(𝑋, 𝑝) is generated by

(𝜄𝑈 )*(𝜋1(𝑈, 𝑝)) ∪ (𝜄𝑉 )*(𝜋1(𝑉, 𝑝))

In this section, we will discuss the following general statement.

Theorem 3.8.1

We have the following group isomorphism

𝜋1(𝑋, 𝑝) ∼= 𝜋1(𝑈, 𝑝) *
𝜋1(𝑈∩𝑉,𝑝)

𝜋1(𝑉, 𝑝),

where the amalgamation through (𝑗𝑈 )* and (𝑗𝑉 )*.
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Remark 3.8.2.
Some necessary background in group theory can be found in Appendix A and Appendix B.

Proof. By the definition of an amalgamated free product between two groups, we have the
following relation

𝜋1(𝑈, 𝑝) *
𝜋1(𝑈∩𝑉,𝑝)

𝜋1(𝑉, 𝑝) = 𝜋1(𝑈, 𝑝) * 𝜋1(𝑉, 𝑝)/𝑁

where
𝑁 = ⟨⟨(𝑗𝑈 )*(𝛾)((𝑗𝑉 )*(𝛾))−1 | 𝛾 ∈ 𝜋1(𝑈 ∩ 𝑉, 𝑝)⟩⟩.

Consider the above commutative diagram about fundamental groups. First, there is a natural
group homomorphism

Φ : 𝜋1(𝑈, 𝑝) * 𝜋1(𝑉, 𝑝) → 𝜋1(𝑋, 𝑝).

From the above discussion, to prove the theorem, it is enough to show that the kernel of Φ is 𝑁 .
We denote by

[𝛼1]𝜖1 * · · · * [𝛼𝑛]𝜖𝑛

an element in 𝜋1(𝑈, 𝑝) * 𝜋1(𝑉, 𝑝), where for any 1 ≤ 𝑗 ≤ 𝑛,

𝜖𝑗 ∈ {𝑈, 𝑉 }

is a symbol to show where this element belongs to.
Notice that if a loop 𝛼 ∈ ℒ(𝑈, 𝑝) has image in 𝑈 ∩ 𝑉 , then it can also be considered as a

loop in ℒ(𝑉, 𝑝). We denote by [𝛼]𝑈 its associated element in 𝜋1(𝑈, 𝑝) and by [𝛼]𝑉 its associated
element in 𝜋1(𝑉, 𝑝). Since we have

[𝛼]𝑈 * [𝛼]−1
𝑉 , [𝛼]𝑉 * [𝛼]−1

𝑈 ∈ 𝑁,

then
[𝛼]𝑈𝑁 = [𝛼]𝑉𝑁.

From the commutative diagram above the theorem, we have 𝑁 ⊂ ker Φ. In order to show the
equality, it is enough to show that any element [𝛼1]𝜖1 * · · · * [𝛼𝑛]𝜖𝑛

∈ ker Φ will be trivial in

𝜋1(𝑈, 𝑝) * 𝜋1(𝑉, 𝑝)/𝑁.

In the other words, up to changing the "identity" of a component (belongs to 𝜋1(𝑈, 𝑝) or to
𝜋1(𝑉, 𝑝)), and computation in 𝜋1(𝑈, 𝑝) and that in 𝜋1(𝑉, 𝑝), it can be transformed to an element
in 𝑁 .

It would be easier to discuss on the side of 𝜋1(𝑋, 𝑝). Notice that the Φ-image of [𝛼1]𝜖1 * · · · *
[𝛼𝑛]𝜖𝑛 is

[𝛼1 * · · · * 𝛼𝑛] = [𝑐𝑝] ∈ 𝜋1(𝑋, 𝑝).

Hence there is a homotopy between 𝛼1 * · · · * 𝛼𝑛 and 𝑐𝑝 in 𝑋. We would like to show that
this homotopy can be realized by a sequence of homotopy in 𝑈 , homotopy in 𝑉 and change of
"identity" (from a 𝑈 -loop to a 𝑉 -loop, or the other way around).

Assume that
𝐻 : [0, 1] × [0, 1] → 𝑋

be a homotopy between 𝛼1 * · · · * 𝛼𝑛 and 𝑐𝑝. (Reminder: all homotopies are path homotopies).
Assume that the bottom side of this square corresponds to 𝑐𝑝, while the top side of this square
corresponds to 𝛼1 * · · · * 𝛼𝑛. Since 𝐻 is a path homotopy, the left and right sides of the square
are sent to 𝑝 by 𝐻.
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Some preparation

Similar to the previous discussion on loop, since [0, 1] × [0, 1] is compact, we can decompose it
into small rectangles such that the 𝐻-image of each closed rectangle is either entirely in 𝑈 or
entirely in 𝑉 .

To be more precise, assume that the rectangle partition of the square is given by the partition
of the first interval

0 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑘 = 1

and the following partition of the second interval

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑙 = 1.

𝑋

𝑈 𝑉

𝑈 ∩ 𝑉

𝑝

𝐻

0 𝑠1 𝑠2 𝑠3 𝑠4 1

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

1

Figure 3.8.1: Partition of a square.

For each 0 ≤ 𝑖 ≤ 𝑘 and 0 ≤ 𝑗 ≤ 𝑙, we denote

𝑣𝑗𝑖 = (𝑠𝑖, 𝑡𝑗).

Each closed rectangle is in the form of

𝑅𝑗𝑖 := [𝑠𝑖, 𝑠𝑖+1] × [𝑡𝑗 , 𝑡𝑗+1]

for some 0 ≤ 𝑖 < 𝑘 and 0 ≤ 𝑗 < 𝑙, with vertices 𝑣𝑗𝑖 , 𝑣
𝑗+1
𝑖 ,𝑣𝑗𝑖+1 and 𝑣𝑗+1

𝑖+1 . Since the image of each
𝑅𝑗𝑖 is in 𝑈 or 𝑉 , we can label them with 𝑈 or 𝑉 depends on where they belong. If the image of a
rectangle belongs to both 𝑈 and 𝑉 , we may choose one to label this rectangle.

We also label each 𝑣𝑗𝑖 in the following way:

• if all rectangles adjacent to it are labeled by 𝑈 , we label it by 𝑈 ;

• if all rectangles adjacent to it are labeled by 𝑉 , we label it by 𝑉 ;

• otherwise, we label it by 𝑈 ∩ 𝑉 .

For each 𝑣𝑗𝑖 (𝑖 ≠ 0, 1 or 𝑗 ̸= 0), we choose a path going from 𝑝 to 𝑝𝑗𝑖 = 𝐻(𝑣𝑗𝑖 ) and denote by 𝛽𝑗𝑖 ,
such that, if 𝑣𝑗𝑖 is labeled by 𝑈 , 𝛽𝑗𝑖 is a path in 𝑈 ; if 𝑣𝑗𝑖 is labeled by 𝑉 , 𝛽𝑗𝑖 is a path in 𝑉 ; if 𝑣𝑗𝑖 is
labeled by 𝑈 ∩ 𝑉 , 𝛽𝑗𝑖 is a path in 𝑈 ∩ 𝑉 .
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𝑅3
2

𝑣3
2 𝑣3

3

𝑣4
2 𝑣4

3

0 𝑠1 𝑠2 𝑠3 𝑠4 1

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

1

Figure 3.8.2: A small rectangle and its vertices.

Let 𝐽𝐿 and 𝐽𝑅 be the vertical sides of the square on the left and on the right respectively.
Any path 𝜂 in the square going from 𝐽𝐿 to 𝐽𝑅 along sides of rectangles corresponds to a loop

𝛾 = 𝐻 ∘ 𝜂

in 𝑋 based at 𝑝.

Figure 3.8.3: A path in the square from 𝐽𝐿 to 𝐽𝑅 and the loop in 𝑋 associated to it.

Each such path 𝜂 is a concatenation of a sequence of sides of rectangle 𝑅𝑗𝑖 ’s. This decomposition
of 𝜂 induces a decomposition of 𝛾 into paths with endpoints in

{𝐻(𝑣𝑗𝑖 ) | 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝑙}.
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By inserting 𝛽𝑗𝑖 * 𝛽𝑗𝑖 , te path 𝛾 is homotopic to a composition of a sequence of loops each of which
is in 𝑈 or in 𝑉 .

Another observation is that for any rectangle 𝑅𝑗𝑖 and any two of its vertices, there are two
ways to go from one vertex to another along the sides of 𝑅𝑗𝑖 . Their 𝐻-image are two path in 𝑋
homotopic to each other where the homotopy can be given by considering the restriction of 𝐻.
Moreover this homotopy is either in 𝑈 or in 𝑉 depending on the label of 𝑅𝑗𝑖 . Without loss of
generality, we may assume that 𝑅𝑗𝑖 is labeled by 𝑈 . As mentioned above, by taking composition
with 𝛽𝑗𝑖 ’s and their inverse, these paths in 𝑋 can be completed into loops in 𝑈 , and the homotopy
between paths can induce a homotopy between loops in 𝑈 .

Figure 3.8.4: A homotopy associated to a small rectangle.

Main discussion

Let 𝜂0 be the path with image the top side of the square corresponding to the parameter set for
𝛼1 * · · · * 𝛼𝑛:

[0, 1] × {1}.

Now we would like to modify it step by step. At step 𝑚, we obtain a path 𝜂𝑚 going from 𝐽𝐿

to 𝐽𝑅 along the sides of rectangles in the partition. By inserting 𝛽𝑗𝑖 * 𝛽𝑗𝑖 for each 𝑣𝑗𝑖 , the path
𝛾𝑚 = 𝐻 ∘ 𝜂𝑚 is homotopic to a composition of loops in 𝑈 or in 𝑉 :

𝛾𝑚 ∼ 𝛼
(𝑚)
1 * · · · * 𝛼(𝑚)

𝑟𝑚
.

This gives us an element in 𝜋1(𝑈, 𝑝) * 𝜋1(𝑉, 𝑝):

[𝛾𝑚] = [𝛼(𝑚)
1 ]𝜖𝑚

1
* · · · * [𝛼(𝑚)

𝑟𝑚
]𝜖𝑚

𝑟𝑚
.

We first describe how 𝜂𝑚 changes in the parameter square. For a pair of adjacent vertices 𝑣
and 𝑣′ (endpoints of a same side of some 𝑅𝑗𝑖 ), we will denote by

−→
𝑣𝑣′ to denote the path from 𝑣 to

𝑣′ along the side between them. Hence 𝜂0 can be expressed as
−−→
𝑣𝑙0𝑣

𝑙
1 * · · · *

−−−−−−→
𝑣𝑙𝑘−2𝑣

𝑙
𝑘−1 *

−−−−→
𝑣𝑙𝑘−1𝑣

𝑙
𝑘.
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We start from the upper right corner 𝑅𝑙−1
𝑘−1, modify 𝜂0 to a new path

𝜂1 =
−−→
𝑣𝑙0𝑣

𝑙
1 * · · · *

−−−−−−→
𝑣𝑙𝑘−2𝑣

𝑙
𝑘−1 *

−−−−−−→
𝑣𝑙𝑘−1𝑣

𝑙−1
𝑘−1 *

−−−−−−→
𝑣𝑙−1
𝑘−1𝑣

𝑙−1
𝑘 .

Then we consider 𝑅𝑙−1
𝑘−2, and modify 𝜂1 to

𝜂2 =
−−→
𝑣𝑙0𝑣

𝑙
1 * · · · *

−−−−−−→
𝑣𝑙𝑘−3𝑣

𝑙
𝑘−2 *

−−−−−−→
𝑣𝑙𝑘−2𝑣

𝑙−1
𝑘−2 *

−−−−−−→
𝑣𝑙−1
𝑘−2𝑣

𝑙−1
𝑘−1 *

−−−−−−→
𝑣𝑙−1
𝑘−1𝑣

𝑙−1
𝑘 .

Figure 3.8.5: Modify a path step by step.

By applying this for all rectangle on the top first row, we move the path with image

[0, 1] × {1}

to a path with image
[0, 1] × {𝑡𝑘−1}.

We repeat this process, until we meet the bottom line

[0, 1] × {0}.

Notice that when we go from step 𝑚 to step 𝑚 + 1, we modify the elements associated to
one rectangle 𝑅𝑗𝑖 . By our assumption, we have 𝐻(𝑅𝑗0

𝑖0
) ⊂ 𝑈 or 𝐻(𝑅𝑗𝑖 ) ⊂ 𝑉 . Without loss of

generality, we may assume that it is the former.
Then by our choice of 𝛽𝑗𝑖 ’s, those paths associated to vertices of 𝑅𝑗0

𝑖0
are either in 𝑈 ∩ 𝑉 or in

𝑈 , hence all of them are path in 𝑈 . Hence all loops associated to the sides of 𝑅𝑗0
𝑖0

are all in 𝑈 .
Moreover when we change from a pair of these loops to another pair through a homotopy, the
homotopy can be chosen in 𝑈 . To simplify the discussion, let us denote by 𝛼′

1, 𝛼′
2, 𝛼′

3 and 𝛼′
4 the

loops associated to the upper, right, left and lower sides of 𝑅𝑗0
𝑖0

respectively.
Now we consider change the element in 𝜋1(𝑈, 𝑝)*𝜋1(𝑉, 𝑝) associated to 𝛾𝑚 and that associated

to 𝛾𝑚+1, the last thing we have to be careful is to which fundamental group each letter in those
elements belongs to. When we try to write

[𝛼′
1]𝜖1 * [𝛼′

2]𝜖2 = [𝛼′
3]𝜖3 * [𝛼′

4]𝜖4
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we should have all these elements are in a same group, hence all markings 𝜖1, 𝜖2, 𝜖3 and 𝜖4 should
be the same.

However [𝛼′
1]𝜖1 and [𝛼′

2]𝜖2 are obtained from the previous steps. Notice that each side of 𝑅𝑗0
𝑖0

has another adjacent rectangle which could possible labeled with 𝑉 . Without loss of generality,
we may assume that this happens for [𝛼′

1]𝜖1 , hence we have 𝜖1 = 𝑉 . In this case, we have 𝑣𝑗0+1
𝑖0

and 𝑣𝑗0+1
𝑖0+1 both in 𝑈 ∩ 𝑉 , hence the loop 𝛼′

1 is in ℒ(𝑈 ∩ 𝑉, 𝑝). So we can change [𝛼′
1]𝑉 to [𝛼′

1]𝑈
in the quotient group 𝜋1(𝑈, 𝑝) * 𝜋1(𝑉, 𝑝)/𝑁 .

Hence we can make the whole homotopy happen by only using homotopies in 𝑈 , homotopies
in 𝑉 and change the "identity" (between 𝑈 -loops and 𝑉 -loops). This tells us the whole kernel is
in 𝑁 . Hence the theorem.

3.9 Application of the SVK Theorem
In this part, we use the SVK theorem to compute the fundamental groups of some spaces.

Wedge sum among circles

We first consider a wedge sum between two circles.

Figure 3.9.1: 𝑆1 ∨ 𝑆1.

Let 𝑅2 denote the whole space. We denote by 𝐴 and 𝐵 the two circles in 𝑋, which share a
same point 𝑝 ∈ 𝑋. Let 𝐼 be an open circular arc containing 𝑝 in 𝐴 and 𝐽 be an open circular arc
containing 𝑝 in 𝐵. We consider

𝑈 = 𝐴 ∪ 𝐽 and 𝑉 = 𝐵 ∪ 𝐼.

Figure 3.9.2: The open subsets 𝑈 and 𝑉 , and their intersection for 𝑅2.

Now we check if 𝑈 can 𝑉 satisfy the hypothesis of the SVK theorem. Notice that both 𝑈 and
𝑉 are open and path connected. Their intersection

𝑈 ∩ 𝑉 = 𝐼 ∪ 𝐽.
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is also path connected. In fact it is simply connected, since {𝑝} is its deformation retraction.
Now we consider the fundamental group of each piece. Notice that 𝐴 (resp. 𝐵) is a deformation

retraction of 𝑈 (resp. 𝑉 ), hence we have

𝜋1(𝑈, 𝑝) ∼= 𝜋1(𝑉, 𝑝) ∼= 𝜋1(𝐴, 𝑝) ∼= Z.

Since 𝑈 ∩ 𝑉 is simply connected, it has trivial fundamental group, hence

𝜋1(𝑅2, 𝑝) ∼= 𝜋1(𝑈, 𝑝) * 𝜋1(𝑉, 𝑝) ∼= Z * Z

which is a rank 2 free group.

Now we consider taking the wedge sum between 𝑅2 and one more circle 𝐶 at 𝑝. We denote
by 𝑅3 the whole space.

Figure 3.9.3: The 3-rose.

Let 𝐾 be an open circular arc containing 𝑝 in 𝐶. We consider

𝑈 ′ = 𝑅2 ∪𝐾 and 𝑉 ′ = 𝐶 ∪ 𝐼 ∪ 𝐽.

Now we check if 𝑈 ′ and 𝑉 ′ satisfy the hypothesis of the SVK theorem. Notice that both 𝑈 ′ and
𝑉 ′ are open and path connected. Their intersection

𝑈 ′ ∩ 𝑉 ′ = 𝐼 ∪ 𝐽 ∪𝐾.

is also path connected. In fact it is simply connected, since {𝑝} is its deformation retraction.

Figure 3.9.4: The open subsets 𝑈 and 𝑉 , and their intersection for 𝑅3.
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Now we consider the fundamental group of each piece. Notice that 𝑅2 (resp. 𝐶) is a
deformation retraction of 𝑈 (resp. 𝑉 ), hence we have

𝜋1(𝑈 ′, 𝑝) ∼= 𝜋1(𝑅2, 𝑝) ∼= Z * Z,

and
𝜋1(𝑉 ′, 𝑝) ∼= 𝜋1(𝐶, 𝑝) ∼= Z.

Since 𝑈 ′ ∩ 𝑉 ′ is simply connected, it has trivial fundamental group, hence

𝜋1(𝑅3, 𝑝) ∼= 𝜋1(𝑅2, 𝑝) * 𝜋1(𝐶, 𝑝) ∼= Z * Z * Z.

which is a rank 3 free group.
We call the wedge sum of 𝑛 circle the 𝑛-rose. Its fundamental group is rank 𝑛 free group.

Graphs

One way of consider graph is to a result of identification of endpoints of several closed compact
interval. We can consider it as a quotient space, and in this way we can easily understand its
topology. The image of endpoints are called vertices and the image of each interval is called an
edge. A graph is finite if it has finitely many vertices and edges. In this part, we assume that all
graphs are finite and connected.

Figure 3.9.5: A graph.

Let 𝐺 be a graph. We denote 𝐺 = (𝑉,𝐸) where 𝑉 is the set of vertices and 𝐸 is the set of
edges. A subgroup of 𝐺 is a graph whose vertices and edges are also vertices and edges of 𝐺. A
graph is a tree if it is simply connected, i.e. there is no loop in it which is homotopically non
trivial. A subgroup of 𝐺 is called a maximal subtree if it is a tree and it is maximal with respect
to the partial order induced by inclusion of subsets. Notice that maximal subtrees of a graph are
not unique.

Figure 3.9.6: Collapse a maximal tree of a graph to get a rose.

Let 𝑇 ⊂ 𝐺 be a maximal subtree. Let 𝑛 denote the number edges in 𝐺 ∖ 𝑇 . We can collapse
𝑇 to a point, then each edge which is in 𝐺 ∖ 𝑇 becomes a loop, hence we obtain an 𝑛-rose 𝑅𝑛.
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From this, we can show that 𝐺 and 𝑅𝑛 are homotopy equivalent and has the same fundamental
group isomorphic to 𝐹𝑛.

Torus

We consider torus 𝑇 obtained from the unit square by identify its opposite sides. Let 𝑅 denote
the unit square determined by (0, 0), (1, 0), (0, 1) and (1, 1). Let 𝑝 denote the middle point of 𝑅.
Let 𝐷 denote a radius 1/2 open disk neighborhood of 𝑝.

Let 𝜋 : 𝑅 → 𝑇 be the quotient map. Then we set

𝑈 = 𝜋(𝑅 ∖ {𝑝}) and 𝑉 = 𝜋(𝐷).

Figure 3.9.7: The open sets 𝑈 and 𝑉 , and their intersection for a torus.

Notice that 𝜕𝑅 is a strong deformation retraction of 𝑅 ∖ {𝑝}, moreover, this retraction can be
realized on 𝑇 . Hence

𝜋1(𝑅 ∖ {𝑝}) ∼= 𝜋1(𝜕𝑅).
The image 𝜋(𝜕𝑅) is a 2-rose (figure eight), hence has fundamental group Z * Z. Moreover, We
denote by 𝑞0 the 𝜋-image of vertices of 𝑅. Then each pair of opposite sides of 𝑅 induces a
generator of 𝜋1(𝜕𝑅) by choosing one orientation. We denote them by 𝑎 and 𝑏.

Figure 3.9.8: The fundamental group of 𝑈 .

Since 𝑉 is a topologically a disk, hence has trivial fundamental group. Hence by the SVK
theorem

𝜋1(𝑇, 𝑞) ∼= 𝜋1(𝑈, 𝑞)/⟨⟨(𝑗𝑈 )*([𝛾]) | [𝛾] ∈ 𝜋1(𝑈 ∩ 𝑉, 𝑞)⟩⟩.
Hence all we have to study is the (𝑗𝑈 )*(𝜋1(𝑈 ∩ 𝑉, 𝑞)). By changing the base point to 𝑞0, the
generator of the fundamental group of the punctured disk is then 𝑎𝑏𝑎−1𝑏−1.

Hence a presentation of the fundamental group of 𝜋1(𝑇, 𝑞0) is then

⟨𝑎, 𝑏 | 𝑎𝑏𝑎−1𝑏−1⟩.

One may prove moreover that this group is isomorphic to Z2 the free abelian group of 2 generators.
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Figure 3.9.9: A generator of (𝑗𝑈 )*(𝜋1(𝑈 ∩ 𝑉, 𝑝)).

Connected sums among torus

Now we consider connected sums among torus. We only discuss a connected sum of two torus as
an example. Let 𝑇 and 𝑇 ′ be two torus. By make a connected sum, we remove an open disk in 𝑇
and an open disk in 𝑇 ′, then glue the boundary with certain choice of orientation.

Figure 3.9.10: The connected sum Σ2 between two torus.

We denote by 𝑇1 and 𝑇 ′
1 be the resulting surfaces after removing disks from 𝑇 and 𝑇 ′

respectively. Let 𝐴 (resp. 𝐴′) be an open cylinder neighborhood of 𝜕𝑇1 (resp. 𝜕𝑇 ′
1) in 𝑇 (resp.

𝑇 ′).

Figure 3.9.11: The connected sum Σ2 between two torus.

Let Σ2 = 𝑇#𝑇 ′. We choose

𝑈 = 𝑇1 ∪𝐴′ and 𝑉 = 𝑇 ′
1 ∪𝐴.

Then
𝑈 ∩ 𝑉 = 𝐴 ∪𝐴′

is homeomorphic to a cylinder. Let 𝑝 ∈ 𝑈 ∩ 𝑉 . By well choosing presentations of 𝜋1(𝑈, 𝑝) and
𝜋1(𝑉, 𝑝), The generator of 𝜋1(𝑈 ∩ 𝑉, 𝑝) has a presentation 𝑎−1𝑏𝑎𝑏−1 in 𝜋1(𝑈, 𝑝) and has the
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presentation 𝑐−1𝑑𝑐𝑑−1 in 𝜋1(𝑉, 𝑝). Hence the presentation of 𝜋1(Σ2, 𝑝) can be given as follows:

⟨𝑎, 𝑏, 𝑐, 𝑑 | 𝑎−1𝑏𝑎𝑏−1𝑐𝑑−1𝑐−1𝑑⟩.

𝑎

𝑏

𝑎

𝑏

𝑐

𝑑

𝑐

𝑑

Figure 3.9.12: Identification of boundary elements.
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Chapter 4

Covering spaces

Consider the map

𝑓 : C → C,
𝑧 ↦→ 𝑧2.

If we look at its restriction on the unit circle 𝑆1, the map 𝑓 winds the circle around itself twice.
Topologically, a loop going around 𝑆1 once is not homotopic to a loop going around 𝑆1 twice.
But they still have certain things in common. For example, locally we cannot distinguish them,
the homomorphism between fundamental groups induces by 𝑓 is injective, etc. Such phenomenon
relates to a notion called "covering". In fact we see this a lot in daily life. For example, we may
consider what happens when we try to roll a paper into a straw. We may consider a straw as
a cylinder. When we cut either a disk or a disk with center removed out of the straw, we get
several pieces of paper homeomorphic to the part of the straw being cut out. In this chapter, we
would like to study covering maps and covering spaces in details.

4.1 Covering maps

Intuitively, if a space 𝑋 covers another one 𝑌 , locally they looks like each other.

Definition 4.1.1

Let 𝑋 and 𝑌 be two topological spaces. A continuous map

𝑓 : 𝑋 → 𝑌,

is a local homeomorphism, if for any 𝑥 ∈ 𝑋, it has an open neighborhood 𝑈 ⊂ 𝑋 such
that

(i) 𝑓(𝑈) ⊂ 𝑌 is open;

(ii) the restriction 𝑓 |𝑈 is a homeomorphism to its image.

As we will see later, this definition is weaker than what we need for discussing "covering". Let us
first give the formal definition of a covering map.

139
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Definition 4.1.2

Let 𝑋 and 𝑌 be two topological spaces. A continuous map

𝑓 : 𝑋 → 𝑌

is a covering map, if it is surjective and for any 𝑝 ∈ 𝑌 , it has a neighborhood 𝑉 ⊂ 𝑌 such
that

1. 𝑓−1(𝑉 ) can be written as a disjoint union of sets

𝑓−1(𝑉 ) =
⨆︁
𝛼∈Ω

𝑈𝛼,

2. for each 𝛼 ∈ Ω, we have
𝑓 |𝑈𝛼

: 𝑈𝛼 → 𝑉,

is a homeomorphism.

In this case, we call 𝑋 is a covering space of 𝑌 (or simply a cover of 𝑌 ) with covering
map 𝑓 .

Remark 4.1.3.
For our convenience, for any 𝑝 ∈ 𝑌 , we will call any neighborhood 𝑉 satisfying the condition in
the definition a covering neighborhood of 𝑝. We remark that a point 𝑝 may have many covering
neighborhoods. For any example, if 𝑉 is a covering neighborhood of 𝑝, then any neighborhood of
𝑝 contained in 𝑉 is again a covering neighborhood of 𝑝. Another remark is that if 𝑉 is a covering
neighborhood of 𝑝 ∈ 𝑌 , then 𝑉 is also a covering neighborhood of any 𝑝′ ∈ 𝑉 .

Consider the covering map 𝑓 : 𝑋 → 𝑌 , given any point 𝑝 ∈ 𝑌 , if 𝑉 is a covering neighborhood
of 𝑝, then its intersection with any neighborhood 𝑈 of 𝑝 is still a covering neighborhood of 𝑝.
Hence, we have the following observation.

Proposition 4.1.4

Let 𝑓 : 𝑋 → 𝑌 be a covering map, then the open covering neighborhoods of points in 𝑌
form a basis of the topology of 𝑌 . The connected components of preimages of open covering
neighborhoods of points in 𝑌 form a basis of the topology of 𝑋.

We first see several example to see what this definition requires.

Example 4.1.5.
We consider the example given in the beginning of this chapter. Consider 𝑆1 the unit circle in C
and the map from 𝑆1 to 𝑆1 given by

𝑓 : C → C
𝑧 ↦→ 𝑧2.

For any 𝜃 ∈ R, let

𝑉 :=
{︁
𝑒𝑖𝑡 ∈ 𝑆1 ⃒⃒ 𝑡 ∈

(︁
𝜃 − 𝜋

2 , 𝜃 + 𝜋

2

)︁}︁
.



4.1. COVERING MAPS 141

The its preimage under 𝑓 can be written as 𝑈1 ⊔ 𝑈2, where

𝑈1 :=
{︂
𝑒𝑖𝑡 ∈ 𝑆1 ⃒⃒ 𝑡 ∈

(︂
𝜃

2 − 𝜋

4 ,
𝜃

2 + 𝜋

4

)︂}︂
,

𝑈2 :=
{︂
𝑒𝑖𝑡 ∈ 𝑆1 ⃒⃒ 𝑡 ∈

(︂
𝜃

2 + 3𝜋
4 ,

𝜃

2 + 5𝜋
4

)︂}︂
.

Notice that
𝑈1 ∩ 𝑈2 = ∅.

Moreover
𝑓 |𝑈1 : 𝑈1 → 𝑉 and 𝑓 |𝑈2 : 𝑈2 → 𝑉,

are both homeomorphisms. Therefore 𝑉 is a covering neighborhood of 𝑒𝑖𝜃 (See Figure 4.1.1 for
an illustration).

𝑉

𝑈2

𝑈1

𝑓

𝑒
𝑖(𝜃+2𝜋)

2

𝑒
𝑖𝜃
2

𝜃

𝑒𝑖𝜃

Figure 4.1.1: A covering neighborhood 𝑉 of 𝑒𝑖𝜃.

Therefore 𝑓 is a covering map from 𝑆1 to 𝑆1.

The discussion in this example can be used to discuss any map

𝑓𝑛 : C → C
𝑧 ↦→ 𝑧𝑛

with 𝑛 ∈ N*. The differences between the case 𝑛 = 2 and other cases are the choice of the covering
neighborhood 𝑉 for each 𝜃 and the number of 𝑈𝛼’s. See Figure 4.1.2 for an illustration for 𝑓𝑛’s
with 𝑛 = 2, 4, 7.

Example 4.1.6.
This is an example which is local homeomorphism, but not a covering map. We consider

𝑓 : (0, 4𝜋) → 𝑆1

𝑡 ↦→ exp(𝑖𝑡)
.

Notice that given 1 ∈ 𝑆1, we consider an open neighborhood 𝑉 of 1 in 𝑆1 which is an open
circular arc. It preimage will contain a connected component which is an interval 𝑈 = (4𝜋− 𝜖, 4𝜋)
for some 𝜖 > 0. Notice that the restriction of 𝑓 on 𝑈 is not a homeomorphism to 𝑉 (See Figure
4.1.3 for un illustration).
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𝑓2 𝑓4 𝑓7

Figure 4.1.2: Covering maps for 𝑛 = 2, 4, 7.

𝑓

Figure 4.1.3: An illustration of 𝑓 .

One thing that we may notice is that the number of 𝑓−1
𝑛 -preimage of each point in 𝑆1 is the

same. In fact this is not a surprise.

Proposition 4.1.7

Let 𝑋 be a cover of a topological space 𝑌 with covering map 𝑓 . Assume that 𝑌 is connected,
and there is natural number 𝑛 ∈ N*, such that |𝑓−1(𝑝0)| = 𝑛 for some 𝑝0 ∈ 𝑌 . Then for
any 𝑝 ∈ 𝑌 , we have |𝑓−1(𝑝)| = 𝑛.

Proof. We consider the map
𝜙 : 𝑌 → N ∪ {∞}

𝑝 ↦→ |𝑓−1(𝑝)|.
As a convention, if 𝑓−1(𝑝) is not finite, we define its value under 𝜙 to be ∞. We consider the
discrete topology on N ∪ {∞}.
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For any 𝑘 ∈ N ∪ {∞}, we consider its preimage

𝜙−1(𝑘) = {𝑝 ∈ 𝑌 | |𝑓−1(𝑝)| = 𝑘}.

For any 𝑝 ∈ 𝜙−1(𝑘), by the definition of a covering map, there is a neighborhood 𝑉 of 𝑝 such
that

1. 𝑓−1(𝑉 ) can be written as a disjoint union of open sets

𝑓−1(𝑉 ) =
⨆︁
𝛼∈Ω

𝑈𝛼,

2. for each 𝛼 ∈ Ω, we have
𝑓 |𝑈𝛼

: 𝑈𝛼 → 𝑉,

is a homeomorphism.
For any 𝑞 ∈ 𝑉 , we have

𝑓−1(𝑞) ⊂ 𝑓−1(𝑉 ),
and for any 𝛼 ∈ Ω, we have

|𝑓−1(𝑞) ∩ 𝑈𝛼| = 1.
Hence we have

𝜙(𝑞) = 𝜙(𝑝).
Hence we have

𝑉 ⊂ 𝜙−1(𝑘).
This implies that 𝜙−1(𝑘) is open. Hence 𝜙 is a continuous map.

Since 𝑌 is connected, we have 𝜙(𝑌 ) ⊂ N ∪ {∞} is connected. Hence 𝜙 is constant.
Since we have a point 𝑝0 with 𝜙(𝑝0) = 𝑛, for any 𝑝 ∈ 𝑌 , we have

|𝑓−1(𝑝)| = 𝜙(𝑝) = 𝑛.

Remark 4.1.8.
Since path connectivity implies connectivity, the above proposition holds in particular for path
connected space 𝑌 .

Definition 4.1.9

Let 𝑋 be a cover of a connected topological space 𝑌 with covering map 𝑓 . If there is 𝑝 ∈ 𝑌 ,
such that

|𝑓−1(𝑝)| = 𝑛 ∈ N*,

then we call 𝑋 a finite cover of 𝑌 , and 𝑛 is called the cover index or cover degree.

Remark 4.1.10.
A cover of a topological space is not always finite. Here is one example. Let 𝑆1 be the unit circle
in C. We consider the map

𝑓 : R → 𝑆1,

𝜃 ↦→ 𝑒𝑖𝜃.

This is a covering map. Notice that
𝑓−1(1) = 2𝜋Z.

Hence with the covering map 𝑓 , the space R is not a finite cover of 𝑆1.



144 CHAPTER 4. COVERING SPACES

Remark 4.1.11.
A cover of a space 𝑌 need not to be different from 𝑌 . For example, for any 𝑛 ∈ N*, with the
covering map 𝑓𝑛, the unit circle 𝑆1 is a index 𝑛 cover of itself.

Remark 4.1.12.
Recall that the definition of a covering space of a space 𝑌 includes two parts of information: the
space 𝑋 and the covering map 𝑓 .

Remark 4.1.13.
The above example reminds us that when we discuss the notion of quotient space we use exactly
the same example with R and 𝑆1. In fact, in some cases, instead of seeing 𝑌 and its covering
space 𝑋 as two spaces with special relation, we can also consider 𝑌 as a quotient space of 𝑋 and
the covering map can be consider as a quotient map. We will discuss this later in details.

Proposition 4.1.14

A degree 1 covering map is a homeomorphism.

Proof. If a covering map 𝑓 from 𝑋 to 𝑌 has degree 1, then it is bijective by the definition of
degree. The covering neighborhood of points in 𝑌 form a basis of the topology in 𝑌 . Hence 𝑓
is continuous. On the other hand, the connected components of preimage of a open covering
neighborhood of points in 𝑌 form a basis of 𝑋. Hence 𝑓−1 is also continuous. Therefore 𝑓 is a
homeomorphism.

4.2 Lifting
Let 𝑋 and 𝑌 be two path connected spaces. Assume that 𝑋 is a cover of 𝑌 with covering map 𝑓 .
For any 𝑝 ∈ 𝑌 , we call a point ̃︀𝑝 ∈ 𝑓−1(𝑝) a lift of 𝑝. By the definition of a covering map, for
each 𝑝, we can have a covering neighborhood 𝑉 of 𝑝, such that

𝑓−1(𝑉 ) =
⨆︁
𝛼∈Ω

𝑈𝛼,

such that for each 𝛼 ∈ Ω, 𝑈𝛼 and 𝑉 are homeomorphic through 𝑓 . We then call 𝑈𝛼 a lift of 𝑉 .
We can also talk about lifts of continuous maps. Let

ℎ : 𝑍 → 𝑌

be a continuous map. If we have a map

̃︀ℎ : 𝑍 → 𝑋,

such that we have the following commutative diagram

𝑋

𝑓

��

𝑍

̃︀ℎ >>

ℎ // 𝑌

we then call ̃︀ℎ a lift of ℎ.
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Remark 4.2.1.
One possible advantage to lift a map is that it is possible that the topology of 𝑋 is simpler than
that of 𝑌 . Then it would be easier to study maps to 𝑋 than those to 𝑌 . For example, when we
compute the fundamental group of 𝑆1, we try to lift maps to R which is simply connected and
the linear structure in R can be use to construct homotopies which would be quite helpful.

Remark 4.2.2.
Later we will see that given a space 𝑌 and its cover 𝑋, not every continuous map to 𝑌 can be
lift to a map to 𝑋. We will also give a criterion to tell in which situation a continuous map to 𝑌
is liftable.

Lifts of paths

We start by discussing lifts of paths. Let 𝑋 and 𝑌 be two path connected spaces, and

𝑓 : 𝑋 → 𝑌,

be a covering map.

Definition 4.2.3

Let 𝛼 be a path in 𝑌 , then a lift of 𝛼 in 𝑋 is a path ̃︀𝛼 in 𝑋 satisfying the following
commutative diagram

𝑋

𝑓

��

[0, 1]

̃︀𝛼 ==

𝛼 // 𝑌

We first show that lifts of any path do exists.

Proposition 4.2.4

Let 𝛼 be a path in 𝑌 with 𝛼(0) = 𝑝. Then for each ̃︀𝑝 ∈ 𝑓−1(𝑝), there is a unique lift ̃︀𝛼 of 𝛼,
such that ̃︀𝛼(0) = ̃︀𝑝.

Proof. The goal is to find a path ̃︀𝛼 : [0, 1] → 𝑋,

such that the following diagram commutes

𝑋

𝑓

��

[0, 1]

̃︀𝛼 ==

𝛼 // 𝑌

For any 𝑡 ∈ [0, 1], by the definition of the covering map, the point 𝛼(𝑡) has a open covering
neighborhood 𝑉𝑡 in 𝑌 , such that each ̃︂𝛼(𝑡) ∈ 𝑓−1(𝑡) has a neighborhood 𝑈𝑡 satisfying that

𝑓 |𝑈𝑡 : 𝑈𝑡 → 𝑉𝑡

is a homeomorphism. For each 𝑡, we have a interval open neighborhood 𝐼𝑡 of 𝑡 such that

𝐼𝑡 ⊂ 𝛼−1(𝑉𝑡).
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These interval 𝐼𝑡’s form an open cover of [0, 1]. Since [0, 1] is compact, we can choose finitely
many of them to cover [0, 1]. Let 𝑛 be the number of these intervals. The endpoints of these
intervals form a sequence

0 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑛 < 𝑠𝑛+1 = 1.

Choose

0 = 𝑠0 = 𝑡0 < 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < · · · < 𝑡𝑛−1 < 𝑠𝑛 < 𝑡𝑛 < 𝑠𝑛+1 = 𝑡𝑛+1 = 1

Then we have a finite partition of [0, 1]:

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 < 𝑡𝑛+1 = 1,

such that for each 0 ≤ 𝑖 ≤ 𝑛, 𝛼([𝑡𝑖, 𝑡𝑖+1]) is contained in one of the covering neighborhood 𝑉𝑡’s
chosen in the beginning of this construction, and we denote it by 𝑉𝑖. In the following, for any
0 ≤ 𝑖 ≤ 𝑛, we will denote

𝛼𝑖 = 𝛼|[𝑡𝑖,𝑡𝑖+1].

We will construct ̃︀𝛼 piece by piece. Let ̃︀𝑝 ∈ 𝑓−1(𝑝). Then we have a neighborhood of ̃︀𝑝
denoted by 𝑈0 homeomorphic to 𝑉0 via 𝑓 . Denote by

𝑓0 = 𝑓 |𝑈0 : 𝑈0 → 𝑉0.

Then we define ̃︀𝛽0 : [0, 𝑡1] → 𝑋,

by ̃︀𝛽0 = 𝑓−1
0 ∘ 𝛼0.

Assume that we have ̃︀𝛽0, ..., ̃︀𝛽𝑖 with 𝑡𝑖+1 < 1. We consider 𝛼(𝑡𝑖+1) and the covering neighbor-
hood 𝑉𝑖+1 containing 𝛼([𝑡𝑖+1, 𝑡𝑖+2]).

Let 𝑈𝑖+1 be the neighborhood of ̃︀𝛽𝑖(𝑡𝑖+1) which is homeomorphic to 𝑉𝑖+1 via 𝑓 . We denote by

𝑓𝑖+1 = 𝑓 |𝑈𝑖+1 : 𝑈𝑖+1 → 𝑉𝑖+1.

Then we define ̃︀𝛽𝑖+1 : [𝑡𝑖+1, 𝑡𝑖+2] → 𝑋,

by ̃︀𝛽𝑖+1 = 𝑓−1
𝑖+1 ∘ 𝛼𝑖+1.

In this way, we obtain a sequence of maps ̃︀𝛽𝑖 for 0 ≤ 𝑖 ≤ 𝑛. Since for any 0 ≤ 𝑖 ≤ 𝑛− 1, we
have ̃︀𝛽𝑖(𝑡𝑖+1) = ̃︀𝛽𝑖+1(𝑡𝑖+1),

we can "glue" all these maps together and define the following map

̃︀𝛼 : [0, 1] → 𝑋,

such that for any 𝑡 ∈ [0, 1], we have

̃︀𝛼(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

̃︀𝛽0(𝑡), 𝑡 ∈ [0, 𝑡1],̃︀𝛽1(𝑡), 𝑡 ∈ [𝑡1, 𝑡2],
...̃︀𝛽𝑛(𝑡), 𝑡 ∈ [𝑡𝑛, 1].

(See Figure 4.2.1 for an illustration.)
From the continuity of each ̃︀𝛽𝑖, we may get the continuity of ̃︀𝛼. We can check the ̃︀𝛼-preimage

of any closed subset of 𝑋 is closed in [0, 1], since it is a union of some closed subsets in each
[𝑡𝑖, 𝑡𝑖+1].
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0 1𝑡1 𝑡2

· · ·

̃︀𝛽0

̃︀𝛽1

𝛼0

𝛼1

𝑓−1
0 𝑓−1

1

𝑉0 𝑉1

𝑈0 𝑈1

𝑌

𝑋

𝛼

𝑓

𝑝

̃︀𝑝
̃︀𝑝′ ̃︀𝑝′′

̃︀𝑝′′′

· · ·

Figure 4.2.1: Construct ̃︀𝛼 piece by piece.

Next we would like to show the uniqueness of ̃︀𝛼. Assume that ̃︀𝛼′ is another lift 𝛼, such that

̃︀𝛼′(0) = ̃︀𝑝.
Hence we have

𝑓 ∘ ̃︀𝛼 = 𝛼 = 𝑓 ∘ ̃︀𝛼′.

We consider first the interval [0, 𝑡1]. Since

̃︀𝛼(0) = ̃︀𝑝 = ̃︀𝛼′(0),

we have ̃︀𝛼([0, 𝑡1]) ⊂ 𝑈0 and ̃︀𝛼′([0, 𝑡1]) ⊂ 𝑈0.

Hence ̃︀𝛼|[0,𝑡1] = 𝑓−1
0 ∘ 𝛼0 = ̃︀𝛼′|[0,𝑡1],

the two maps coincide on [0, 𝑡1].
Now assume that they coincide on [0, 𝑡𝑖] with 𝑡𝑖 < 1. Then for ̃︀𝛼(𝑡𝑖) = ̃︀𝛼′(𝑡𝑖). By a similar

argument as for [0, 𝑡1], we can show that ̃︀𝛼 and ̃︀𝛼′ coincide on [𝑡𝑖, 𝑡𝑖+1]. Therefore by induction,
we have ̃︀𝛼 = ̃︀𝛼′

on [0, 1]. This shows the uniqueness of the lift for a chosen lift of 𝛼(0).

Example 4.2.5.
A lift of a loop may not be a loop. Consider 𝑆1 as the unit circle of C, and the covering map
from 𝑆1 to itself given by

𝑓 : 𝑧 ↦→ 𝑧2.
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Consider 𝑝 = 1, then it has two lifts 1 and −1. Consider the loop

𝛼 : [0, 1] → 𝑆1

𝑡 ↦→ 𝑒2𝜋𝑖𝑡

It has a lift ̃︀𝛼 : [0, 1] → 𝑆1

𝑡 ↦→ 𝑒𝜋𝑖𝑡

with ̃︀𝛼(0) = 1 and ̃︀𝛼(1) = −1 which is not a loop.
On the other hand, a covering map always sends loops to loops.

Now we consider the path homotopy.

Proposition 4.2.6

Let 𝛼 and 𝛽 be two homotopic paths in 𝑌 and 𝐻 be the homotopy between them. Denote

𝑝 = 𝛼(0) = 𝛽(0).

For any ̃︀𝑝 ∈ 𝑓−1(𝑦), there is a unique lift

̃︀𝐻 : [0, 1] × [0, 1] → 𝑋,

of 𝐻 with ̃︀𝐻(0, 0) = ̃︀𝑝.
Moreover, the map ̃︀𝐻 is a path homotopy between ̃︀𝛼 and ̃︀𝛽 lifts of 𝛼 and 𝛽 respectively

with ̃︀𝛼(0) = ̃︀𝛽(0) = ̃︀𝑝.
Proof. The goal is to find a continuous map

̃︀𝐻 : [0, 1] × [0, 1] → 𝑋,

such that the following diagram commutes

𝑋

𝑓

��

[0, 1] × [0, 1]

̃︀𝐻 99

𝐻 // 𝑌

By the definition of a covering map, each point 𝐻(𝑠, 𝑡) ∈ 𝑌 has a covering neighborhood 𝑉𝑠,𝑡
in 𝑌 .

Notice that the topology of [0, 1] × [0, 1] has a basis consisting of only open rectangles. Hence
for any (𝑠, 𝑡), there is a rectangle open neighborhood 𝑅𝑠,𝑡 of (𝑠, 𝑡) with

𝑅𝑠,𝑡 ⊂ 𝐻−1(𝑉𝑠,𝑡).

These rectangles 𝑅𝑠,𝑡’s form an open cover of [0, 1] × [0, 1]. Since [0, 1] × [0, 1] is compact, we can
choose finitely many of them to cover [0, 1] × [0, 1].

We consider the vertices of these rectangles. Their horizontal coordinates and their vertical
coordinates give partitions of [0, 1] × {0} and {0} × [0, 1] respectively, denoted by

0 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑚 < 𝑠𝑚+1 = 1,
0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 < 𝑡𝑛+1 = 1.
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We consider 𝑥𝑖’s and 𝑦𝑖’s in [0, 1], such that

0 = 𝑠0 = 𝑥0 < 𝑠1 < 𝑥1 < · · · < 𝑠𝑚 < 𝑥𝑚 < 𝑠𝑚+1 = 𝑥𝑚+1 = 1,
0 = 𝑡0 = 𝑦0 < 𝑡1 < 𝑦1 < · · · < 𝑡𝑛 < 𝑦𝑛 < 𝑡𝑛+1 = 𝑦𝑛+1 = 1.

Then for each 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛, the image

𝐻([𝑥𝑖, 𝑥𝑖+1] × [𝑦𝑗 , 𝑦𝑗+1]) ⊂ 𝑉𝑖,𝑗 .

where 𝑉𝑖,𝑗 is the 𝐻-image of a rectangle in the finite rectangle cover of [0, 1] × [0, 1] obtained
above.

We now construct the lift of 𝐻 piece by piece in an inductive way. Let ̃︀𝑝 ∈ 𝑓−1(𝑝). We have a
neighborhood of 𝑈0,0 of ̃︀𝑝 homeomorphic to 𝑉0,0. Denote by

𝑓0,0 := 𝑓 |𝑈0,0 : 𝑈0,0 → 𝑉0,0.

Then we define ̃︀𝐹0,0 : [0, 𝑥1] × [0, 𝑦1] → 𝑋

by ̃︀𝐹0,0 = 𝑓−1
0,0 ∘𝐻|[0,𝑥1]×[0,𝑦1].

Assume that we have defined ̃︀𝐹0,𝑖 with 𝑦𝑖+1 < 1, then we consider 𝐻(0, 𝑦𝑖+1) and its covering
neighborhood 𝑉0,𝑖+1 containing 𝐻([0, 𝑥1] × [𝑦𝑖+1, 𝑦𝑖+2]). Let 𝑈0,𝑖+1 be the neighborhood of
𝐻(0, 𝑦𝑖+1) homeomorphic to 𝑉0,𝑖+1. Denote by

𝑓0,𝑖+1 := 𝑓 |𝑈0,𝑖+1 : 𝑈0,𝑖+1 → 𝑉0,𝑖+1.

Then we define ̃︀𝐹0,𝑖+1 = 𝑓−1
0,𝑖+1 ∘𝐻|[0,𝑥1]×[𝑦𝑖+1,𝑦𝑖+2].

For any 0 ≤ 𝑖 ≤ 𝑚, if we have defined ̃︀𝐹𝑗,𝑘 for any (𝑗, 𝑘) with 0 ≤ 𝑗 ≤ 𝑖 and 0 ≤ 𝑘 < 1. Assume
that 𝑥𝑖+1 < 1. Then we consider 𝐻(𝑥𝑖+1, 0) and its covering neighborhood 𝑉𝑖+1,0 containing
𝐻([𝑥𝑖+1, 𝑥𝑖+2] × [0, 𝑦1]). Let 𝑈𝑖+1,0 be the neighborhood of 𝐻(𝑥𝑖+1, 0) homeomorphic to 𝑉𝑖+1,0.
Denote by

𝑓𝑖+1,0 := 𝑓 |𝑈𝑖+1,0 : 𝑈𝑖+1,0 → 𝑉𝑖+1,0.

Then we define ̃︀𝐹𝑖+1,0 = 𝑓−1
𝑖+1,0 ∘𝐻|[𝑥𝑖,𝑥𝑖+1]×[0,𝑦1].

For each (𝑠, 𝑡) ∈ [𝑥𝑖, 𝑥𝑖+1] × [𝑦𝑗 , 𝑦𝑗+1], we define

̃︀𝐻(𝑠, 𝑡) = ̃︀𝐹𝑖,𝑗(𝑠, 𝑡).
By the construction of ̃︀𝐹𝑖,𝑗 , for any two adjacent rectangles, the images of ̃︀𝐹𝑖,𝑗 ’s on their common
part are the same. Hence ̃︀𝐻 is well defined. Moreover, the union of closed subsets in each small
rectangles is a closed subset in [0, 1] × [0, 1], by the continuity of ̃︀𝐹𝑖,𝑗 ’s (which are composition
between continuous maps), we have the continuity of ̃︀𝐻. Hence we have a lift of 𝐻.

The uniqueness of ̃︀𝐻 with ̃︀𝐻(0, 0) = ̃︀𝑝 can also be proved in an inductive way. Assume that̃︀𝐻 ′ is a lift of 𝐻 with ̃︀𝐻 ′(0, 0) = ̃︀𝑝 = ̃︀𝐻(0, 0).

Therefore on [0, 𝑥1] × [0, 𝑦1], we have

̃︀𝐻([0, 𝑥1] × [0, 𝑦1]) ⊂ 𝑈0,0 and ̃︀𝐻 ′([0, 𝑥1] × [0, 𝑦1]) ⊂ 𝑈0,0.

Hence ̃︀𝐻 ′|[0,𝑥1]×[0,𝑦1] = 𝑓−1
0,0 ∘𝐻|[0,𝑥1]×[0,𝑦1] = ̃︀𝐻|[0,𝑥1]×[0,𝑦1].

Now assume that ̃︀𝐻 ′ and ̃︀𝐻 coincide on [𝑥𝑖, 𝑥𝑖+1] × [𝑦𝑗 , 𝑦𝑗+1] with 𝑦𝑗+1 < 1, then since

̃︀𝐻 ′(𝑥𝑖, 𝑦𝑗+1) = ̃︀𝐻(𝑥𝑖, 𝑦𝑗+1),
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the two lifts ̃︀𝐻 and ̃︀𝐻 ′ coincide over [𝑥𝑖, 𝑥𝑖+1] × [𝑦𝑗+1, 𝑦𝑗+2].
If ̃︀𝐻 ′ and ̃︀𝐻 coincide on [𝑥𝑖, 𝑥𝑖+1] × [𝑦𝑚, 1] with 𝑥𝑖+1 < 1, then sincẽ︀𝐻 ′(𝑥𝑖+1, 0) = ̃︀𝐻(𝑥𝑖+1, 0),

the two lifts ̃︀𝐻 and ̃︀𝐻 ′ coincide over [𝑥𝑖+1, 𝑥𝑖+2] × [0, 𝑦1]. By induction, we conclude that we havẽ︀𝐻 = ̃︀𝐻 ′

on [0, 1] × [0, 1].
We denote ̃︀𝛼 = ̃︀𝐻0

and ̃︀𝛽 = ̃︀𝐻1.

Then we have
𝑓 ∘ ̃︀𝛼 = 𝑓 ∘ ̃︀𝐻0 = 𝐻0 = 𝛼,

and
𝑓 ∘ ̃︀𝛽 = 𝑓 ∘ ̃︀𝐻1 = 𝐻1 = 𝛽.

Hence ̃︀𝛼 and ̃︀𝛽 are lifts of 𝛼 and 𝛽 respectively with

̃︀𝛼(0) = ̃︀𝛽(0) = ̃︀𝐻(0, 0) = ̃︀𝑝.
Moreover for any 𝑞 ∈ 𝑌 , the preimage set 𝑓−1(𝑞) has discrete topology as subspace of 𝑋, and

each point in 𝑓−1(𝑞) is a connected component of 𝑓−1(𝑞). Since ̃︀𝐻 is a continuous map and

𝑓 ∘ ̃︀𝐻 = 𝐻,

we have
(𝑓 ∘ ̃︀𝐻)({0} × [0, 1]) = 𝐻({0} × [0, 1]) = {𝑝},

and
(𝑓 ∘ ̃︀𝐻)({1} × [0, 1]) = 𝐻({1} × [0, 1]) = {𝛼(1)},

Hence ̃︀𝐻({0} × [0, 1]) = ̃︀𝑝,
and ̃︀𝐻({1} × [0, 1]) = ̃︀𝛼(1).
As a conclusion, the map ̃︀𝐻 is a path homotopy between the paths ̃︀𝛼 and ̃︀𝛽 in 𝑋.

Remark 4.2.7.
Same as preciously for lifts of paths, the lift ̃︀𝐻 is determined by ̃︀𝐻(0, 0).

Remark 4.2.8.
When we have a continuous map 𝜙 from some topological space 𝑍 to 𝑌 , and 𝑋 is a cover of 𝑌 ,
we can also ask if we can lift 𝜙 to a map from 𝑍 to 𝑋. The story would be a little bit more
complicated, and we will come back to this question later (See Proposition 4.3.16).

4.3 Covers and fundamental groups
In this section, we would like to study the relation between the fundamental group of a path
connected space and that of its cover.

Let 𝑋 and 𝑌 be two path connected spaces. Assume that 𝑋 is a cover of 𝑌 with covering
map 𝑓 .
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Embedding the fundamental group of 𝑋 into that of 𝑌

Let 𝑝 ∈ 𝑌 be a point and ̃︀𝑝 be one of its lifts in 𝑋. A covering map 𝑓 is in particular continuous,
hence there is a homomorphism

𝑓* : 𝜋1(𝑋, ̃︀𝑝) → 𝜋1(𝑌, 𝑝).

Proposition 4.3.1

The homomorphism 𝑓* is injective.

Proof. Since we can always lift a path homotopy map 𝐻 in 𝑌 to one in 𝑋, if ̃︀𝛼 and ̃︀𝛼′ are two
loops in ℒ(𝑋, ̃︀𝑝) such that

𝑓 ∘ ̃︀𝛼 = 𝛼 ∼ 𝛼′ = 𝑓 ∘ ̃︀𝛼′

in 𝑌 through the homotopy 𝐻, then by lifting 𝐻 to

̃︀𝐻 : [0, 1] × [0, 1] → 𝑋,

with ̃︀𝐻(0, 0) = ̃︀𝛼(0). Since ̃︀𝛼′(0) = ̃︀𝛼(0) = ̃︀𝑝, by Proposition 4.2.4, we have ̃︀𝐻0 = ̃︀𝛼 and ̃︀𝐻1 = ̃︀𝛼′.
The map ̃︀𝐻 is a homotopy between ̃︀𝛼 and ̃︀𝛼′.

Example 4.3.2.
Consider the circle

𝑆1 := {𝑧 ∈ C | |𝑧| = 1}.

and the covering map
𝑓 : 𝑆1 → 𝑆1

𝑧 ↦→ 𝑧2

Here we have 𝑋 = 𝑌 = 𝑆1. We consider 𝑧 = 1. It has two lifts: 1 and −1. In the fundamental
group level, we have

𝑓* : 𝜋1(𝑆1, 1) → 𝜋1(𝑆1, 1)
[𝛼] ↦→ [𝛼]2

where [𝛼] is a generator of 𝜋1(𝑆1, 1).

Example 4.3.3.
Consider 𝑆1 ∨ 𝑆1. We may identify one of the 𝑆1 with the unit circle in C and the common point
with 1 ∈ C. Then the covering map 𝑓2, 𝑓5 from 𝑆1 to 𝑆1 or more generally the covering map
from R to 𝑆1 given by 𝑡 ↦→ 𝑒2𝜋𝑖𝑡 can be extended to the following covering maps

Action of the fundamental group of 𝑌 on 𝑓−1(𝑝)

From the algebraic point of view, we can identify 𝜋1(𝑋, ̃︀𝑝) with a subgroup of 𝜋1(𝑌, 𝑝). To make
this more precise, we consider the other direction and discuss lifts of a loop in 𝑌 .

First we consider the following observation. Assume that the cover from 𝑋 to 𝑌 is not of index
1, i.e. not a homeomorphism. Let ̃︀𝑝′ be a lift of 𝑝 different from ̃︀𝑝. Since 𝑋 is path connected,
there is a path ̃︀𝜂 with ̃︀𝜂(0) = ̃︀𝑝 and ̃︀𝜂(1) = ̃︀𝑝′. When we project this path into 𝑌 , we notice that

𝑓(̃︀𝜂(0)) = 𝑓(̃︀𝑝) = 𝑝 = 𝑓(̃︀𝑝′) = 𝑓(̃︀𝜂(1)).
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Figure 4.3.1: 3 covering spaces of 𝑆1 ∨ 𝑆1 (of degree 2, 5 and ∞ respectively).

Hence 𝜂 = 𝑓 ∘ ̃︀𝜂 is a loop in 𝑌 . This suggest that the homomorphism 𝑓* may not be surjective,
and the lifts of base point 𝑝 may play an important role in this study. In fact, the above discussion
can be use to construct a group action of 𝜋1(𝑌, 𝑝) on the set 𝑓−1(𝑝).

Let us first recall what a group action is. Let 𝐺 be a group and 𝐴 be a set. A left group
action 𝐺 on 𝐴 is map

Φ : 𝐺×𝐴 → 𝐴,

(𝑔, 𝑎) ↦→ 𝑔.𝑎

satisfying the following properties:

1. for any 𝑎 ∈ 𝐴, for any 𝑔, 𝑔′ ∈ 𝐺, we have 𝑔.(𝑔′.𝑎) = (𝑔𝑔′).𝑎;

2. for any 𝑎 ∈ 𝐴, we have 𝑒.𝑎 = 𝑎 where 𝑒 ∈ 𝐺 is the identity.

if the first condition is replaced by the following one

3. for any 𝑎 ∈ 𝐴, for any 𝑔, 𝑔′ ∈ 𝐺, we have 𝑔.(𝑔′.𝑎) = (𝑔′𝑔).𝑎.

we call it a right group action 𝐺 on 𝐴.

We may consider walking along a path

𝜂 : [0, 1] → 𝑋,

as pushing the point 𝜂(0) along Im 𝜂 until 𝜂(1). Then given any lift ̃︀𝑝 ∈ 𝑓−1(𝑝), the lifts of loops
in ℒ(𝑌, 𝑝) to ℒ(𝑋, ̃︀𝑝) can be considered as different ways to move ̃︀𝑝 to some lift ̃︀𝑝′ ∈ 𝑓−1(𝑞) in 𝑋
along paths.

More precisely, we choose a lift ̃︀𝑝 ∈ 𝑓−1(𝑝) of 𝑝. Let 𝛼 be a loop in 𝑌 based at 𝑝. Let ̃︀𝛼 be
the lift of 𝛼 with ̃︀𝛼(0) = ̃︀𝑝. We denote

̃︀𝛼(1) = ̃︀𝑝′,

which is also a lift of 𝑝.
Let 𝛼′ be another loop in 𝑌 based at 𝑝 and homotopic to 𝛼. Let ̃︀𝛼′ be its lift in 𝑋 with̃︀𝛼′(0) = ̃︀𝑝, then since any homotopy in 𝑌 can be lifted to a homotopy in 𝑋, we havẽ︀𝛼′(1) = ̃︀𝛼(1) = ̃︀𝑝′.
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Hence the following map is well defined

Φ : 𝜋1(𝑌, 𝑝) × 𝑓−1(𝑝) → 𝑓−1(𝑝)
([𝛼], ̃︀𝑝) ↦→ ̃︀𝛼(1)

where ̃︀𝛼 is a lift of a representative 𝛼 in [𝛼] with ̃︀𝛼(0) = ̃︀𝑝.
Proposition 4.3.4

The map Φ induces a right group action of 𝜋1(𝑌, 𝑝) on the set 𝑓−1(𝑝).

Proof. Let 𝛼 and 𝛽 be two loops in 𝑌 based at 𝑝. Their composition 𝛼 * 𝛽 is also a loop based at
𝑝. For any ̃︀𝑝 ∈ 𝑓−1(𝑝), consider a lift 𝛼 * 𝛽 of 𝛼 * 𝛽 with 𝛼 * 𝛽(0) = ̃︀𝑝. We have

𝑓 ∘ (𝛼 * 𝛽) = 𝛼 * 𝛽.

Hence for any 𝑡 ∈ [0, 1], we define paths in 𝑋:

̃︀𝛼(𝑡) = 𝛼 * 𝛽
(︂
𝑡

2

)︂
and ̃︀𝛽(𝑡) = 𝛼 * 𝛽

(︂
𝑡+ 1

2

)︂
Then for any 𝑡 ∈ [0, 1], we have

(𝑓 ∘ ̃︀𝛼) (𝑡) =
(︁
𝑓 ∘ (𝛼 * 𝛽)

)︁(︂ 𝑡
2

)︂
= (𝛼 * 𝛽)

(︂
𝑡

2

)︂
= 𝛼(𝑡),

and (︁
𝑓 ∘ ̃︀𝛽)︁ (𝑡) =

(︁
𝑓 ∘ (𝛼 * 𝛽)

)︁(︂ 𝑡+ 1
2

)︂
= (𝛼 * 𝛽)

(︂
𝑡+ 1

2

)︂
= 𝛽(𝑡).

From this we can conclude that ̃︀𝛼 is a lift of 𝛼 with ̃︀𝛼(0) = ̃︀𝑝 and ̃︀𝛽 is a lift of 𝛽 with̃︀𝛽(0) = ̃︀𝛼(1).

and moreover
𝛼 * 𝛽 ∼ ̃︀𝛼 * ̃︀𝛽,

Hence by the definition of Φ, we have

[𝛼 * 𝛽].̃︀𝑝 = [𝛽].([𝛼].̃︀𝑝)
(See Figure 4.3.2 for an illustration.)

As we have seen previously, since 𝑋 is path connected by assumption, for any ̃︀𝑝 and ̃︀𝑝′ two lifts
of 𝑝, there is a path ̃︀𝜂 connecting them whose composition with 𝑓 as a path in 𝑌 is a loop 𝜂 in 𝑌
based at 𝑝. Hence we have

[𝜂].̃︀𝑝 = ̃︀𝑝′.

Hence we have the following observation.

Proposition 4.3.5

The action of 𝜋1(𝑌, 𝑝) on 𝑓−1(𝑝) is transitive.

Now we consider the stabilizer of a lift ̃︀𝑝 in 𝑓−1(𝑝), and have the following proposition.
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𝛼

𝛽

𝑝

̃︀𝑝 = ̃︀𝑝0 ̃︀𝑝1 ̃︀𝑝2

̃︀𝑝3 ̃︀𝑝4 ̃︀𝑝5 ̃︀𝑝𝑛· · ·

𝑓

𝑌

𝑋

̃︀𝛼

̃︀𝛽′ ̃︀𝛽

Figure 4.3.2: [𝛼 * 𝛽].̃︀𝑝 = [𝛽].([𝛼].̃︀𝑝).
Proposition 4.3.6

For any ̃︀𝑝 ∈ 𝑓−1(𝑝), the stabilizer of ̃︀𝑝 satisfies

Stab(̃︀𝑝) = 𝑓*(𝜋1(𝑋, ̃︀𝑝)).
Proof. For any [𝛼] ∈ 𝑓*(𝜋1(𝑋, ̃︀𝑝)), let 𝛼 be a representative of [𝛼]. Let ̃︀𝛼 be the unique lift of 𝛼
with ̃︀𝛼(0) = ̃︀𝑝.

Since [𝛼] ∈ 𝑓*(𝜋1(𝑋, ̃︀𝑝)), there is an element [̃︀𝛽] ∈ 𝜋1(𝑋, ̃︀𝑝), such that

[𝑓 ∘ ̃︀𝛽] = 𝑓*([̃︀𝛽]) = [𝛼].

Hence 𝛽 = 𝑓 ∘ ̃︀𝛽 is homotopic to 𝛼 and 𝛽 is a representative of [𝛼]. Therefore, we have

[𝛼].̃︀𝑝 = ̃︀𝛽(1) = ̃︀𝑝.
This shows the inclusion of one direction

Stab(̃︀𝑝) ⊃ 𝑓*(𝜋1(𝑋, ̃︀𝑝)).
Let 𝛼 be a loop in 𝑌 based at 𝑝 such that

[𝛼] ∈ Stab(̃︀𝑝).
Let ̃︀𝛼 be the lift of 𝛼 in 𝑋 with ̃︀𝛼(0) = ̃︀𝑝. Since [𝛼] is in the stabilizer of ̃︀𝑝, we have

̃︀𝛼(1) = ̃︀𝑝.
Therefore ̃︀𝛼 is a loop in 𝑋 based at ̃︀𝑝, and we have

𝑓*([̃︀𝛼]) = [𝑓 ∘ ̃︀𝛼] = [𝛼].

Hence we have
[𝛼] ∈ 𝑓*(𝜋1(𝑋, ̃︀𝑝)).
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An immediate corollary is as follows, which is the relation between the orbit and the stabilizer
when studying a group action.

Corollary 4.3.7

Let ̃︀𝑝 ∈ 𝑓−1(𝑝) be a lift of 𝑝 ∈ 𝑌 . There is a bijection

𝜓 : 𝑓*(𝜋1(𝑋, ̃︀𝑝))∖𝜋1(𝑌, 𝑝) → 𝑓−1(𝑝)
[𝛼] ↦→ [𝛼].̃︀𝑝

where
[𝛼] := 𝑓*(𝜋1(𝑋, ̃︀𝑝))[𝛼]

is a right coset of 𝑓*(𝜋1(𝑋, ̃︀𝑝)) in 𝜋1(𝑌, 𝑝).

Notice that |𝑓−1(𝑦)| is also the index of the cover.

Corollary 4.3.8

Let ̃︀𝑝 ∈ 𝑓−1(𝑝) be a lift of 𝑝 ∈ 𝑌 . We have the following identity.

[𝜋1(𝑌, 𝑝) : 𝑓*(𝜋1(𝑋, ̃︀𝑝))] = deg 𝑓.

The map 𝑓 is homeomorphism if and only if |𝑓−1(𝑦)| = 1. Hence using Proposition 4.1.14, we
have the following corollary.

Corollary 4.3.9

The covering map
𝑓 : 𝑋 → 𝑌,

is an homeomorphism if and only if

𝑓* : 𝜋1(𝑋,𝑥) → 𝜋1(𝑌, 𝑦),

is an isomorphism.

Remark 4.3.10.
If a covering map is not homeomorphism, we cannot say that 𝜋1(𝑋,𝑥) and 𝜋1(𝑌, 𝑦) are not
isomorphic. A group can be isomorphic to its proper subgroup. For example, when we consider
the 2-cover of 𝑆1 to itself given by the map 𝑓 : 𝑧 ↦→ 𝑧2 on the complex plane, it is not isomorphism,
however, since both 𝑋 and 𝑌 are 𝑆1, hence they have the same fundamental group, which of
course are isomorphic. Here what we have is the following isomorphism: Z ∼= 2Z. Therefore what
the second condition really needs is the surjectivity of 𝑓* by considering Proposition 4.3.1

Now we consider a special case when 𝑌 is simply connected. In this case, we have 𝜋1(𝑌, 𝑝) is
trivial. Let 𝑋 be any cover of 𝑌 with covering map 𝑓 , and let ̃︀𝑝 ∈ 𝑓−1(𝑝) be a lift of 𝑝. The map

𝑓* : 𝜋1(𝑋, ̃︀𝑝) → 𝜋1(𝑌, 𝑝),

is an isomorphism. With the above corollary, we have the following conclusion.
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Corollary 4.3.11

Any covering map over a simply connected space is a homeomorphism.

Remark 4.3.12.
This means that there is no non-trivial cover of a simply connected space.

Covers of a space

Given a space 𝑌 , there are several questions that one could ask regarding the covers of 𝑌 .

1) How many different covers of 𝑌 are there?

2) Is it possible to have a degree 𝑛 cover of 𝑌 for any 𝑛 ∈ N*?

3) Is there any relation between different covers of 𝑌 ?

4) Is there a biggest cover of 𝑌 ?

We know that a covering map from a space 𝑋 to 𝑌 induces an embedding of fundamental group
of 𝑋 to that of 𝑌 .

1) Can we read the information of covering map from the information of the fundamental
groups?

2) Is it possible to have a cover for any subgroup of the fundamental group of 𝑌 ?

In order to be able to compare different covers of a same space, we first introduce the notation
of morphism between covers.

Definition 4.3.13

Let 𝑋1 and 𝑋2 be two covering of 𝑌 with covering maps:

𝑓1 : 𝑋1 → 𝑌 and 𝑓2 : 𝑋2 → 𝑌.

A continuous map
𝑔 : 𝑋1 → 𝑋2

is said to be a morphism between the two covers 𝑋1 and 𝑋2, if we have the following
commutative diagram

𝑋2

𝑓2

��

𝑋1
𝑓1

//

𝑔
==

𝑌

If moreover the morphism 𝑔 is a homeomorphism, we call it an isomorphism between
covers 𝑋1 and 𝑋2.

From the commutative diagram, it seems that the cover 𝑋1 is bigger than 𝑋2 in some sense. Let
us make this clear in the following way.
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Proposition 4.3.14

If 𝑌 is locally connected, then a surjective morphism 𝑔 between two covers of 𝑌 , if exists, is
a covering map.

Proof. We use the same notation. Since 𝑌 is locally connected, for any 𝑝 ∈ 𝑌 , it has an open
connected covering neighborhood 𝑉1 for the covering map 𝑓1 and am open connected covering
neighborhood of 𝑉2 for the covering map 𝑓2.

Let 𝑉 ⊂ 𝑉1 ∩ 𝑉2 be an open connected neighborhood of 𝑝. Then 𝑉 is a connected covering
neighborhood of 𝑝 for both 𝑓1 and 𝑓2. From the definition of a covering neighborhood, we have

𝑓−1
1 (𝑉 ) =

⨆︁
𝑖∈Ω

𝑈𝑖,

such that the restriction of 𝑓1 to each 𝑈𝑖 is a homeomorphism to 𝑉 , and

𝑓−1
2 (𝑉 ) =

⨆︁
𝑗∈Θ

𝑊𝑗 ,

such that the restriction of 𝑓2 to each 𝑊𝑗 is a homeomorphism to 𝑉 . Notice that all 𝑈𝑖’s and
𝑊𝑗 ’s are connected. Moreover for each 𝑖 ∈ Ω, 𝑈𝑖 is a connected component of 𝑓−1

1 (𝑉 ) and for
each 𝑗 ∈ Θ, 𝑊𝑗 is a connected component of 𝑓−1

2 (𝑉 ).
Let ̃︀𝑝 be a lift of 𝑝 in 𝑋1, then there is a unique neighborhood 𝑈𝑖 such that

̃︀𝑝 ∈ 𝑈𝑖.

We consider 𝑔(̃︀𝑝) ∈ 𝑋2, since 𝑓1 = 𝑓2 ∘ 𝑔, we have

𝑔(̃︀𝑝) ∈ 𝑓−1
2 (𝑝),

hence a lift of 𝑝 in 𝑋2. There is a unique 𝑊𝑗 , such that

𝑔(̃︀𝑝) ∈ 𝑊𝑗 .

Now we would like to show that the restriction of 𝑔 to 𝑈𝑖 is a homeomorphism to 𝑊𝑗 . Notice that

𝑓1|𝑈𝑖
= 𝑓2 ∘ 𝑔|𝑈𝑖

.

Since 𝑓1(𝑈𝑖) = 𝑉 , we have
𝑔(𝑈𝑖) ⊂ 𝑓−1

2 (𝑉 ).

Since 𝑈𝑖 is connected, so is 𝑔(𝑈𝑖), hence we have

𝑔(𝑈𝑖) ⊂ 𝑊𝑗 .

Therefore, we have
𝑓1|𝑈𝑖 = 𝑓2|𝑊𝑗 ∘ 𝑔|𝑈𝑖

which gives
𝑔|𝑈𝑖

= (𝑓2|𝑊𝑗
)−1 ∘ 𝑓1|𝑈𝑖

,

hence a homeomorphism. This shows that 𝑊𝑗 is a covering neighborhood of 𝑔(̃︀𝑝).
Since 𝑔 is surjective, it is a covering map.

Remark 4.3.15.
When we consider manifolds, the locally path connectedness and the locally connectedness are
satisfied naturally, since locally a manifold is the same as the Euclidean space.
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Another observation is the following one. If we consider the definition of a lift of a map, then
a morphism 𝑔 between

𝑓1 : 𝑋1 → 𝑌 and 𝑓2 : 𝑋2 → 𝑌,

is a lift of 𝑓1 with respect to the cover 𝑋2 of 𝑌 . Therefore, to see which pair of covers have a
morphism between them is equivalent to ask when a covering map can be lifted with respect
to the other covering map. Here is a general statement for topological spaces which are path
connected an locally path connected. This can be considered as a generalization of Proposition
4.2.4 and Proposition 4.2.6

Proposition 4.3.16

Let 𝑋 and 𝑌 be two topological space, and

𝑓 : 𝑋 → 𝑌

be a covering map. Let 𝑍 be a topological space which is path connected and locally path
connected. Let

𝑔 : 𝑍 → 𝑌

be a continuous map, then 𝑔 has a lift ̃︀𝑔 if and only if in 𝜋1(𝑋, 𝑝), we have

𝑔*(𝜋1(𝑍, 𝑢)) ⊂ 𝑓*(𝜋1(𝑋, ̃︀𝑝))
where 𝑝 ∈ 𝑌 , ̃︀𝑝 ∈ 𝑋 and 𝑢 ∈ 𝑍 such that 𝑔(𝑢) = 𝑓(̃︀𝑝) = 𝑝.

Proof. One direction is clear. If there exists a lift

̃︀𝑔 : 𝑍 → 𝑋

of 𝑔, then we have 𝑔 = 𝑓 ∘ ̃︀𝑔.
Let 𝑝 ∈ 𝑌 , ̃︀𝑝 ∈ 𝑋 and 𝑢 ∈ 𝑍 with ̃︀𝑔(𝑢) = ̃︀𝑝, and 𝑓(̃︀𝑝) = 𝑝. We have the following commutative

diagram
𝜋1(𝑋, ̃︀𝑝)

𝑓*

��

𝜋1(𝑍, 𝑢)

̃︀𝑔*

99

𝑔* // 𝜋1(𝑌, 𝑝)

The relation 𝑔* = 𝑓* ∘ ̃︀𝑔* yields

𝑔*(𝜋1(𝑍, 𝑢)) ⊂ 𝑓*(𝜋1(𝑋, ̃︀𝑝)).
Conversely, let 𝑝 ∈ 𝑌 , ̃︀𝑝 ∈ 𝑋 and 𝑢 ∈ 𝑍 with 𝑔(𝑢) = 𝑓(̃︀𝑝) = 𝑝 and assume that

𝑔*(𝜋1(𝑍, 𝑢)) ⊂ 𝑓*(𝜋1(𝑋, ̃︀𝑝)).
Now we would like to construct a lift ̃︀𝑔 of 𝑔. Using covering neighborhoods of points in 𝑌 , we can
locally lift 𝑔. The problem left is whether all these lifts can be chosen so that they can be glued
to one continuous map from 𝑍 to 𝑋.

The precise construction is as follows. Since 𝑔(𝑢) = 𝑓(̃︀𝑝), we set

̃︀𝑔(𝑢) = ̃︀𝑝.
Now for any point 𝑣 ∈ 𝑍, choose a path 𝜂 in 𝑍 with 𝜂(0) = 𝑢 and 𝜂(1) = 𝑣. Then 𝑔 ∘ 𝜂 is a path
in 𝑌 . We lift it to a path ̃︂𝑔 ∘ 𝜂 : [0, 1] → 𝑋,
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with ̃︂𝑔 ∘ 𝜂(0) = ̃︀𝑝. Then we define ̃︀𝑔(𝑣) = ̃︂𝑔 ∘ 𝜂(1).

Notice that this indeed gives a map

̃︀𝑔 : 𝑍 → 𝑋

𝑣 ↦→ ̃︂𝑔 ∘ 𝜂(1)
.

satisfies the condition 𝑔 = 𝑓 ∘ ̃︀𝑔.

We first show that for each 𝑣 ∈ 𝑍, the image ̃︀𝑔(𝑣) is independent of choice of 𝜂.
Let 𝑣 be a point in 𝑋. Let 𝜂 and 𝜂′ be two path with

𝜂(0) = 𝜂′(0) = 𝑢 and 𝜂(1) = 𝜂′(1) = 𝑣.

We consider the lifts ̃︂𝑔 ∘ 𝜂 and 𝑔 ∘ 𝜂′ of 𝑔 ∘ 𝜂 and 𝑔 ∘ 𝜂′ respectively with

̃︂𝑔 ∘ 𝜂(0) = 𝑔 ∘ 𝜂′(0) = ̃︀𝑝.
We would like to show that ̃︂𝑔 ∘ 𝜂(1) = 𝑔 ∘ 𝜂′(1).

Notice that 𝜂 * 𝜂′ is a loop in 𝑍 based at 𝑢, hence

(𝑔 ∘ 𝜂) * (𝑔 ∘ 𝜂′) = 𝑔 ∘ (𝜂 * 𝜂′)

is also a loop in 𝑌 based at 𝑝.
We consider the lift of 𝑔 ∘ (𝜂 * 𝜂′) which is a path in 𝑋. Since

[𝑔 ∘ (𝜂 * 𝜂′)] ∈ 𝑔*(𝜋1(𝑍, 𝑢)),

by the hypothesis, we have
[𝑔 ∘ (𝜂 * 𝜂′)] ∈ 𝑓*(𝜋1(𝑋, ̃︀𝑝)).

Hence there is a loop ̃︀𝛼 in 𝑋 based at ̃︀𝑝 with

𝑓*([̃︀𝛼]) = [𝑔 ∘ (𝜂 * 𝜂′)].

Denote 𝛼 = 𝑓 ∘ ̃︀𝛼, we have
𝛼 ∼ 𝑔 ∘ (𝜂 * 𝜂′).

let 𝐻 be a path homotopy between 𝛼 and 𝑔 ∘ (𝜂 * 𝜂′). Then we can lift it to a path homotopy ̃︀𝐻
between ̃︀𝛼 and ˜𝑔 ∘ (𝜂 * 𝜂′). Hence we have

̃︀𝛼 ∼ ̃︂𝑔 ∘ 𝜂 * 𝑔 ∘ 𝜂′,

where ̃︂𝑔 ∘ 𝜂(0) = ̃︀𝑝
and

𝑔 ∘ 𝜂′(0) = ̃︂𝑔 ∘ 𝜂(1).

Since ̃︀𝛼(1) = ̃︀𝛼(0),

we have
𝑔 ∘ 𝜂′(1) = ̃︂𝑔 ∘ 𝜂(0).

Hence the lift 𝑔 ∘ 𝜂′ of 𝑔 ∘ 𝜂′ with
𝑔 ∘ 𝜂′(0) = ̃︀𝑝
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satisfies the condition
𝑔 ∘ 𝜂′(1) = ̃︂𝑔 ∘ 𝜂(1).

With these discussion, we would like to show next that the map ̃︀𝑔 is continuous. Let ̃︀𝑉 be an
open subset of 𝑋. We consider its preimage ̃︀𝑔−1(̃︀𝑉 ). For any 𝑣 ∈ ̃︀𝑔−1(̃︀𝑉 ), we denote

𝑞 = 𝑔(𝑣).

Consider a covering neighborhood 𝑉1 of 𝑞 such that there is a neighborhood ̃︁𝑉1 of ̃︀𝑔(𝑣) = ̃︀𝑞
contained in ̃︀𝑉 homeomorphic to 𝑉1 through 𝑓 .

Since 𝑔 is continuous, we can take 𝑊 a path connected neighborhood of 𝑣 in 𝑍, such that

𝑔(𝑊 ) ⊂ 𝑉1.

Let 𝜂 be a path in 𝑍, such that 𝜂(0) = 𝑢 and 𝜂(1) = 𝑣. For any 𝑤 ∈ 𝑊 , there is a path 𝜁
with 𝜁(0) = 𝑣 and 𝜁(1) = 𝑤. Hence we have 𝜂 * 𝜁 is a path in 𝑍 from 𝑢 to 𝑤.

The map 𝑔 sends all above paths to paths in 𝑌 . In particular, we have 𝑔 ∘ 𝜂 a path from
𝑝 = 𝑔(𝑢) to 𝑞 = 𝑔(𝑣). Then the path

𝑔 ∘ (𝜂 * 𝜁) = (𝑔 ∘ 𝜂) * (𝑔 ∘ 𝜁)

is from 𝑞 to 𝑟 = 𝑔(𝑤).
We consider the lift of the above paths. Then ̃︂𝑔 ∘ 𝜂 is a path from ̃︀𝑝 to ̃︀𝑔(𝑣) = ̃︀𝑞 by the

definition of ̃︀𝑔. Let ̃︂𝑔 * 𝜁 be a lift of 𝑔 ∘ 𝜁 with̃︂𝑔 * 𝜁(0) = ̃︀𝑞 = ̃︂𝑔 ∘ 𝜂.

Hence
˜𝑔 ∘ (𝜂 * 𝜁) = ̃︂𝑔 ∘ 𝜂 * ̃︂𝑔 ∘ 𝜁.

Notice that
(𝑔 ∘ 𝜂)([0, 1]) ⊂ 𝑉1,

and
𝑓1 := 𝑓 |𝑉1 : 𝑉1 → ̃︁𝑉1

is a homeomorphism, we have ̃︂𝑔 ∘ 𝜁 = 𝑓−1
1 ∘ (𝑔 ∘ 𝜁).

Therefore, we have

̃︀𝑔(𝑤) = ˜𝑔 ∘ (𝜂 * 𝜁)(1) = ̃︂𝑔 ∘ 𝜁(1) = (𝑓−1
1 ∘ (𝑔 ∘ 𝜁))(1) ∈ ̃︁𝑉1 ⊂ 𝑉.

Hence
𝑊 ⊂ ̃︀𝑔−1(𝑉 ),

and ̃︀𝑔−1(𝑉 ) is a neighborhood of 𝑣. Since 𝑣 can be chosen arbitrarily, we have ̃︀𝑔−1(𝑉 ) open.
Therefore ̃︀𝑔 is continuous.

Regarding the uniqueness of a lift of a continuous map, we have the following statement.

Proposition 4.3.17

If 𝑋 and 𝑌 are two topological space with

𝑓 : 𝑋 → 𝑌,

a covering map. Assume that 𝑍 is a topological space which is path connected and locally
path connected and

𝑔 : 𝑍 → 𝑌

is a continuous map.
If ̃︀𝑔1 and ̃︀𝑔2 are two lifts of 𝑔 with ̃︀𝑔1(𝑢) = ̃︀𝑔2(𝑢) for some 𝑢 ∈ 𝑍, then ̃︀𝑔1 = ̃︀𝑔2.
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Proof. Notice that the construction of lifts of 𝑔 based on lifting paths in 𝑌 to paths in 𝑋. Hence
the uniqueness result of lifts of 𝑔 is a consequence of the uniqueness result of lifts of paths in
𝑌 .

Remark 4.3.18.
The proofs of the above two proposition give a different way to describe the image of 𝑍 using
points and paths in 𝑌 . This of course works for 𝑍 = 𝑋, when we assume that 𝑋 is path connected
and locally path connected (so is 𝑌 as an immediate consequence of the fact that the covering
map is in particular continuous).

In the next part, this will be the key idea in the construction of covering spaces, in particular
the universal cover, which shows that they do exist.

Universal cover

We consider topological spaces which are path connected and locally path connected in this
section. We will show that for any such space, there is a largest cover which is unique up to
morphism between covers.

For technical reason, other than path connected and locally path connected, we also assume
that the space will be studied is semilocally simply connected.

Definition 4.3.19

Let 𝑋 be a topological space which is path connected and locally path connected. We say
that 𝑋 is semilocally simply connected if for any 𝑝 ∈ 𝑋, there is a path connected
neighborhood 𝑈 of 𝑝, such that the homomorphism between the fundamental groups

𝜋1(𝑈, 𝑝) → 𝜋1(𝑋, 𝑝)

induced by the inclusion of 𝑈 in 𝑋 is trivial (all elements are sent to the identity of 𝜋1(𝑋, 𝑝)).

Example 4.3.20.
The unit disk 𝐷 in C is a semilocally simply connected. Notice that 𝐷 is contractible, and any
point in 𝐷 is a strong deformation retraction of 𝐷. Hence given any neighborhood 𝑈 of any
𝑝 ∈ 𝐷, any loop in 𝑈 based at 𝑝 is homotopic to the constant loop based at 𝑝 through a homotopy
in 𝐷.

For example, let 𝑈 be the annulus defined by

𝑈 = {𝑧 ∈ C | 0.2 < |𝑧| < 0.5}.

Although 𝜋1(𝑈) ∼= Z, and a loop in 𝑈 may not be homotopically trivial in 𝑈 , it is homotopically
trivial in 𝐷.

In the rest part of this section, let 𝑋 denote a topological space which is path connected,
locally path connected and semilocally simply connected.

Let 𝑝 ∈ 𝑋 be a point. We consider the following abstract set̃︀𝑋 := {[𝛾] | 𝛾 is a path in 𝑋 with 𝛾(0) = 𝑝}.

Remark 4.3.21.
Here the homotopy is path homotopy. Inspired by the proof of Proposition 4.3.16, by using [𝛾],
we get not only a point 𝛾(1) in 𝑋, but also the information about how we go to 𝛾(1) from 𝑝.
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Figure 4.3.3: A loop in 𝑈 can be deformed to a constant path in 𝐷 through the linear homotopy
in 𝐷.

We can check the following example to get a more clear idea what this construction is about.
We consider the covering map

𝑓 : R × [0, 1] → 𝑆1 × [0, 1],
(𝑠, 𝑡) ↦→ (𝑒2𝜋𝑖𝑠, 𝑡).

As shown in Figure 4.3.4, let 𝑝 be a base point in 𝑆1 × [0, 1] and 𝑞 be another point of it. Let 𝛾

𝑓

𝑝

𝑞

𝛾

𝛾′

̃︀𝑝 = ̃︀𝑝0 ̃︀𝑝1 ̃︀𝑝2

̃︀𝑞 = ̃︀𝑞0 ̃︀𝑞1 ̃︀𝑞2̃︀𝛾
̃︀𝛾′

Figure 4.3.4: A pair of non-homotopic paths connecting 𝑝 to 𝑞 give different lifts of 𝑞.

and 𝛾′ be two paths going from 𝑝 to 𝑞, such that [𝛾′ * 𝛾] is a generator of 𝜋1(𝑆1 × [0, 1], 𝑝). Then
by considering their lifts in R × [0, 1] starting at a same lift ̃︀𝑝 of 𝑝, they end at different lifts of 𝑞.
Or alternatively, we may consider ̃︀𝑞0 and ̃︀𝑞1 associated to [𝛾] and [𝛾′] respectively.

Now we would like to equip it with a topology. We first consider the topology 𝒯 on 𝑋.
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Proposition 4.3.22

The topology 𝒯 has a basis ℬ where each 𝑈 ∈ ℬ is path connected and the homomorphism
of fundamental groups based at 𝑝 ∈ 𝑈

𝜋1(𝑈, 𝑝) → 𝜋1(𝑋, 𝑝)

induced by the inclusion of 𝑈 in 𝑋 is trivial.

Proof. Since 𝑋 is locally path connected, each point 𝑝 ∈ 𝑋 has a open neighborhood basis 𝒞𝑝
where every open set in 𝒞𝑝 is path connected.

On the other hand, since 𝑋 is semilocally simply connected, there is a path connected
neighborhood 𝑈𝑝 such that the homomorphism

𝜋1(𝑈𝑝, 𝑝) → 𝜋1(𝑋, 𝑝)

induced by the inclusion of 𝑈𝑝 in 𝑋 is trivial.
For any open neighborhood 𝑊 of 𝑝, we consider 𝑊 ∩ 𝑈 which is again a neighborhood of 𝑝.

There is an open set 𝑉 ∈ 𝒞𝑝 such that

𝑉 ⊂ 𝑈𝑝 ∩𝑊.

Consider the inclusions
𝑉 → 𝑈𝑝 → 𝑋,

we have
𝜋1(𝑉, 𝑝) → 𝜋1(𝑈𝑝, 𝑝) → 𝜋1(𝑋, 𝑝)

a trivial homomorphism.
Hence 𝑝 has a neighborhood basis ℬ𝑝 where each 𝑉 ∈ ℬ𝑝 is open and path connected, and the

homomorphism
𝜋1(𝑉, 𝑝) → 𝜋1(𝑋, 𝑝)

induced by the inclusion of 𝑉 to 𝑋 is trivial.
Hence 𝒯 has a basis

ℬ :=
⋃︁
𝑝∈𝑋

ℬ𝑝

with the desired property.

In the following, we will use the basis ℬ of 𝒯 constructed in the proof of Proposition 4.3.22 to
construct a topology on ̃︀𝑋.

For any 𝑝 ∈ 𝑋, let ℬ𝑞 be a neighborhood basis constructed in the proof of Proposition 4.3.22.
For any 𝑉 ∈ ℬ𝑞, and for any [𝛾] ∈ ̃︀𝑋 with 𝛾(1) = 𝑞, we define

𝑈([𝛾], 𝑉 ) := {[𝛾 * 𝜂] | 𝜂 is a path in 𝑉 with 𝜂(0) = 𝛾(1)}.

Notice that [𝛾 * 𝜂] is only depends on 𝜂(1). If 𝜂′ is another path in 𝑉 such that 𝜂′(0) = 𝑞 and
𝜂(1) = 𝜂′(1), then 𝜂 * 𝜂′ is a loop in 𝑉 based at 𝑞. Since

𝜋1(𝑉, 𝑞) → 𝜋1(𝑋, 𝑞)

is trivial, we have
𝜂 * 𝜂′ ∼ 𝑐𝑞,

in 𝑋. Hence we have
𝜂 ∼ 𝑐𝑞 * 𝜂 ∼ 𝜂′ * (𝜂 * 𝜂) ∼ 𝜂′ * 𝑐𝜂(1) ∼ 𝜂′.
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𝑋

𝑝 𝛾

𝛾′

𝛾 * 𝜂

𝛾′ * 𝜂

𝑞

𝜂

𝜂′

𝜂(1)

̃︀𝑋
[𝑐𝑝]

[𝛾]

[𝛾′]

[𝛾 * 𝜂] = [𝛾 * 𝜂′]

[𝛾′ * 𝜂] = [𝛾′ * 𝜂′]
𝑉

𝑈([𝛾], 𝑉 )

𝑈([𝛾′], 𝑉 )

Figure 4.3.5: A pair of non-homotopic paths connecting 𝑝 to 𝑞 give different lifts of 𝑞.

from which we obtain
[𝛾 * 𝜂] = [𝛾 * 𝜂′].

Let ̃︀𝒯 be the topology generated by

̃︀ℬ := {𝑈([𝛾], 𝑉 ) | [𝛾] ∈ ̃︀𝑋, 𝑉 ∈ ℬ𝛾(1)}.

Proposition 4.3.23

The subbasis ̃︀ℬ is a basis of ̃︀𝒯 .

Proof. Let 𝑈([𝛾], 𝑉 ) and 𝑈([𝛾′], 𝑉 ′) be two elements of ̃︀ℬ, such that

𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ′) ̸= ∅.

Let [𝛼] ∈ 𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ′). By definition, there are 𝜂 and 𝜂′ paths in 𝑉 and 𝑉 ′ respectively
with 𝜂(0) = 𝛾(1) and 𝜂′(0) = 𝛾′(1), such that

𝛼 ∼ 𝛾 * 𝜂 ∼ 𝛾′ * 𝜂′.

Since 𝑉 and 𝑉 ′ are open in 𝑋, the intersection 𝑉 ∩ 𝑉 ′ is also open in 𝑋 with

𝛼(1) ∈ 𝑉 ∩ 𝑉 ′.

Hence there is an open path connected set 𝑊 in ℬ𝛼(1), such that

𝑊 ⊂ 𝑉 ∩ 𝑉 ′.

Now we would like to show that

𝑈([𝛼],𝑊 ) ⊂ 𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ′).

For each [𝛽] ∈ 𝑈([𝛼],𝑊 ), there is a path 𝜁 in 𝑊 with 𝜁(0) = 𝛼(1), such that

𝛽 ∼ 𝛼 * 𝜁.
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𝑋

𝑝

𝛾

𝛾′

𝛼

𝜂

𝜂′

𝜁

𝑉

𝑉 ′

𝑊

̃︀𝑋
[𝑐𝑝]

[𝛾]

[𝛾′]

[𝛼] = [𝛾 * 𝜂] = [𝛾′ * 𝜂′] [𝛼 * 𝜁] = [𝛾 * 𝜂 * 𝜁] = [𝛾′ * 𝜂′ * 𝜁]

𝑈([𝛾], 𝑉 )

𝑈([𝛾′], 𝑉 ′)

𝑈([𝛼],𝑊 )

Figure 4.3.6: A pair of non-homotopic paths connecting 𝑝 to 𝑞 give different lifts of 𝑞.

Hence we have
𝛽 ∼ 𝛼 * 𝜁 ∼ 𝛾 * (𝜂 * 𝜁) ∼ 𝛾′ * (𝜂′ * 𝜁).

Notice that 𝜂 * 𝜁 is a path in 𝑉 with

(𝜂 * 𝜁)(0) = 𝜂(0) = 𝛾(1),

hence we have
[𝛽] = [𝛾 * (𝜂 * 𝜁)] ∈ 𝑈([𝛾], 𝑉 ).

Similarly, we have
[𝛽] = [𝛾′ * (𝜂′ * 𝜁)] ∈ 𝑈([𝛾′], 𝑉 ′).

Hence
[𝛽] ∈ 𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ′).

This shows that
𝑈([𝛼],𝑊 ) ⊂ 𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ′).

We conclude that ̃︀ℬ is a basis of ̃︀𝒯 .

Theorem 4.3.24

The topological space ( ̃︀𝑋, ̃︀𝒯 ) is a cover of 𝑋 with trivial fundamental group.

Proof. Notice that there is a natural way to define a map from ̃︀𝑋 to 𝑋:

𝑓 : ̃︀𝑋 → 𝑋

[𝛾] ↦→ 𝛾(1)
.

The surjectivity is given by the fact that 𝑋 is path connected.
We now try to show that it is a covering map. Consider the restriction 𝑓1 of 𝑓 to each

𝑈([𝛾], 𝑉 ). We would like to show that the following two facts

(i) The map 𝑓1 is a homeomorphism.

(ii) For any 𝛾′ with 𝛾(1) = 𝛾′(1), if 𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ) ̸= ∅, then we have [𝛾] = [𝛾′].
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With these two facts, for any 𝑞, we consider the 𝑉 in ℬ𝑞, then we have

𝑓−1(𝑉 ) =
⨆︁

[𝛾] with 𝛾(1) = 𝑞

𝑈([𝛾], 𝑉 ).

Hence 𝑓 is a covering map.
We first show that 𝑓1 to 𝑈([𝛾], 𝑉 ) is a homeomorphism. By the definition of 𝑓1, it is surjective

on 𝑈([𝛾], 𝑉 ). Now let [𝛼] and [𝛽] be two points in 𝑈([𝛾], 𝑉 ). Hence there are 𝜂 and 𝜁 paths in 𝑉
such that

𝛼 ∼ 𝛾 * 𝜂 and 𝛽 ∼ 𝛾 * 𝜁.

Assume that
𝛼(1) = 𝑓1([𝛼]) = 𝑓1([𝛽]) = 𝛽(1).

Then we have that 𝜂(1) = 𝜁(1), hence 𝜂 * 𝜁 is a loop based at 𝛾(1). Since the homomorphism

𝜋1(𝑉, 𝛾(1)) → 𝜋1(𝑋, 𝛾(1))

is trivial, we have
𝜂 ∼ 𝜁,

hence
[𝛼] = [𝛾 * 𝜂] = [𝛾 * 𝜁] = [𝛽].

This shows that 𝑓1 on 𝑈([𝛾], 𝑉 ) is bijective.

Now we show that 𝑓1 is continuous. For any 𝑊 ⊂ 𝑉 open set, for any [𝛼] ∈ 𝑓−1
1 (𝑊 ), hence

there is a path 𝜂 in 𝑉 with 𝜂(0) = 𝛾(1), such that

𝛼 ∼ 𝛾 * 𝜂.

Consider a neighborhood 𝑊 ′ ∈ ℬ𝛼(1) with

𝑊 ′ ⊂ 𝑊.

Given any path 𝜁 in 𝑊 ′ with 𝜁(0) = 𝛼(1), we have

𝛼 * 𝜁 ∼ 𝛾 * (𝜂 * 𝜁).

Hence we have
𝑈([𝛼],𝑊 ′) ⊂ 𝑈([𝛾], 𝑉 ).

Since 𝑓1 is bijective on 𝑈([𝛾], 𝑉 ), we have

𝑈([𝛼],𝑊 ′) = 𝑓−1(𝑊 ′) ⊂ 𝑓−1(𝑊 ).

Hence 𝑓−1(𝑊 ) is a neighborhood of [𝛼] for any [𝛼] ∈ 𝑓−1(𝑊 ) and 𝑓−1(𝑊 ) is open. Hence 𝑓 is
continuous.

On the other hand, 𝑈([𝛾], 𝑉 ) has a basis

̃︀ℬ𝑉 = {𝑈([𝛼],𝑊 ) | [𝛼] ∈ 𝑈([𝛾], 𝑉 ),𝑊 ⊂ 𝑉,𝑊 ∈ ℬ𝛼(1)}.

By the definition of 𝑓1, for any 𝑈([𝛼],𝑊 ) ∈ ̃︀ℬ𝑉 , we have

𝑓(𝑈([𝛼],𝑊 )) = 𝑊

which is open in 𝑉 . Hence 𝑓−1 is continuous. Therefore 𝑓1 is a homeomorphism.

Now we show the second fact. Let 𝛾′ be a path in 𝑋 with 𝛾′(0) = 𝑝 and 𝛾′(1) = 𝛾(1). Assume
that

𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ) ̸= ∅,
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then there is
[𝛼] ∈ 𝑈([𝛾], 𝑉 ) ∩ 𝑈([𝛾′], 𝑉 ).

Hence there are path 𝜂 and 𝜂′ in 𝑉 such that

𝛼 ∼ 𝛾 * 𝜂 ∼ 𝛾′ * 𝜂′.

Notice that 𝜂(1) = 𝜂′(1), hence 𝜂 * 𝜂′ is a loop in 𝑉 based at 𝛾(1). By hypothesis on 𝑉 , we have
the homomorphism

𝜋1(𝑉, 𝛾(1)) → 𝜋1(𝑋, 𝛾(1))
is trivial. Hence 𝜂 * 𝜂′ is homotopic to 𝑐𝛾(1) in 𝑋. Therefore, we have

𝛾 ∼ 𝛾 * 𝑐𝛾(1) ∼ 𝛾 * (𝜂 * 𝜂′) ∼ 𝛾′ * (𝜂′ * 𝜂′) ∼ 𝛾′ * 𝑐𝛾(1) ∼ 𝛾′.

Hence
𝑈([𝛾], 𝑉 ) = 𝑈([𝛾′], 𝑉 ).

We now show that the space ̃︀𝑋 is path connected. Let 𝛾 be a path in 𝑋 with 𝛾(0) = 𝑝. For
any 𝑡 ∈ [0, 1], we define

𝛾𝑡 : [0, 1] → 𝑋

𝑠 ↦→ 𝛾(𝑡𝑠)
Then we can define the map ̃︀𝛾 : [0, 1] → ̃︀𝑋

𝑡 ↦→ [𝛾𝑡]
.

A direct verification shows that the map ̃︀𝛾 is the lift of 𝛾 with ̃︀𝛾(0) = [𝑐𝑝], hence a path connecting
[𝑐𝑝] with [𝛾].

Therefore, the space ̃︀𝑋 is path connected.
Now let ̃︀𝛾 be a loop in ̃︀𝑋 based at 𝑐𝑝:

̃︀𝛾 : [0, 1] → ̃︀𝑋
𝑡 ↦→ [𝛾𝑡]

,

where 𝛾 = 𝑓 ∘ ̃︀𝛾 is a path in 𝑋.
Notice that ̃︀𝛾 is a loop, hence we have

[𝑐𝑝] = [𝛾0] = [𝛾1] = [𝛾],

or equivalently
𝛾 ∼ 𝑐𝑝.

Let 𝐻 be a homotopy in 𝑋 with 𝐻0 = 𝛾 and 𝐻1 = 𝑐𝑝, then its lift ̃︀𝐻 is a homotopy in ̃︀𝑋 betweeñ︀𝛾 and ̃︀𝑐𝑝 = 𝑐[𝑐𝑝], hence
[̃︀𝛾] = [𝑐[𝑐𝑝]].

Therefore, we have
𝜋1( ̃︀𝑋, [𝑐𝑝]) = [𝑐[𝑐𝑝]],

and ̃︀𝑋 is simply connected.

Definition 4.3.25

A path connected cover 𝑍 of 𝑋 with covering map 𝑔 is called a universal cover if it satisfies
the following universal property: for any path connected cover 𝑋1 of 𝑋 with covering map
𝑓 , the map 𝑓 has a lift ̃︀𝑔 : 𝑍 → 𝑋1,

such that 𝑔 = 𝑓 ∘ ̃︀𝑔.
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Remark 4.3.26.
We have the following commutative diagram:

𝑋1

𝑓

��

𝑍
𝑔
//

̃︀𝑔 >>

𝑋

By the proposition 4.3.16, the cover ̃︀𝑋 of 𝑋 constructed above is a universal cover, since its
fundamental group is trivial.

Example 4.3.27 (𝑆1).
The universal cover of 𝑆1 can be identified with R. For each path 𝛼 in 𝑆1 starting at 1, there is a
natural number 𝑙 ∈ R, such that we can find a standard path

𝛾𝑙 : [0, 1] → 𝑆1,

𝑡 ↦→ 𝑒2𝑙𝜋𝑖𝑡,

homotopic to 𝛼. Here 2𝑙𝜋 can be considered as the total angle passed when we go from 1 to 𝑒2𝑙𝜋𝑖

along 𝛼. Then the identification between ̃︁𝑆1 with R can be given as follows (See Figure 4.3.7 for
an illustration):

ℎ : ̃︁𝑆1 → R,
𝛾𝑙 ↦→ 𝑙.

𝑆1 ̃︁𝑆1

Figure 4.3.7: The universal cover of 𝑆1.

Example 4.3.28 (Figure-8).
The universal cover of the figure-8 graph can be identified with the 4-valence regular infinite tree
(See Figure 4.3.8 for an illustration).

Example 4.3.29 (Torus).
The universal cover of the torus 𝑇 can be identified with the plane R2 (See Figure 4.3.9 for an
illustration).

Remark 4.3.30.
The above construction of universal cover does not work for Hawaii earring (See Example 2.3.4).
Notice that it is not semilocally simply connected.

Classification of covers

Let 𝑋 be a topological space which is path connected, locally path connected and semilocally
simply connected. In this part, we would like to give a classification of all path connected covers
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𝑆1 ∨ 𝑆1

𝑆1 ∨ 𝑆1

Figure 4.3.8: The universal cover of 𝑆1 ∨ 𝑆1.

𝑇

̃︀𝑇
Figure 4.3.9: The universal cover of 𝑇 .

of 𝑋.
Let 𝑝 ∈ 𝑋 be a base point. We first show the existence result for every subgroup of 𝜋1(𝑋, 𝑝).

Proposition 4.3.31

For any subgroup 𝐻 of 𝜋1(𝑋, 𝑝), there is a path connected cover 𝑋𝐻 of 𝑋 with covering
map

𝑓𝐻 : 𝑋𝐻 → 𝑋,

such that (𝑓𝐻)*(𝜋1(𝑋𝐻 , 𝑝𝐻)) = 𝐻 where 𝑝𝐻 is a lift of 𝑝 in 𝑋𝐻 .

Proof. The proof is constructive. We consider the universal cover constructed previously:

̃︀𝑋 = {[𝛾] | 𝛾 is a path in 𝑋 with 𝛾(0) = 𝑝}.
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We then define the following equivalent relation on ̃︀𝑋: for any [𝛾] and [𝛾′] in ̃︀𝑋
[𝛾]ℛ[𝛾′] ⇔ 𝛾(1) = 𝛾′(1) and [𝛾 * 𝛾′] ∈ 𝐻.

The reflexivity is trivial, since
𝛾(1) = 𝛾(1)

and
[𝛾 * 𝛾] = [𝑐𝑝] ∈ 𝐻.

If [𝛾] and [𝛾′] two points in ̃︀𝑋 satisfy [𝛾]ℛ[𝛾′], then

𝛾′(1) = 𝛾(1)

and
[𝛾′ * 𝛾] = [𝛾 * 𝛾′]−1 ∈ 𝐻.

Hence we have 𝛾′ℛ𝛾.
If [𝛾], [𝛾′] and [𝛾′′] three points in ̃︀𝑋 satisfy

[𝛾]ℛ[𝛾′] and [𝛾′]ℛ[𝛾′′],

then we have
𝛾(1) = 𝛾′(1) = 𝛾′′(1)

and
[𝛾 * 𝛾′′] = [𝛾 * 𝛾′] * [𝛾′ * 𝛾′′] ∈ 𝐻.

Hence ℛ is an equivalence relation on 𝑋.
We then define

𝑋𝐻 := ̃︀𝑋/ℛ.
The path connectedness of 𝑋𝐻 comes from the fact that ̃︀𝑋 is path connected.

Now we would like to show that 𝑋𝐻 is a cover of 𝑋. We consider the map

𝑓𝐻 : 𝑋𝐻 → 𝑋̂︁[𝛾] ↦→ 𝛾(1)
.

It is well defined due to the fact that for any [𝛾]ℛ[𝛾′], we have

𝛾(1) = 𝛾′(1).

Hence the image of ̂︁[𝛾] is independent of choice of 𝛾 in this ℛ-equivalence class ̂︁[𝛾].
Consider any pair [𝛾], [𝛾′] ∈ 𝑋 with [𝛾]ℛ[𝛾′]. Let 𝜂 be a path in 𝑉 ∈ ℬ𝛾(1) with 𝜂(0) = 𝛾(1).

Then we have
(𝛾 * 𝜂)(1) = (𝛾′ * 𝜂)(1)

and
[(𝛾 * 𝜂) * (𝛾′ * 𝜂)] = [𝛾 * 𝛾′] ∈ 𝐻.

Hence
[𝛾 * 𝜂]ℛ[𝛾′ * 𝜂].

We denote ̂︀𝑈([𝛾], 𝑉 ) = pr(̂︀𝑈([𝛾], 𝑉 )).

The above discussion implies that

̂︀𝑈([𝛾], 𝑉 ) = ̂︀𝑈([𝛾′], 𝑉 ).
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Denote by pr the projection from 𝑋 to 𝑋𝐻 , we have

pr−1(̂︀𝑈([𝛾], 𝑉 )) =
⋃︁

[𝛾′] with [𝛾′]ℛ[𝛾]

𝑈([𝛾′], 𝑉 ).

Notice that the above discussion shows one inclusion⋃︁
[𝛾′] with [𝛾′]ℛ[𝛾]

𝑈([𝛾′], 𝑉 ) ⊂ pr−1(̂︀𝑈([𝛾], 𝑉 )).

To see the other inclusion, let [𝛼] ∈ ̃︀𝑋 be in pr−1(̂︀𝑈([𝛾], 𝑉 )), there is [𝛽] ∈ 𝑈([𝛾], 𝑉 ), such that

[𝛽]ℛ[𝛼],

we have [𝛽 * 𝛼] ∈ 𝐻. Notice that there is 𝜂 path in 𝑉 with 𝜂(0) = 𝛾(1) such that

[𝛽] = [𝛾 * 𝜂].

This implies that
[𝛽 * 𝜂]ℛ[𝛾].

Let 𝛾′ = 𝛼 * 𝜂, we have [𝛾′]ℛ[𝛾] and

[𝛼] ∈ 𝑈([𝛾′], 𝑉 )

Hence we have the other inclusion

pr−1(̂︀𝑈([𝛾], 𝑉 )) ⊂
⋃︁

[𝛾′] with [𝛾′]ℛ[𝛾]

𝑈([𝛾′], 𝑉 ).

Hence ̂︀𝑈([𝛾], 𝑉 ) is open.
Next denote pr1 a restriction on 𝑈([𝛾], 𝑉 ), and we would like to show that pr1 is a homeo-

morphism.
The map pr1 is surjective by its definition. On the other hand, for each [𝛼] and [𝛽] in 𝑈([𝛾], 𝑉 ),

there is 𝜂 and 𝜁 paths in 𝑉 with 𝜂(0) = 𝜁(0) = 𝛾(1) such that

𝛼 ∼ 𝛾 * 𝜂, 𝛽 ∼ 𝛾 * 𝜁,

If [𝛼]ℛ[𝛽], then we have
𝜂(1) = 𝛼(1) = 𝛽(1) = 𝜁(1),

hence 𝜂 * 𝜁 is a loop in 𝑉 based at 𝛾(1). Since 𝑉 ∈ ℬ𝑞, we have

[𝜂 * 𝜁] = [𝑐𝑞],

hence 𝜂 ∼ 𝜁, and moreover
[𝛼] = [𝛾 * 𝜂] = [𝛾 * 𝜁] = [𝛽].

Hence pr1 is injective. Notice that for any 𝑞′ ∈ 𝑉 , and any 𝑊 ∈ ℬ𝑞′ such that 𝑊 ⊂ 𝑉 , we have

pr1(𝑈([𝛾 * 𝜂],𝑊 )) = ̂︀𝑈([𝛾 * 𝜂],𝑊 ), pr−1
1 (̂︀𝑈([𝛾 * 𝜂],𝑊 )) = 𝑈([𝛾 * 𝜂],𝑊 ).

Hence pr1 is a homeomorphism between 𝑈([𝛾 * 𝜂],𝑊 ) and ̂︀𝑈([𝛾 * 𝜂],𝑊 ).

Now we would like to show that the map 𝑓𝐻 is a covering map. The continuity comes from
the fact that for any 𝑞 ∈ 𝑋 and for any 𝑉 ∈ ℬ𝑞, we have

𝑓−1
𝐻 (𝑉 ) =

⋃︁
[𝛾] with 𝛾(1)=𝑞

̂︀𝑈([𝛾], 𝑉 ).
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Now we would like to show that for any 𝛾 and 𝛾′ path in 𝑋 with 𝛾(0) = 𝛾′(0) = 𝑝 and
𝛾(1) = 𝛾′(1) = 𝑞, let 𝑉 ∈ ℬ𝑞, if

̂︀𝑈([𝛾], 𝑉 ) ∩ ̂︀𝑈([𝛾], 𝑉 ) ̸= ∅,

then ̂︀𝑈([𝛾], 𝑉 ) = ̂︀𝑈([𝛾], 𝑉 ).

Let ̂︁[𝛼] ∈ ̂︀𝑈([𝛾], 𝑉 ) ∩ ̂︀𝑈([𝛾], 𝑉 ), then there are paths 𝜂 and 𝜂′ in 𝑉 with 𝜂(0) = 𝜁(0) = 𝛾(1) and

[𝛼]ℛ[𝛾 * 𝜂], [𝛼]ℛ[𝛾′ * 𝜂′].

Hence
𝜂(1) = 𝜂′(1).

Since 𝑉 ∈ ℬ𝑞, we have 𝜂 * 𝜂′ a loop based at 𝑞 and

[𝜂 * 𝜂′] = [𝑐𝑞].

Consider the following relation

[𝛾 * 𝛾′] = [𝛾 * 𝑐𝑞 * 𝛾′] = [𝛾 * (𝜂 * 𝜂′)𝛾′] = [𝛾 * 𝜂] * [𝜂′ * 𝛾′] = ([𝛾 * 𝜂] * [𝛼]) * ([𝛼] * [𝜂′ * 𝛾′]) ∈ 𝐻.

Hence we have
[𝛾]ℛ[𝛾′],

and ̂︀𝑈([𝛾], 𝑉 ) = ̂︀𝑈([𝛾], 𝑉 ).

As a conclusion, we show that the map 𝑓𝐻 is a covering map.

The last thing to show is that

(𝑓𝐻)*(𝜋1(𝑋𝐻), [𝑐𝑝]) = 𝐻.

Let 𝛾 be a loop based at 𝑝. Then we consider its lift 𝛾𝐻 in 𝑋𝐻 with 𝛾𝐻(0) = ̂︂[𝑐𝑝]. If 𝛾𝐻 is a loop,
we have

𝛾𝐻(1) = ̂︁[𝛾] = ̂︂[𝑐𝑝].
Therefore we have

[𝛾]ℛ[𝑐𝑝],

and this is equivalent to
[𝛾] ∈ 𝐻

by considering the definition of ℛ.

Remark 4.3.32.
In a path connected space, identifying points may creating loops which are homotopically non
trivial (See).

Hence for any subgroup 𝐻 of 𝜋1(𝑋, 𝑝), there is a path connected cover of 𝑋 associated to 𝐻.
Next we would like to show that such a cover is unique up to isomorphism between covers. More
precisely, we show
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𝑞 𝑞′

𝑝 𝑝

𝑞 ∼ 𝑞′

Figure 4.3.10: Identifying points creates loops.

Proposition 4.3.33

Let 𝑋1 and 𝑋2 be two path connected covers of 𝑋 with covering maps 𝑓1 and 𝑓2 respectively.
Let 𝑢1 and 𝑢2 be lifts of 𝑝 ∈ 𝑋 in 𝑋1 and 𝑋2 respectively. Then 𝑋1 and 𝑋2 are isomorphic
as covers of 𝑋 if and only if

(𝑓1)*(𝜋1(𝑋1, 𝑢1)) = (𝑓2)*(𝜋1(𝑋2, 𝑢2)).

Proof. If two covers 𝑋1 and 𝑋2 are isomorphic to each other, then we have a homeomorphism

𝑔 : 𝑋1 → 𝑋2

such that the following diagram commutes

𝑋2

𝑓2

��

𝑋1
𝑓1

//

𝑔
==

𝑋

Let 𝑢1 and 𝑢2 be lifts of 𝑝 in 𝑋1 and 𝑋2 respectively, such that 𝑔(𝑢1) = 𝑢2, then since 𝑔 is a
homeomorphism, we have

𝑔*(𝜋1(𝑋1, 𝑢1)) = 𝜋1(𝑋2, 𝑢2).

Hence we have

(𝑓1)*(𝜋1(𝑋1, 𝑢1)) = ((𝑓2)* ∘ 𝑔*)(𝜋1(𝑋1, 𝑢1)) = (𝑓2)*(𝜋1(𝑋2, 𝑢2)).

Conversely, assume that

(𝑓1)*(𝜋1(𝑋1, 𝑢1)) = (𝑓2)*(𝜋1(𝑋2, 𝑢2)).

Using Proposition 4.3.16, there are maps

𝑔1 : 𝑋1 → 𝑋2 and 𝑔2 : 𝑋2 → 𝑋1

which are lift of 𝑓1 and lift of 𝑓2 respectively with 𝑔1(𝑢1) = 𝑢2 and 𝑔2(𝑢2) = 𝑢1. We have the
following commutative diagram:

𝑋2

𝑓2

��

𝑔2

!!

𝑋1
𝑓1

//

𝑔1

==

𝑋 𝑋1
𝑓1

oo
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Therefore 𝑔2 ∘ 𝑔1 is a lift of 𝑓1 with respect to 𝑓1:

𝑋1

𝑓1

��

𝑋1

𝑔2∘𝑔1

==

𝑓1

// 𝑋

On the other hand, we have
𝑋1

𝑓1

��

𝑋1

id𝑋1

==

𝑓1

// 𝑋

By Proposition 4.3.17, we have
𝑔2 ∘ 𝑔1 = id𝑋1 .

Similarly, we have
𝑔1 ∘ 𝑔2 = id𝑋2 .

Hence 𝑔1 and 𝑔2 are homeomorphisms, and the two covers 𝑋1 and 𝑋2 are isomorphic.

As a corollary, we have the following relation between covers of 𝑋 and subgroups of 𝜋1(𝑋, 𝑝).

Corollary 4.3.34

There are a bijection

{subgroups of 𝜋1(𝑋, 𝑝)} ↔ {covers of (𝑋, 𝑝), up to base point preserving isomorphisms}.

and a bijection

{conjugacy class of subgroups of 𝜋1(𝑋, 𝑝)} ↔ {covers of (𝑋, 𝑝), up to isomorphisms}.

Now we give some examples to illustrate these results.

Example 4.3.35 (𝑆1).
Since 𝑆1 has fundamental group isomorphic to Z, let 𝑝 ∈ 𝑆1 be a base points, and

[𝛾] ∈ 𝜋1(𝑆1, 𝑝)

be a generator. Then all subgroups of 𝜋1(𝑆1, 𝑝) will have the form

⟨[𝛾𝑘]⟩,

for some 𝑘 ∈ N. In Figure 4.3.11, we show the covering spaces of 𝑆1 for 𝑘 = 0, 1, 2, 3, 4.

Example 4.3.36 (Figure eight).
We have seen the universal cover of 𝑆1 ∨ 𝑆1. Since the fundamental group of 𝑆1 ∨ 𝑆1 is a free
group of 2 letters, its subgroups are all free, and the rank could be any finite natural number or
infinite.

Let 𝑝 denote the vertex and be the base point. Let 𝛼 and 𝛽 denote the loops based at 𝑝
associated to the two copies of 𝑆1 respectively. Hence

𝑎 := [𝛼] and 𝑏 := [𝛽]
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𝑆1 𝑝

{[𝑐𝑝]}

⟨[𝛾]⟩ ⟨[𝛾2]⟩ ⟨[𝛾3]⟩ ⟨[𝛾4]⟩

· · ·𝑋𝐻

𝐻

Figure 4.3.11: Covering spaces of 𝑆1.

form a free basis of 𝜋1(𝑆1 ∨ 𝑆1, 𝑝). Denote by 𝑒 the identity element.
In the following figures, we show some covering spaces of 𝑆1 ∨ 𝑆1 and their corresponding

subgroups of 𝜋1(𝑆1 ∨ 𝑆1, 𝑝).

1) 𝐻 = ⟨𝑎⟩.

𝑎−1 𝑒 𝑎

𝑏

𝑏−1

Figure 4.3.12: Covering space of 𝑆1 ∨ 𝑆1 for ⟨𝑎⟩.

2) 𝐻 = *𝑘∈Z⟨𝑏𝑘𝑎𝑏−𝑘⟩.

Figure 4.3.13: Covering space of 𝑆1 ∨ 𝑆1 for *𝑘∈Z⟨𝑏𝑘𝑎𝑏−𝑘⟩.

3) 𝐻 = ⟨𝑎2, 𝑏2⟩.

4) 𝐻 = ⟨𝑎, 𝑏2, 𝑏𝑎𝑏⟩.
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Figure 4.3.14: Covering space of 𝑆1 ∨ 𝑆1 for ⟨𝑎2, 𝑏2⟩.

Figure 4.3.15: Covering space of 𝑆1 ∨ 𝑆1 for ⟨𝑎, 𝑏2, 𝑏𝑎𝑏⟩.

Notice that the first three subgroups are infinite index subgroups, while the last one is a subgroup
of index 2.

Deck transformations

In this part we consider a space 𝑋 which is path connected locally path connected and semilocally
simply connected. We consider its universal cover

̃︀𝑋 := {[𝛾] | 𝛾 path in 𝑋 with 𝛾(0) = 𝑝},

and denote the covering map by ̃︀𝑓 : ( ̃︀𝑋, ̃︀𝑝) → (𝑋, 𝑝).

There is a natural action of 𝜋1(𝑋, 𝑝) on ̃︀𝑋 induced by the following map

Φ : 𝜋1(𝑋, 𝑝) × ̃︀𝑋 → ̃︀𝑋,
([𝛼], [𝛾]) ↦→ [𝛼 * 𝛾].

We may directly check the following two facts to see that it is indeed a left action

1) [𝑐𝑝].[𝛾] = [𝑐𝑝 * 𝛾] = [𝛾];

2) [𝛼].([𝛽].[𝛾]) = [𝛼].[𝛽 * 𝛾] = [𝛼 * 𝛽 * 𝛾] = [𝛼 * 𝛽].[𝛾].
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For any [𝛼] ∈ 𝜋1(𝑋, 𝑝), the map
𝜙[𝛼] : ̃︀𝑋 → ̃︀𝑋

[𝛾] ↦→ [𝛼 * 𝛾]
is a homeomorphism. Notice that for any 𝑈([𝛾], 𝑉 ) where 𝑉 ∈ ℬ𝛾(1), we have

𝜙−1
[𝛼](𝑈([𝛾], 𝑉 )) = 𝑈([𝛼 * 𝛾], 𝑉 ),

which is still open by definition. It is an isomorphism between covers:

( ̃︀𝑋, [𝛼])

̃︀𝑓
��

( ̃︀𝑋, [𝑐𝑝]) ̃︀𝑓 //

𝜙[𝛼]

::

(𝑋, 𝑝)

We generalize this discussion for any cover of 𝑋 and give the following definition.

Definition 4.3.37

Let 𝑋1 be a cover of 𝑋. We denote the covering map by

𝑓 : (𝑋1, 𝑝1) → (𝑋, 𝑝).

A deck transformation on 𝑋1 is an isomorphism

𝑔 : 𝑋1 → 𝑋1

between covers.
Notice that all deck transformations on 𝑋1 form a group under the composition operation.

We denote by Deck(𝑋1) the deck transformation group of 𝑋1.

From its definition, a deck transformation is in particular a lift of 𝑓 with respect to 𝑓 . By
the uniqueness of the lift of a continuous map, such a deck transformation is determined by
𝑔(𝑝1) ∈ 𝑓−1(𝑝). There is then an immediate question: given any lift 𝑝′

1 of 𝑝 in 𝑋1, do we have a
deck transformation such that 𝑔(𝑝1) = 𝑝′

1 ?
Notice that if there is a deck transformation

𝑔 : 𝑋1 → 𝑋1,

with 𝑔(𝑝1) = 𝑝′
1. By Proposition 4.3.16, we have

𝑓*(𝜋1(𝑋1, 𝑝1)) = 𝑓*(𝜋1(𝑋1, 𝑝
′
1)).

Considering the change of base point in 𝑋1, we have a path 𝛼1 such that

𝛼(0) = 𝑝1 and 𝛼1(1) = 𝑝′
1.

Hence we have
𝜋1(𝑋1, 𝑝

′
1) = [𝛼1] * 𝜋1(𝑋1, 𝑝1) * [𝛼1].

We then have

𝑓*(𝜋1(𝑋1, 𝑝1)) = 𝑓*(𝜋1(𝑋1, 𝑝
′
1)) = 𝑓*(𝛼1 * 𝜋1(𝑋1, 𝑝1) * 𝛼1) = [𝛼]−1 * 𝑓*(𝜋1(𝑋1, 𝑝1)) * [𝛼],

where 𝛼 = 𝑓 ∘ 𝛼1 which is a loop based at 𝑝 in 𝑋, since 𝛼1 starts and ends at lifts of 𝑝. If we
denote

𝐻 = 𝑓*(𝜋1(𝑋1, 𝑝1)) < 𝜋1(𝑋, 𝑝),
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𝑋1 𝑋

𝑋1𝑔

𝑓

𝑓

𝑝

𝑝1

𝑝′
1

𝑝1

𝑝′
1

𝛾1

𝛾′
1

𝛾

𝛼1

𝛼

𝛼1 * 𝛾1 * 𝛼1

𝛼 * 𝛾 * 𝛼

Figure 4.3.16: Deck transformations change an element in the 𝑓*-image by a conjugacy.

then
[𝛼] ∈ 𝑁(𝐻),

the normalizer of 𝐻.
We can have another changes of base point in 𝑋1 denoted by 𝛽1, and we have

[𝛼1] = [𝛼1 * 𝛽1] * [𝛽1],

where [𝛼1 * 𝛽1] ∈ 𝜋1(𝑋1, 𝑝1). If we consider 𝛽 = 𝑓 ∘ 𝛽1, then since

[𝛼 * 𝛽] ∈ 𝐻,

we have
[𝛼] *𝐻 = [𝛽] *𝐻.

Therefore, [𝛼] and [𝛽] are representative of a same element in 𝑁(𝐻)/𝐻. From this observation,
we have the following proposition.

Proposition 4.3.38

There is an isomorphism from Deck(𝑋1) to 𝑁(𝐻)/𝐻.

Proof. Denote the quotient map from 𝑁(𝐻) to 𝑁(𝐻)/𝐻 by

𝜋 : 𝑁(𝐻) → 𝑁(𝐻)/𝐻.

Then we may construct the following map

Ψ : Deck(𝑋1) → 𝑁(𝐻)/𝐻
𝑔 ↦→ 𝜋([𝛼])
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where 𝛼 has a lift 𝛼1 in 𝑋1 with

𝛼(0) = 𝑝1 and 𝛼(1) = 𝑔(𝑝1).

By the previous discussion, 𝑔 is determined by 𝑔(𝑝1), and all homotopy classes of paths in 𝑋1
from 𝑝1 to 𝑔(𝑝1) are mapped to 𝑁(𝐻) by 𝑓* which are representatives of a same element in
𝑁(𝐻)/𝐻. Hence this is a well-defined map.

Let 𝑔 and ℎ be two deck transformations on 𝑋1. Let 𝑝′
1 and 𝑝′′

1 be lifts of 𝑝 in 𝑋1 with

𝑔(𝑝1) = 𝑝′
1 and ℎ(𝑝′

1) = 𝑝′′
1 .

Let [𝛼] and [𝛽] be elements in 𝑁(𝐻) corresponding to 𝑔 and ℎ respectively. Then we have the lift
ℎ ∘ 𝛼1 of 𝛼 with

𝛼1(0) = 𝑝′
1 and 𝛼1(1) = 𝑝′′

1 ,

and the lift 𝛽1 of 𝛽 with
𝛽1(0) = 𝑝1 and 𝛽1(1) = 𝑝′

1.

Hence 𝛽1 * 𝛼1 is a path in 𝑋1 going from 𝑝1 to

𝑝′′
1 = ℎ(𝑔(𝑝1)).

which is a lift of [𝛽 * 𝛼]. Hence we have

Ψ(ℎ ∘ 𝑔) = 𝜋([𝛼 * 𝛽]) = 𝜋([𝛼]) * 𝜋([𝛽]) = Ψ(ℎ) * Ψ(𝑔).

The surjectivity comes from Proposition 4.3.16. For any [𝛼] ∈ 𝑁(𝐻), there is a lift 𝛼1 of 𝛼 in
𝑋1 with 𝛼1(0) = 𝑝1. We denote by 𝑝′

1 = 𝛼1(1). Then since [𝛼] ∈ 𝑁(𝐻), we have

[𝛼]−1 *𝐻 * [𝛼] = 𝐻.

This is equivalent to
𝑓*(𝜋1(𝑋1, 𝑝1)) = 𝑓*(𝜋1(𝑋1, 𝑝

′
1)).

Hence by Proposition 4.3.16, we have a deck transformation sending 𝑝1 to 𝑝′
1. Hence we have

𝜋([𝛼]) = Ψ(𝑔).

The injectivity comes from the uniqueness of the lift. If we have [𝛼] ∈ 𝑁(𝐻), such that 𝜋([𝛼])
is trivial in 𝑁(𝐻)/𝐻, then we have

[𝛼] ∈ 𝐻.

Hence the lift 𝛼1 of 𝛼 in 𝑋1 with 𝛼1(0) = 𝑝1 will have

𝛼1(1) = 𝑝1.

Hence any deck transformation corresponding to 𝜋([𝛼]) will satisfies 𝑔(𝑝1) = 𝑝1. On the other
hand, the identity map id𝑋1 is a lift of 𝑓 . By the uniqueness of the lift, we have 𝑔 = id𝑋1 .

As a conclusion, the map Ψ is an group isomorphism.

Given any lift 𝑝′
1 of 𝑝1 in 𝑋1 and any path 𝛼1 from 𝑝1 to 𝑝′

1 in 𝑋1, its projection

𝛼 = 𝑓 ∘ 𝛼′

is a loop based at 𝑝 in 𝑋. On the other hand, given any loop 𝛼 in 𝑋 based at 𝑝, it can always be
lifted to 𝛼1 a path in 𝑋1 with 𝛼1(0) = 𝑝1. These two observations shows the following facts.
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Corollary 4.3.39

The group Deck(𝑋1) acts on 𝑓−1(𝑝) transitively, i.e.

Deck(𝑋1).𝑝1 = 𝑓−1(𝑝),

if and only if 𝐺 = 𝑁(𝐻), i.e. 𝐻 ◁𝐺.

Definition 4.3.40

A cover 𝑋1 of 𝑋 is called a normal cover if

Deck(𝑋1).𝑝1 = 𝑓−1(𝑝).

Example 4.3.41 (Figure eight degree 2).
By Corollary 4.3.8, the index of the subgroup associated to any degree 2 cover is 2. Since in any
group, any index 2 subgroup is normal, we may conclude that any index 2 cover of 𝑆1 ∨ 𝑆1 is a
normal cover. All index 2 covers are as follows (Figure 4.3.17). Notice that the deck transformation

Figure 4.3.17: All degree 2 covers of 𝑆1 ∨ 𝑆1.

can be constructed by considering first how lifts of the vertex are mapped. Notice that this also
tells us all index 2 subgroup of 𝐹2 up to conjugacy.

Example 4.3.42 (Figure eight degree 3).
We list all degree 3 covers of 𝑆1 ∨ 𝑆1 below in Figure 4.3.18. Notice that the one on the left are
normal covers, while the ones on the right are not.
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Normal Not Normal

Figure 4.3.18: All degree 3 covers of 𝑆1 ∨ 𝑆1.
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Chapter 5

Surface

The topological spaces familiar to everyone the most would be the Euclidean space R𝑛. A
topological manifold can be consider as a generalization R𝑛. Roughly speaking, a manifold of
dimension 𝑛, or simply an 𝑛-manifold, is a topological space which locally looks like R𝑛. In
another words, one may consider a 𝑛-manifold is constructed by gluing open sets of R𝑛 together.
For example, the circle can be considered as a result of gluing two intervals together. Hence it is
a 1-dimensional manifold.

In this chapter, we will focus on the dimension 2 case, i.e. the surface case. We would like
to consider this case as an example to review the content which was introduced previously. In
particular, we will give the classification of closed compact surfaces. Moreover, we will discuss
the triangulation of surfaces to give an idea of what are simplicial structures for a topological
space, and how to use them to obtain topological invariants such that Euler characteristics and
orientations.

5.1 Surfaces in various contents
Surfaces are elements objects studied in many area. In the following, we take the torus as an
example to illustrate this fact.

Example 5.1.1 (Torus in Different Geometry).
In the Euclidean space R3, the following formula define a torus

𝑓 : R2 → R3,

(𝜃, 𝜂) ↦→ (cos 𝜃(cos 𝜂 + 2), cos 𝜃(sin 𝜂 + 2), sin 𝜃).

This formula gives a local charts on torus. We could use it to compute quantities such as area,
curvature etc.

Example 5.1.2 (Torus as a Riemann Surface).
We consider the algebraic equation in ̂︀C2

𝑤2 = 𝑧(𝑧 − 1)(𝑧 − 𝜆),

where 𝜆 ∈ ̂︀C ∖ {0, 1,∞}. The solution set in ̂︀C2 is topological a torus. Notice that given any
𝑧 ∈ ̂︀C, there are two distinct roots for 𝑤:

𝑤 =
√︀
𝑧(𝑧 − 1)(𝑧 − 𝜆)

𝑤 = −
√︀
𝑧(𝑧 − 1)(𝑧 − 𝜆)

183
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except when 𝑧 = 0, 1, 𝜆,∞.
Consider the projection of ̂︀C2 to the copy of ̂︀C for 𝑧, and the above discussion shows that the

restriction of this map to the solution set is a 2-cover branched over {0, 1, 𝜆,∞}.
If we take a circle path separate 𝑧 = 0 from other three branched points, when we go around

once along this path, we change the root 𝑤 =
√︀
𝑧(𝑧 − 1)(𝑧 − 𝜆) to 𝑤 = −

√︀
𝑧(𝑧 − 1)(𝑧 − 𝜆). On

the contrary, if we take a circle path separate 𝑧 = 0, 1 from 𝑧 = 𝜆,∞, then after going around
once along this path, we still get the same root for 𝑤.

One may roughly understand this phenomenon in the following way. Since we have a 2-cover,
there are two copies of ̂︀C for 𝑤. If the 𝑧 parameter walks along a path around 0 only, then the
𝑤 parameter goes from one copy of ̂︀C to another copy. If the 𝑧 parameter walks along a path
around 0 and 1, then the 𝑤 parameter stays in the same copy of ̂︀C for 𝑤.

The copy of 𝑧-plane for (𝑧, 𝑤) The copy of 𝑧-plane for (𝑧,−𝑤)

0 1∞

𝜆

0 1∞

𝜆

Figure 5.1.1: Gluing two copies of ̂︀C along two slices connecting 0 to 1 and ∞ to 𝜆 respectively.

Hence one may consider cut a slip in ̂︀C along the interval [0, 1] in R and glue the two copies
of ̂︀C along this slice. The same discussion works for ∞ and 𝜆, we may take a path with no
self-intersection going from 𝜆 to ∞ and disjoint from [0, 1]. We cut a slice along it, and glue the
two copies of ̂︀C along the slice. As a result, the solution set is a torus.

Notice that the above construction of torus depends on a choice of 4 point 0, 1, 𝜆,∞. Using
fractional linear map, we can send any triple of distinct points in ̂︀C to {0, 1,∞}. Hence up to
holomorphism, the complex structure on a torus is determined by 𝜆.

Example 5.1.3 (Torus from group actions).
Another way to describe a torus is by considering it as a quotient space of R2 under a group
action. This has been described previously in Example 2.3.21.

Figure 5.1.2 lists some surfaces that one may meet in various occasions.

5.2 Construction of surfaces using polygons
Before we start, it should be remark that all discussions from now on are based on a result which
we will admit and will not give a proof. It says that any surface can have a triangulation (which
we will introduce later). For the proof of this result, one may read.
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Figure 5.1.2: First row: triangle, pentagon, Möbius band; second row: sphere, torus, Klein bottle.

Polygon

Recall that in the context of Euclidean geometry, a convex Euclidean polygon is a compact
region, geometrically a intersection of finitely many half plans (see Figure 5.2.1).

Figure 5.2.1: A polygon as the intersection of half planes in R2.

The boundary of a polygon is piecewise straight. Each straight piece is usually called an edge
of the polygon, and each pair of edges meet at a vertex of the polygon. One may notice that a
polygon is a topologically a disk, with some points on its boundary marked special.

A topological polygon is topologically a closed disk with finitely many marked points on its
boundary called vertices. The vertices separate the boundary into connected components, each
one of which is called an edge of the polygon.
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Labels

The goal is to obtain surfaces by sewing edges of a polygon together. To do this, we have to
clarify which edges are glued together in which way. For the first "which", we given each edge of a
polygon a letter. Then two edges labeled by a same letter will be glued. For the second "which",
we give each edge an orientation. Since each edge is an interval. Up to homotopy, there are two
homeomorphism between two intervals, corresponding two ways of identifying them. We use 1
and −1 to represent the two orientation, then we consider the map from one interval to another
preserving the chosen orientation.

More precisely, let 𝑃 be a polygon with the set of vertices

𝑉 = {𝑣1, ..., 𝑣𝑛},

and the set of edges
𝐸 = {𝑒1, ..., 𝑒𝑛}.

We orient 𝜕𝑃 with the counterclockwise direction, and the vertices and the edges are ordered
following this orientation.

Let 𝑆 be a finite set of letters. A label on 𝑃 with letters in 𝑆 is a map

𝐿 : 𝐸 → 𝑆 × {1,−1}
𝑒 ↦→ (𝑥, 𝜖)

such that for each letter 𝑥 ∈ 𝑆, the preimage 𝐿−1({(𝑥,±1)}) contains are most 2 elements (See
the left figure in Figure 5.2.2 for an illustration).

(𝑎, 1)

(𝑎,−1)

(𝑏, 1)
(𝑏, 1)

(𝑐, 1)

(𝑑,−1)

(𝑒,−1)
𝑎

𝑎

𝑏

𝑏

𝑐

𝑑

𝑒

Figure 5.2.2: A labeled polygon.

Remark 5.2.1.
Since the edges labeled by a same letter will be glued together and our goal is to get a surface,
the last requirement is natural. Otherwise, if we identify three or more half disks along their
diameter, consider the point on the diameter and it has not neighborhood homeomorphic to a
disk.

Another observation is that in order to avoid the existence of boundary, all edges of 𝑃 should
be paired, i.e. for any 𝑒 ∈ 𝐸 labeled by (𝑥, 𝜖), there should be another edge labeled by either
(𝑥, 1) or (𝑥,−1).

In the rest of this chapter, we will not discuss surface with boundaries, hence all polygons will
have even number of edges. The orientation will be labeled using arrows (See the right polygon
in Figure 5.2.2).
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In the following, starting from the edge 𝑒1, if the label is given following the counterclockwise
direction by

(𝑎1, 𝜖1), (𝑎2, 𝜖2), ..., (𝑎2𝑛, 𝜖2𝑛),

then the label for 𝑒𝑖 is denoted by 𝑎𝜖𝑖
𝑖 , and the label is denoted by a word

𝑎𝜖1
1 · · · 𝑎𝜖2𝑛

2𝑛 .

Moreover, if 𝜖𝑖 = 1, we omit it. As an example, in Figure 5.2.2, the edge labels are

𝑎, 𝑐, 𝑏, 𝑎−1, 𝑏, 𝑒−1, 𝑑−1,

and the label is written as
𝑎𝑐𝑏𝑎−1𝑏𝑒−1𝑑−1.

When a polygon 𝑃 is given a label 𝐿, we call it a labeled polygon and denote it by (𝑃,𝐿). Two
edges of 𝑃 are said to be paired if there is a letter 𝑎, such that the two labels of the two edges
are in

{𝑎, 𝑎−1}.

From polygon to surface

Consider a polygon 𝑃 with 2𝑛 edges with 𝑛 ∈ N ∖ {0, 1}. We denote its vertices by 𝑣1, ..., 𝑣2𝑛
following a cyclic order induces by the counterclockwise direction of 𝜕𝑃 . As a convention, we
consider indices of vertices and edges up to mod 2𝑛, and assume that the vertices of 𝑒𝑖 is 𝑣𝑖 and
𝑣𝑖+1.

𝑎 𝑎

𝑎 𝑎

𝑣𝑖+1

𝑣𝑖

𝑣𝑖+1

𝑣𝑖

𝑣𝑗

𝑣𝑗+1

𝑣𝑗

𝑣𝑗+1

Figure 5.2.3: Different identifications of paired sides associated to different ways of labeling.

Let 𝐿 be a label of 𝑃 using 𝑛 letters. Hence all edges of 𝑃 are paired. Assume that 𝑒𝑖 and 𝑒𝑗
are labeled by 𝑎𝜖 and 𝑎𝜖

′ for some letter 𝑎 ∈ 𝑆.
If 𝜖 = 𝜖′, we consider a homeomorphism

𝜙𝑎 : 𝑒𝑖 → 𝑒𝑗 ,

such that 𝜙𝑎(𝑣𝑖) = 𝑣𝑗 and 𝜙𝑎(𝑣𝑖+1) = 𝑣𝑗+1.
If 𝜖 ̸= 𝜖′, we consider a homeomorphism

𝜙𝑎 : 𝑒𝑖 → 𝑒𝑗 ,
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such that 𝜙𝑎(𝑣𝑖) = 𝑣𝑗+1 and 𝜙𝑎(𝑣𝑖+1) = 𝑣𝑗 .
Notice that such homeomorphism is unique up to homeomorphism. For any edge 𝑣𝑖𝑣𝑖+1

labeled by 𝑥, we identify 𝑝 ∈ 𝑣𝑖𝑣𝑖+1 with 𝜙𝑥(𝑝), then we denote the associated quotient space by
Σ. In this case, we call the labeled polygon (𝑃,𝐿) a polygonal presentation of Σ. We denote
by 𝜋 the projection map (gluing map)

𝜋 : 𝑃 → Σ.

Quotient topology on Σ

The quotient topology on Σ gives a 2-manifold structure on it, i.e. each point admits a neigh-
borhood which is homeomorphic to a disk in R2. More precisely, consider Σ as a quotient space
of a labeled polygon (𝑃,𝐿), where 𝑃 is a 2𝑛-gon for some 𝑛 ∈ N ∖ {0, 1} and its edges are all
paired through 𝐿. There are three types points in 𝑃 , interior points, edge points and vertices. To
describe the topology around each point in 𝑃 , we may identity 𝑃 with an Euclidean polygon for
the moment and consider the subspace topology. We still denote by 𝑣1, ..., 𝑣2𝑛 the vertices and
𝑒1, ..., 𝑒2𝑛 the edges following the counterclockwise direction on 𝜕𝑃 , such that 𝑒𝑖 is adjacent to 𝑣𝑖
for any 𝑖 ∈ {1, ..., 2𝑛}.

There is not much to say about interior points, since the restriction of 𝜋 to 𝑃 is a homeo-
morphism to its image. To be more precise, notice that the topology on 𝑃 is Hausdorff, and for
any 𝑝 ∈ 𝑃 , there is a neighborhood basis of 𝑝 contained in 𝑃 . Hence the restriction of 𝜋 to each
such neighborhood is an homeomorphic to image and the image of these neighborhoods form a
neighborhoods of 𝜋(𝑝).

Now consider a point 𝑝 ∈ 𝑒̊𝑖 for some edge 𝑒𝑖. It has a neighborhoods formed by half disks in
R2. If 𝑒𝑖 is labeled by 𝑎𝜖 and another edge 𝑒𝑗 is labeled by 𝑎𝜖′ , then there is a point 𝑞 ∈ 𝑒̊𝑗 with
𝜋(𝑝) = 𝜋(𝑞). We consider 𝑈 a half disk neighborhood of 𝑝 and 𝑉 a half disk neighborhood of 𝑞,
such that 𝜋(𝑈 ∩ 𝑒𝑖) = 𝜋(𝑉 ∩ 𝑒𝑗). Then a neighborhood of 𝜋(𝑝) can be given by

𝜋(𝑈 ∪ 𝑉 ) ∼= 𝑈 ⊔ 𝑉/(𝑥 ∼ 𝑦 ⇔ 𝜋(𝑥) = 𝜋(𝑦))

which is homeomorphic to a disk in R2. Notice that such neighborhoods form a neighborhood
basis of 𝜋(𝑝).

𝑎 𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑

𝑒

𝑒

𝑎

𝑏𝑐 𝑑
𝑒

𝑢1 𝑢2

𝑢3

𝑢4

𝑢5

𝑢′
1

𝑢′
2

𝑢′
3

𝑢′
4

𝑢′
5

Figure 5.2.4: Glue neighborhoods of boundary points together. There are two vertex cycles:
𝑢1𝑢2𝑢3𝑢4𝑢5 and 𝑢′

1𝑢
′
2𝑢

′
3𝑢

′
4𝑢

′
5.

To see how neighborhoods of vertices are glued together, we consider the following process.
Let 𝑢1 = 𝑣𝑖1 be a vertex of 𝑃 , it has two adjacent edges 𝑒𝑖1 and 𝑒𝑖1−1. We denote 𝑓1 = 𝑒𝑖1 . Let
𝑒𝑖2 be the edge paired with 𝑒𝑖1 , the we have

𝜋1(𝑢1) = 𝜋1(𝑣𝑖2) or 𝜋1(𝑢1) = 𝜋1(𝑣𝑖2−1).
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We denote 𝑓 ′
1 = 𝑒𝑖2 and by 𝑢2 the vertex of 𝑒𝑖2 identified with 𝑢1 through 𝜋. If we have obtained

𝑢𝑗 , then we consider 𝑓 ′
𝑗 be the edge adjacent to 𝑢𝑗 different from 𝑓𝑗 with which we obtained

𝑢𝑗 . Denote by 𝑓𝑗+1 the edge paired with 𝑓 ′
𝑗 , and by 𝑢𝑗+1 the vertex of 𝑓𝑗+1 identified with 𝑢𝑗

through 𝜋. Notice that there are only 2𝑛 vertices, there will be a step 𝑘 ∈ N* such that for any
1 < 𝑗 < 𝑘, 𝑢𝑗 ̸= 𝑢1, and

𝑢𝑘 = 𝑢1.

We call
𝑢1 · · ·𝑢𝑘

a vertex cycle for (𝑃,𝐿) (See Figure 5.2.4 for an example). Through 𝜋, the neighborhoods of
𝑢𝑗 ’s in a vertex cycle are glued together to give a neighborhood of 𝜋(𝑢1) in Σ. More precisely,
recall that we have identified 𝑃 with an Euclidean polygon. Consider a sector neighborhood 𝑆𝑗
for each 𝑢𝑗 with a same radius, then we identify their radius sides together to get a space

𝜋

⎛⎝ 𝑘⋃︁
𝑗=1

𝑆𝑗

⎞⎠ ∼=
𝑘⨆︁
𝑗=1

𝑆𝑗/(𝑥 ∼ 𝑦 ⇔ 𝜋(𝑥) = 𝜋(𝑦)).

Since sectors with different angles are homeomorphic and the homeomorphic can be given by
rescaling the central angles. Hence we can identify all 𝑆𝑗 ’s with sectors of central angle 2𝜋/𝑘.
Then the resulting space

𝑘⨆︁
𝑗=1

𝑆𝑗/(𝑥 ∼ 𝑦 ⇔ 𝜋(𝑥) = 𝜋(𝑦)),

is homeomorphic to an Euclidean disk, which gives a neighborhood of 𝜋(𝑢1).
As a conclusion, the quotient space Σ is a 2-manifold, i.e. a surface (See Figure 5.2.4 for an

illustration).

Remark 5.2.2.
The whole story also works for a finite collection of polygons. Let 𝑃1, ..., 𝑃𝑘 be a collection of
polygons. Then we can define a label on it and obtained a surface from them by gluing according
the the label. The only difference is that the resulting surface may not be connected.

Some examples

We gives some examples to illustrate the above discussion.

1) The quadrilateral labeled by 𝑎−1𝑎𝑏−1𝑏 is glued into the 2-sphere 𝑆2 (see Figure 5.2.5 for an
illustration):

𝑎

𝑎

𝑏

𝑏

𝑎

𝑏

Figure 5.2.5: A polygon labeled by 𝑎−1𝑎𝑏−1𝑏 is glued into the 2-phere.
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𝑎

𝑏

𝑎

𝑏

Figure 5.2.6: A polygon labeled by 𝑎𝑏𝑎𝑏 is glued into the projective plane.

2) The quadrilateral labeled by 𝑎𝑏𝑎𝑏 is glued into the projective plane RP2 (see Figure 5.2.6
for an illustration):

3) The quadrilateral labeled by 𝑎𝑏𝑎−1𝑏−1 is glued into the torus 𝑇 (see Figure 5.2.7 for an
illustration):

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

Figure 5.2.7: A polygon labeled by 𝑎𝑏𝑎−1𝑏−1 is glued into the torus.

4) The quadrilateral labeled by 𝑎𝑏𝑎𝑏−1 is glued into the Klein bottle 𝐾 (see Figure 5.2.8 for
an illustration):

𝑎

𝑏

𝑎

𝑏

𝑏

𝑎

Figure 5.2.8: A polygon labeled by 𝑎𝑏𝑎𝑏−1 is glued into the Klein bottle.

Remark 5.2.3.
Klein bottles can only appear in dimension 4 and higher. The figure is a 2-dimension illustration
of its projection to R3. This is why it looks like intersecting itself. To understand this, one may
consider the projection of a non-trivial knot in R3 to a plane to understand this (see Figure 5.2.9
for an illustration of a projection of a trefoil knot in R3 to a plane).
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Figure 5.2.9: Projection of a trefoil knot in R3 to a plane.

5.3 Classification of closed surfaces
Equivalent labeled polygons

When trying to find polygonal presentation of a surface Σ, one may notice that such a presentation
may not be unique. For example, the following two labeled polygons are both presentation for
torus.

𝑎

𝑎

𝑏 𝑏

𝑐

𝑐

𝑎

𝑏

𝑐

𝑎 𝑎

𝑏

𝑏

𝑏

𝑎

Figure 5.3.1: Two polygonal presentations of torus: 𝑎𝑏𝑐𝑎−1𝑏−1𝑐−1 and 𝑎𝑏𝑎−1𝑏−1.

Two labeled polygons are said to be equivalent if the surfaces induced by them are home-
omorphic to each other. We may consider a labeled polygon as a result of "cutting" a surface
along a graph in it whose edges are labeled. Hence if (𝑃1, 𝐿1) and (𝑃2, 𝐿2) are equivalent, then
we can consider first glue 𝑃1 with respect to 𝐿1 and obtain a surface Σ, then cut along a labeled
graph in Σ to get (𝑃2, 𝐿2). Hence intuitively, there should be a way to relate equivalent labeled
polygons through cutting and gluing, which will be precised in the following.

We now introduce geometrically the elementary operation which can be applied to a labeled
polygon (𝑃,𝐿):

1) Cut and Glue This is done in 3 steps:

(i) Add a diagonal to 𝑃 . Associate to it a letter 𝑥 different from all letters used in 𝐿 and a
orientation.
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(ii) Cut 𝑃 along the diagonal 𝑥. Rigorously speaking, consider the closure of each connected
component of the complement of this edge in 𝑃 , and we obtain two polygons 𝑄1 and 𝑄2.
The label on 𝑃 and the letter with the orientation on the diagonal induces a label on 𝑄1
and a label on 𝑄2. Hence we have a disjoint union (𝑄1, 𝐿1) ⊔ (𝑄2, 𝐿2).

(iii) Assume that there is a paired edges 𝑒𝑖 and 𝑒𝑗 of 𝑃 which are not both in 𝑄1 or in 𝑄2. Let
𝜙 be a orientation preserving homeomorphism between them. Then we consider

𝑃 ′ := 𝑄1 ⊔𝑄2/(𝑝 ∼ 𝜙(𝑝),∀ 𝑝 ∈ 𝑒𝑖)

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑
𝑥

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑𝑥

𝑥

𝑎

𝑏

𝑏

𝑐

𝑐𝑑

𝑑

𝑥

𝑥

𝑏

𝑏
𝑐

𝑐

𝑑

𝑑
𝑥

𝑥

𝑃

𝑄1

𝑄2

𝑃 ′

Figure 5.3.2: Cut and glue.

2) Relabel Replace all copies of a letter by a letter which does not appear anywhere in the
label 𝐿.

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑

𝑥

𝑥

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑

Figure 5.3.3: Relabel letter 𝑎 by 𝑥.

3) Flip Reverse the orientation on all edges of 𝑃 at the same time.

4) Cancel If there are two successive edge which labeled by a same letter with different
orientation, we can glue them to get a polygon 𝑃 ′ with two edges less. The label 𝐿 on the other
edges induces a label 𝐿′ on 𝑃 ′.

5) Cut a slit Let 𝛼 be an oriented segment in 𝑃 with one end point at a vertex and the
other one in 𝑃 , then we cut 𝑃 along 𝛼. One may consider the complement of 𝛼 in 𝑃 . It is
homeomorphic to 𝐷 the open disk. Then this map can be extends to a map from the closed
disk 𝐷 to 𝑃 . The preimages of vertices of 𝑃 and the end points of 𝛼 gives marked point on 𝜕𝐷,
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𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑

Figure 5.3.4: Flip.

𝑎

𝑑

𝑏

𝑏

𝑐

𝑐

𝑎

𝑑

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑑

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑑

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

Figure 5.3.5: Cancel.

which make 𝐷 a 𝑃 ′ polygon with 2 more sides than 𝑃 . We associate to 𝛼 a letter 𝑥 different from
all letters appearing in 𝐿. Then the label 𝐿 and the letter with the orientation associated to 𝛼
induce a label on 𝑃 ′.

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑥

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑥

𝑥

𝑎

𝑥

𝑏

𝑏

𝑐

𝑐

𝑎

𝑥

Figure 5.3.6: Cut a slit.

Now we consider the words associated to a labeled polygon. Notice that if we cyclically
permute the word, we may consider this as choosing a different vertex to start writing the word.
Let 𝑤 be the word associated to (𝑃,𝐿). Given any word subword of 𝑤

[𝑦] = 𝑎𝜖1
1 · · · 𝑎𝜖𝑘

𝑘 ,

we will denote by 𝑦−1 the following word

[𝑦−1] = 𝑎−𝜖𝑘

𝑘 · · · 𝑎−𝜖1
1 .

The elementary operation can be described as follows.

1) Cut and glue This is done in 3 steps:
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(i) Add a diagonal to 𝑃 . Let 𝑢 and ̃︀𝑢 be the two vertex of this diagonal. Since each vertex is
an end point of an edge, we consider the counterclockwise direction on 𝜕𝑃 . Let 𝑒 and 𝑒′ be
the two edges with 𝑢 and 𝑢′ as an end point respectively. Assume that the label of 𝑒 is in
the end of a subword [𝑦1] of 𝑤 and the label of 𝑒′ is in the end of a subword [𝑦2] of 𝑤, such
that we have

𝑤 = [𝑦1][𝑦2][𝑦3].

We apply the permutation to get a new word 𝑤′

𝑤′ = [𝑦3][𝑦1][𝑦2]

(ii) Associated to this diagonal a letter 𝑥 and an orientation, and cut 𝑃 along the diagonal.
Here 𝑥 does not appear in 𝐿. Up to reverse the chosen orientation on the diagonal, we get
two words

𝑤1 = [𝑦3][𝑦1]𝑥, 𝑤2 = 𝑥−1[𝑦2].

They correspond to two labeled polygon (𝑄1, 𝐿1) and (𝑄2, 𝐿2).

(iii) Assume that there is a letter 𝑏 different from 𝑥, such that 𝑏𝜖 and 𝑏𝜖
′ appearing 𝑤1 and 𝑤2

respectively. If 𝜖 = −𝜖′, up to a cyclic permutation on 𝑤1 and 𝑤2 respectively, we have

𝑤′
1 = [𝑧1]𝑥[𝑧2]𝑏𝜖, 𝑤′

2 = 𝑏−𝜖′
[𝑧3]𝑥−1[𝑧4].

We take the concatenation and get

𝑤3 = [𝑧1]𝑥[𝑧2][𝑧3]𝑥−1[𝑧4],

which is the word associated to the labeled polygon (𝑃 ′, 𝐿′).
If 𝜖 = 𝜖′, up to a cyclic permutation on 𝑤1 and 𝑤2 respectively, we have

𝑤′
1 = [𝑧1]𝑥[𝑧2]𝑏𝜖, 𝑤′

2 = [𝑧3]𝑥−1[𝑧4]𝑏𝜖.

We apply the flip (see 3) for more details) on (𝑄2, 𝐿2) to get a new labeled polygon (𝑄′
2, 𝐿

′
2)

corresponding to the word
𝑤′′

2 = 𝑏−𝜖[𝑧−1
4 ]𝑥[𝑧−1

3 ].

The take the concatenation and we get

𝑤3 = [𝑧1]𝑥[𝑧2][𝑧−1
4 ]𝑥[𝑧−1

3 ],

which is the word associated to the labeled polygon (𝑃 ′, 𝐿′).

2) Relabel Replace all copies of a letter by a letter which does not appear anywhere in the
label 𝐿. Assume that 𝑎 is a letter appear in 𝑤:

𝑤 = [𝑦1]𝑎𝜖[𝑦2]𝑎𝜖
′
[𝑦3].

Then we take a letter 𝑥 different from all letters appearing in 𝑤, and replace 𝑎 by 𝑥

𝑤′ = [𝑦1]𝑥𝜖[𝑦2]𝑥𝜖
′
[𝑦3]

3) Flip Reverse the orientation on all edges of 𝑃 at the same time. If

𝑤 = 𝑎𝜖1
1 · · · 𝑎𝜖2𝑛

2𝑛 ,

then we flip it and get
𝑤−1 = 𝑎−𝜖2𝑛

2𝑛 · · · 𝑎−𝜖1
1 .
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4) Cancel If there is a letter 𝑎 such that

𝑤 = [𝑦1]𝑎𝜖𝑎−𝜖[𝑦2],

we cancel it and get
𝑤′ = [𝑦1][𝑦2].

5) Cut a slit Let 𝑥 be a letter different from all letters appearing in 𝑤. Insert 𝑥𝑥−1 in to 𝑤
between two successive letters in it and change it from

𝑤 = [𝑦1][𝑦2].

to
𝑤′ = [𝑦1]𝑥𝑥−1[𝑦2].

An immediate observation is the following one.

Proposition 5.3.1

Two labeled polygons different by a sequence of elementary operations are equivalent.

Let (𝑃,𝐿) be a labeled polygon. We apply an elementary operation on it and obtain (𝑃 ′, 𝐿′). Let
Σ and Σ′ be the surfaces associated to them respectively. From the geometrical description of
each elementary operation, one can construct the homeomorphism between Σ and Σ′ directly.
Here we omit the details.

A less obvious fact is the following one.

Proposition 5.3.2

Any two equivalent labeled polygons can be transform from one to the other by a sequence
of elementary operations.

In the following, we are going to prove s stronger statement and show that all labeled polygons
can be transform to a standard one by a sequence of elementary operation. This can moreover
be used to give a classification of compact closed surfaces. We use words to represent labeled
polygons.

Theorem 5.3.3

All labeled polygons are equivalent to one of the following ones:

1) 𝑎𝑎−1𝑏𝑏−1

2) 𝑎𝑏𝑎𝑏;

3) 𝑎𝑏𝑎−1𝑏−1;

4) 𝑎1𝑎1𝑎2𝑎2 · · · 𝑎𝑛𝑎𝑛, 𝑛 ≥ 2;

5) 𝑎1𝑏1𝑎
−1
1 𝑏−1

1 · · · 𝑎𝑛𝑏𝑛𝑎−1
𝑛 𝑏−1

𝑛 , 𝑛 ≥ 2.

Remark 5.3.4.
The word of type 1) is associated to the sphere. The word of type 2) is associated to the projective
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plane. The gluing pattern induced by the label is in fact the same as the one given by a antipodal
map. The word of type 3) is associated to a torus.

A word of type 4) or type 5) is a concatenation of several copies of type 2) word or type 3)
word. We will call a word of type 4) a word of the projective type and a word of type 5) a word
of the torus type.

Let 𝑤 be the word associated to a labeled polygon (𝑃,𝐿). This theorem can be proved by showing
the following lemmas.

Lemma 5.3.5

If there is a letter 𝑎, such that
𝑤 = [𝑦1]𝑎[𝑦2]𝑎[𝑦3],

then it is equivalent to
𝑤′ = 𝑎𝑎[𝑦1][𝑦−1

2 ][𝑦3].

Lemma 5.3.6

If there is a letter 𝑎, such that
𝑤 = [𝑦1]𝑎[𝑦2]𝑎[𝑦3],

then it is equivalent to
𝑤′ = 𝑎𝑎[𝑦1][𝑦−1

2 ][𝑦3].

Proof. We consider the following cut and glue process (See Figure 5.3.7 for an illustration).

[𝑦1]𝑎[𝑦2]𝑎[𝑦3]
→[𝑦1]𝑎𝑏, 𝑏−1[𝑦2]𝑎[𝑦3] cut
→𝑏[𝑦1]𝑎, 𝑎−1[𝑦−1

2 ]𝑏[𝑦−1
3 ] cyclically permute and flip

→𝑏[𝑦1][𝑦−1
2 ]𝑏[𝑦−1

3 ] glue
→[𝑦1][𝑦−1

2 ]𝑏𝑐, 𝑐−1[𝑦−1
3 ]𝑏 cyclically permute and cut

→𝑐[𝑦1][𝑦−1
2 ]𝑏, 𝑏−1[𝑦3]𝑐 cyclically permute and flip

→𝑐𝑐[𝑦1][𝑦−1
2 ][𝑦3] glue and cyclically permute

[𝑦1] [𝑦3] [𝑦1] [𝑦3] [𝑦−1
2 ] [𝑦1] [𝑦−1

2 ] [𝑦1] [𝑦3] [𝑦−1
2 ] [𝑦1]

𝑎 𝑏 𝑎 𝑎 𝑏 𝑏 𝑎 𝑏 𝑐 𝑏 𝑏 𝑐
𝑐

𝑏 𝑐 𝑏 𝑐

[𝑦2] [𝑦2] [𝑦−1
3 ] [𝑦−1

3 ]

Figure 5.3.7
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Corollary 5.3.7

The word 𝑤 is equivalent to
𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘𝑤′,

such that if 𝑎 appears in 𝑤′, so is 𝑎−1.

Proof. By the previous lemma, if for some letter 𝑎1, we have 𝑎𝜖1
1 appears twice in 𝑤 with

𝜖1 ∈ {1,−1}, then 𝑤 is equivalent to 𝑎𝜖1
1 𝑎

𝜖1
1 𝑤1. Then if for some letter 𝑎2, we have 𝑎𝜖2

2 appears
twice in 𝑤1 with 𝜖2 ∈ {1,−1}, then 𝑤 is equivalent to 𝑎𝜖1

1 𝑎
𝜖1
1 𝑎

𝜖2
2 𝑎

𝜖2
2 𝑤2. We repeat this process,

and get 𝑤1, 𝑤2, ... in sequence.
Notice that there are finitely many letters in 𝑤, and for each 𝑖, there are two letters less in

𝑤𝑖+1 than in 𝑤𝑖. Hence the above process will stop in finitely many steps. Assume that it stops
at step 𝑘, then 𝑤 is equivalent to

𝑎𝜖1
1 𝑎

𝜖1
1 · · · 𝑎𝜖𝑘

𝑘 𝑎
𝜖𝑘

𝑘 𝑤𝑘+1

Up to replace 𝑎𝜖𝑖
𝑖 by 𝑎−𝜖𝑖

𝑖 , and denote 𝑤′ = 𝑤𝑘+1, we have 𝑤 equivalent to

𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘𝑤′.

If 𝑤′ is not empty, then if 𝑎 appears in 𝑤′, so is 𝑎−1.

Lemma 5.3.8

If there are two distinct letters 𝑎 and 𝑏, such that

𝑤 = [𝑦1]𝑎[𝑦2]𝑏[𝑦3]𝑎−1[𝑦4]𝑏−1[𝑦5],

then it is equivalent to
𝑤′ = 𝑎𝑏𝑎−1𝑏−1[𝑧].

for some word 𝑧.

Proof. We consider the following cut and glue process (See Figure 5.3.8 for an illustration).

[𝑦1]𝑎[𝑦2]𝑏[𝑦3]𝑎−1[𝑦4]𝑏−1[𝑦5]
→[𝑦1]𝑎[𝑦2]𝑐, 𝑐−1𝑏[𝑦3]𝑎−1[𝑦4]𝑏−1[𝑦5] cut
→[𝑦2]𝑐[𝑦1]𝑎, 𝑎−1[𝑦4]𝑏−1[𝑦5]𝑐−1𝑏[𝑦3] cyclically permute
→[𝑦2]𝑐[𝑦1][𝑦4]𝑏−1[𝑦5]𝑐−1𝑏[𝑦3] glue
→[𝑦1][𝑦4]𝑏−1[𝑦5]𝑐−1𝑏[𝑦3][𝑦2]𝑐 cyclically permute
→[𝑦1][𝑦4]𝑏−1[𝑦5]𝑑, 𝑑−1𝑐−1𝑏[𝑦3][𝑦2]𝑐 cut
→[𝑦5]𝑑[𝑦1][𝑦4]𝑏−1, 𝑏[𝑦3][𝑦2]𝑐𝑑−1𝑐−1 cyclically permute
→[𝑦5]𝑑[𝑦1][𝑦4][𝑦3][𝑦2]𝑐𝑑−1𝑐−1 glue
→[𝑦1][𝑦4][𝑦3][𝑦2]𝑐𝑑−1𝑐−1[𝑦5]𝑑 cyclically permute
→[𝑦1][𝑦4][𝑦3][𝑦2]𝑐𝑒, 𝑒−1𝑑−1𝑐−1[𝑦5]𝑑 cut
→𝑒[𝑦1][𝑦4][𝑦3][𝑦2]𝑐, 𝑐−1[𝑦5]𝑑𝑒−1𝑑−1 cyclically permute
→𝑑𝑒−1𝑑−1𝑒[𝑦1][𝑦4][𝑦3][𝑦2][𝑦5] glue and cyclically permute
→𝑎𝑏𝑎−1𝑏−1[𝑦1][𝑦4][𝑦3][𝑦2][𝑦5] relabel
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[𝑦1] 𝑎

[𝑦2]

𝑏

[𝑦3]𝑎[𝑦4]

𝑏

[𝑦5] 𝑐

[𝑦1] 𝑎

[𝑦2]

𝑏

[𝑦3]𝑎[𝑦4]

𝑏

[𝑦5]
𝑐

𝑐

𝑐

𝑏

[𝑦3]

[𝑦2]
𝑐[𝑦1][𝑦4]

𝑏

[𝑦5]

𝑑

𝑐

𝑏

[𝑦3]

[𝑦2]
𝑐[𝑦1][𝑦4]

𝑏

[𝑦5]

𝑑 𝑑

𝑐 [𝑦5]

𝑑

[𝑦1]

[𝑦4][𝑦3][𝑦2]

𝑐

𝑑

𝑒

𝑐 [𝑦5]

𝑑

[𝑦1]
[𝑦4][𝑦3][𝑦2]

𝑐

𝑑

𝑒

𝑒

[𝑦1] [𝑦4] [𝑦3]

[𝑦2]

[𝑦5]

𝑑

𝑒

𝑑

𝑒

[𝑦1] [𝑦4] [𝑦3]

[𝑦2]

[𝑦5]

𝑎

𝑏

𝑎

𝑏

Figure 5.3.8

Corollary 5.3.9

The word 𝑤 is equivalent to

𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘𝑐1𝑑1𝑐
−1
1 𝑑−1

1 · · · 𝑐𝑛𝑑𝑛𝑐−1
𝑛 𝑑−1

𝑛 .

Proof. From the above two lemmas, the word 𝑤 is equivalent to the following one:

𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘𝑐1𝑑1𝑐
−1
1 𝑑−1

1 · · · 𝑐𝑛𝑑𝑛𝑐−1
𝑛 𝑑−1

𝑛 [𝑦],

where [𝑦] is a subword such that for any letter ℎ, both ℎ and ℎ−1 appear in [𝑦], and moreover
given any two letters 𝑔 and ℎ, either there is no letter 𝑔 between ℎ and ℎ−1 or no ℎ between 𝑔
and 𝑔−1.

Without loss of generality, we may assume that

[𝑦] = [𝑧1]ℎ[𝑧2]ℎ−1[𝑧3].

Assume that [𝑧2] starts with ℎ𝜖1, then we have

[𝑦] = [𝑧1]ℎℎ𝜖1[𝑧4]ℎ−𝜖
1 [𝑧5]ℎ−1[𝑧3].

We repeat this process, since there are only finitely many letters in [𝑧4], after finite steps, there
will be a letter 𝑔, such that 𝑔 and 𝑔−1 are adjacent to each other:

[𝑦] = [𝑧1]ℎℎ𝜖1 · · · 𝑔𝛿𝑔−𝛿 · · ·ℎ−𝜖
1 [𝑧5]ℎ−1[𝑧3].

We may cancel 𝑔𝛿𝑔−𝛿. Then we start over again the discussion. By out assumption, all letters in
[𝑦] will be canceled out. Hence

𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘𝑐1𝑑1𝑐
−1
1 𝑑−1

1 · · · 𝑐𝑛𝑑𝑛𝑐−1
𝑛 𝑑−1

𝑛 [𝑦] ∼ 𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘𝑐1𝑑1𝑐
−1
1 𝑑−1

1 · · · 𝑐𝑛𝑑𝑛𝑐−1
𝑛 𝑑−1

𝑛 .
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Lemma 5.3.10

Let 𝑎, 𝑏, 𝑐 be three distinct letters. The labeled polygon associated to the word 𝑎𝑎𝑏𝑏𝑐𝑐 is
equivalent to the one associated to 𝑎𝑎𝑏𝑐𝑏−1𝑐−1.

Proof. We consider the following cut and glue process (See Figure 5.3.9 for an illustration).

𝑎𝑎𝑏𝑏𝑐𝑐

→𝑎𝑏𝑏𝑐𝑐𝑎 cyclically permute
→𝑎𝑏𝑑, 𝑑−1𝑏𝑐𝑐𝑎 cut
→𝑎−1𝑑−1𝑏−1, 𝑏𝑐𝑐𝑎𝑑−1 flip and cyclically permute
→𝑎−1𝑑−1𝑐𝑐𝑎𝑑−1 glue
→𝑑−1𝑐𝑐𝑎𝑑−1𝑎−1 cyclically permute
→𝑐𝑎𝑑−1𝑎−1𝑒, 𝑒−1𝑑−1𝑐 cut
→𝑎−1𝑒𝑐𝑎𝑑−1, 𝑑𝑒𝑐−1 flip and cyclically permute
→𝑎−1𝑒𝑐𝑎𝑒𝑐−1 glue
→𝑒𝑐𝑎𝑒𝑐−1𝑎−1 cyclically permute
→𝑒𝑐𝑎𝑒𝑓, 𝑓−1𝑐−1𝑎−1 cut
→𝑒𝑓𝑒𝑐𝑎, 𝑎−1𝑓−1𝑐−1 cyclically permute
→𝑒𝑓𝑒𝑐𝑓−1𝑐−1 glue
→𝑓−1𝑐−1𝑒𝑓𝑒𝑐 cyclically permute
→𝑓−1𝑐−1𝑒𝑓𝑔, 𝑔−1𝑒𝑐 cut
→𝑒𝑓𝑔𝑓−1𝑐−1, 𝑐𝑔−1𝑒 cyclically permute
→𝑒𝑓𝑔𝑓−1𝑔−1𝑒 glue
→𝑎𝑎𝑏𝑐𝑏−1𝑐−1 cyclically permute and relabel

a b

b ba a a
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d
d
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a
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f
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e

f

f
f

f f

d

a

c

c

a

g

g

e

e

e

e

e

e

e

e

e

e

Figure 5.3.9
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Hence given any word
𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘𝑐1𝑑1𝑐

−1
1 𝑑−1

1 · · · 𝑐𝑛𝑑𝑛𝑐−1
𝑛 𝑑−1

𝑛 ,

if 𝑘 = 0 or 𝑛 = 0, then we have the desired form

𝑐1𝑑1𝑐
−1
1 𝑑−1

1 · · · 𝑐𝑛𝑑𝑛𝑐−1
𝑛 𝑑−1

𝑛

or
𝑎1𝑎1 · · · 𝑎𝑘𝑎𝑘.

If both 𝑘 and 𝑛 are not 0, then by induction the above lemma shows that it is equivalent to

𝑎1𝑎1 · · · 𝑎𝑘+2𝑛𝑎𝑘+2𝑛.

Hence Theorem 5.3.3 is proved.

Connected sums and labeled polygons

Now we would like to see which surface is associated to each standard word, and this is enough
to describe all closed compact surfaces by Theorem 5.3.3. We will discuss the case for a standard
word 𝑤 of the torus type, and the case for words of the projective type can be treated in a similar
way.

Given a polygon 𝑃 whose label is given by a standard word

𝑤 = 𝑎1𝑏1𝑎
−1
1 𝑏−1

1 · · · 𝑎𝑛𝑏𝑛𝑎−1
𝑛 𝑏−1

𝑛 , 𝑛 ≥ 2,

we denote by Σ𝑛 the resulting surface. The first observation is that all vertices of 𝑃 are in one
vertex cycle. We still use 𝜋 to denote the projection map. Then the 𝜋-image of each edge or
diagonal of 𝑃 induces a loop in Σ.

We cut 𝑃 along a labeled diagonal as done previously, such that we obtain

𝑎1𝑏1𝑎
−1
1 𝑏−1

1 𝑐, 𝑐−1𝑎2𝑏2𝑎
−1
2 𝑏−1

2 · · · 𝑎𝑛𝑏𝑛𝑎−1
𝑛 𝑏−1

𝑛 .

One may consider glue a triangle labeled by 𝑐−1𝑑𝑑−1 to 𝑎1𝑏1𝑎
−1
1 𝑏−1

1 𝑐 and obtain

𝑎1𝑏1𝑎
−1
1 𝑏−1

1 𝑑𝑑−1,

which is equivalent to
𝑎1𝑏1𝑎

−1
1 𝑏−1

1 .

Notice that the surface associated to 𝑐−1𝑑𝑑 is a disk. In the other words, the surface associated
to 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 𝑐 can be considered as being obtained by removing a disk from the torus associated
to 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 .
Similarly, the surface associated to 𝑐−1𝑎2𝑏2𝑎

−1
2 𝑏−1

2 · · · 𝑎𝑛𝑏𝑛𝑎−1
𝑛 𝑏−1

𝑛 can be considered as being
obtained by removing a disk from the surface assocaited to 𝑐−1𝑎2𝑏2𝑎

−1
2 𝑏−1

2 · · · 𝑎𝑛𝑏𝑛𝑎−1
𝑛 𝑏−1

𝑛 .
Hence the surface Σ𝑛 is a connected sum

𝑇#Σ𝑛−1.

where 𝑇 denote the torus (See Figure 5.3.10). By induction, for any 𝑛 ∈ N ∖ {0, 1}, we have the
homeomorphism

Σ𝑛 ∼= 𝑇# · · · #𝑇⏟  ⏞  
𝑛

.

A similar discussion shows that the surface associated to the word of a projective type

𝑎1𝑎1𝑎2𝑎2 · · · 𝑎𝑛𝑎𝑛, 𝑛 ≥ 2,

is homeomorphic to the connected sum

RP2# · · · #RP2⏟  ⏞  
𝑛

.

Hence as a corollary of Theorem 5.3.3, we have the following statement.
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𝑎2
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𝑐
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Figure 5.3.10: Σ𝑛 ∼= 𝑇#Σ𝑛−1.

Theorem 5.3.11

Any closed compact surface Σ is homeomorphic to one of the following surfaces:

1) 𝑆2;

2) RP2;

3) 𝑇 ;

4) RP2# · · · #RP2⏟  ⏞  
𝑛

, 𝑛 ≥ 2;

5) 𝑇# · · · #𝑇⏟  ⏞  
𝑛

, 𝑛 ≥ 2.

Classification theorem

Theorem 5.3.11 shows that the list in the statement contains all closed compact surfaces up
to homeomorphism. The question left is if two surfaces in the list could be homeomorphic
to each other. To answer this question, we will use fundamental groups of surfaces and their
abelianizations.

Fundamental groups of surfaces

Theorem 5.3.3 also provides the information of fundamental groups of the surfaces associated
to the labeled polygons of each type. The key tool used in this discussion is of course the
Seifert-Van-Kampen Theorem.

Let 𝑃 be a polygon labeled by one of the words 𝑤 in the list in Theorem 5.3.3. Notice that 𝑃
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is topologically a disk. Denote 𝐷 a closed disk contained in 𝑃 . Let 𝑝 ∈ 𝐷, then we denote

𝑈 = 𝑃 ∖ {𝑝} and 𝑉 = 𝐷.

We still denote by Σ the surface associated to 𝑃 and by 𝜋 the projection from 𝑃 to Σ. Notice
that 𝑈 is homotopy equivalent to 𝜕𝑃 , whose image under 𝜋 is a graph. Moreover each edge
is sent to a loop by 𝜋. Hence the image of 𝜕𝑃 under 𝜋 is a rose whose fundamental group is
isomorphic to a free group generated by letters used in the label of 𝑃 (See Figure 5.3.11 for an
illustration for computing 𝜋1(𝜋(𝑈)) for a torus type labeled polygon).

𝑎𝑛𝑏𝑛
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𝑏𝑛

𝑎1
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𝑎2
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𝑎𝑛𝑏𝑛
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𝑏2

Figure 5.3.11

Using SVK theorem, the fundamental group of Σ is given by a free group quotient by the
subgroup normally generated by the word associated to the boundary. As a result, we have the
following presentations of fundamental groups for surfaces in the above list:

1) 𝑤 = 𝑎𝑎−1𝑏𝑏−1 and Σ ∼= 𝑆2:
𝜋1(Σ) ∼= 0.

2) 𝑤 = 𝑎𝑏𝑎𝑏 and Σ ∼= RP2: (let 𝑐 = 𝑎𝑏)

𝜋1(Σ) ∼= ⟨𝑐 | 𝑐2⟩ ∼= Z2.

3) 𝑤 = 𝑎𝑎−1𝑏𝑏−1 and Σ ∼= 𝑇 ;
𝜋1(Σ) ∼= ⟨𝑎, 𝑏 | 𝑎𝑎−1𝑏𝑏−1⟩

4) 𝑤 = 𝑎1𝑎1𝑎2𝑎2 · · · 𝑎𝑛𝑎𝑛 and Σ = RP2# · · · #RP2⏟  ⏞  
𝑛

(𝑛 ≥ 2):

𝜋1(Σ) ∼= ⟨𝑎1, ..., 𝑎𝑛 | 𝑎2
1 · · · 𝑎2

𝑛⟩.

5) 𝑤 = 𝑎1𝑏1𝑎
−1
1 𝑏−1

1 · · · 𝑎𝑛𝑏𝑛𝑎−1
𝑛 𝑏−1

𝑛 and Σ = 𝑇# · · · #𝑇⏟  ⏞  
𝑛

(𝑛 ≥ 2):

𝜋1(Σ) ∼= ⟨𝑎1, 𝑏1, ..., 𝑎𝑛, 𝑏𝑛 | [𝑎1, 𝑏1] · · · [𝑎𝑛, 𝑏𝑛]⟩.

First homology groups

Since fundamental groups are topological invariants, if two surfaces have non-isomorphic funda-
mental groups, then the two surfaces are not homeomorphic. However presentations of a group
are not unique. To overcome this difficulty, we consider their abelianizations and discuss in the
category of abelian groups. Notice that all fundamental groups are finitely generated, hence their
abelianizations are finitely generated abelian groups, for which we have the classification theorem.
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Definition 5.3.12

Let 𝐺 be a group. Its abelianization is defined to be

𝐺ab := 𝐺/[𝐺,𝐺].

Let 𝐹𝑛 be a free group of 𝑛 letters. Let 𝑁1 and 𝑁2 be two normal subgroup of 𝐹𝑛. Then by
the fundamental theorem of group homomorphism, we have

(𝐹/𝑁1)/(𝑁1𝑁2/𝑁1) ∼= 𝐹𝑛/𝑁1𝑁2.

Therefore, if a group 𝐺 has the following presentation

⟨𝑎1, ..., 𝑎𝑘 | 𝑤1, ..., 𝑤𝑙⟩,

then 𝐺ab has the presentation

⟨𝑎1, ..., 𝑎𝑘 | 𝑤1, ..., 𝑤𝑙, [𝑎1, 𝑎2], ..., [𝑎𝑘−1, 𝑎𝑘]⟩,

By this discussion, we have the abelianizations of fundamental groups of surfaces

1) 𝑤 = 𝑎𝑎−1𝑏𝑏−1 and Σ ∼= 𝑆2:
𝜋1(Σ)ab ∼= 0.

2) 𝑤 = 𝑎𝑏𝑎𝑏 and Σ ∼= RP2:
𝜋1(Σ)ab ∼= Z2.

3) 𝑤 = 𝑎𝑏𝑎−1𝑏−1 and Σ ∼= 𝑇 ;
𝜋1(Σ)ab ∼= Z2

4) 𝑤 = 𝑎1𝑎1𝑎2𝑎2 · · · 𝑎𝑛𝑎𝑛 and Σ = RP2# · · · #RP2⏟  ⏞  
𝑛

(𝑛 ≥ 2):

𝜋1(Σ)ab ∼= Z𝑛−1 ⊕ Z2.

5) 𝑤 = 𝑎1𝑏1𝑎
−1
1 𝑏−1

1 · · · 𝑎𝑛𝑏𝑛𝑎−1
𝑛 𝑏−1

𝑛 and Σ = 𝑇# · · · #𝑇⏟  ⏞  
𝑛

(𝑛 ≥ 2):

𝜋1(Σ)ab ∼= Z2𝑛.

Now we consider the classification of finitely generated abelian groups and have the following
classification of surfaces:

Theorem 5.3.13

Any closed compact surface Σ is homeomorphic to exact one of the following surfaces:

1) 𝑆2;

2) RP2;

3) 𝑇 ;

4) RP2# · · · #RP2⏟  ⏞  
𝑛

, 𝑛 ≥ 2;

5) 𝑇# · · · #𝑇⏟  ⏞  
𝑛

, 𝑛 ≥ 2.
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Remark 5.3.14.
After introducing the homology groups for a topological space, we will come back to the abelian-
ization of fundamental group of a surface and moreover for a path connected space. We will show
that the abelianization of the fundamental group is isomorphic to the first homology group.

5.4 Euler characteristic
As introduced in the introduction, Euler characteristic is a topological invariant for surfaces. In
this part, we will analysis it more closely still in a combinatorial way. A generalization of this
topological invariant for any CW-complex will be discussed later.

Triangulations and cellulations of a surface

The Euler characteristic of a surface can be computed by counting number of vertices, edges and
faces in a triangulation of the surface.

As suggested by its name, a triangulation of a surface is a decomposition of the surface into
triangles. More precisely, let 𝑇 = (𝑉,𝐸) be a graph embedded in Σ, where 𝑉 is the set of vertices
and 𝐸 is the set of edges. If the closure of each connected component of the complement of 𝑇 is a
triangle, then we call 𝑇 a triangulation of the surface Σ. Notice that each connected component
Δ of Σ ∖ 𝑇 is homeomorphic to an open disk 𝐷. We denote by

𝑓 : 𝐷 → Δ.

Then the map 𝑓 can be extends to a continuous map

𝑓 : 𝐷 → Δ.

Hence 𝑓(𝜕𝐷) ⊂ 𝑇 . By a triangle, we mean that 𝑓−1(𝜕Δ ∩ 𝑉 ) has three points. Each connected
component of the complement of 𝑇 is called a face for 𝑇 . We denote by 𝐹 the collection of all
faces for 𝑇 .

Another way to describe a triangulation is first marking a finite collection 𝑉 of points in Σ
as vertices, then connect them by simple paths, i.e. paths such that the restriction to (0, 1) is
injective. Two paths are said to be disjoint if the images of their restriction to (0, 1) are disjoint.
Then a triangulation of Σ is a maximal collection of simple paths connecting points in 𝑉 which
are pairwise non homotopic and pairwise disjoint. For example, given a 𝑛-gon with 𝑛 > 3, we can
add diagonals to get a triangulation of the 𝑛-gon. This can be done in finite time.

Let 𝑇 and 𝑇 ′ be two triangulations of Σ. If up to homotopy, there is an embedding of 𝑇 into
𝑇 ′, then we call 𝑇 ′ a refinement of 𝑇 . In this case, all faces and edges of 𝑇 ′ come from taking a
subdivision of those of 𝑇 .

If we require only the interior closure of each connected component of the complement of 𝑇 is
simply a polygon, then we obtain a cellulation. A refinement of a cellulation can be defined in a
similar fashion.

Euler characteristic

Definition 5.4.1

The Euler characteristic 𝜒(Σ) of a surface Σ is defined to be the following quantity:

𝜒(Σ) = #𝑉 − #𝐸 + #𝐹,

where 𝑉 , 𝐸 and 𝐹 are sets of vertices, edges and faces of a triangulation of Σ.
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Proposition 5.4.2

The Euler characteristic of a surface Σ is independent of choice of the triangulation.

There are two steps that should be completed to prove this proposition:

1) Euler characteristic is invariant under refinements;

2) Up to homotopy, any two triangulations of Σ have a common refinement.

To see the point 2), we use the fact that the surface is compact, and locally homeomorphic to
R2, hence it has a finite cover consisting only closed subsets homeomorphic to closed disk in R2.
Moreover, since all edges are compact, we may assume that each edge is cut into finitely many
segments each of which is contained in one subset in the covering. By identifying each disk set
with an Euclidean disk, we can pulling tight each segment, and get new triangulation 𝑇0 and
𝑇 ′

0, such that 𝑇0 and 𝑇 ′
0 intersect at finitely many points. Now we consider all these intersection

points, vertex in 𝑇0 and those in 𝑇 ′
0 and add edges if necessary to get a common refinement for

𝑇0 and 𝑇 ′
0 at the same time.

For the point 1), notice that a refinement can be obtained by adding one vertex a time. If we
add one vertex on an edge, then we have one more vertex, two more edges and one more face. If
we add one vertex in the interior of a face, then we have one more edge, three more edges and
two more face. As a conclusion, the Euler characteristic is invariant.

To compute the Euler characteristic, we use the formula

𝜒(Σ#Σ′) = 𝜒(Σ) + 𝜒(Σ′) − 2.

Then by the classification of closed compact surfaces, we have

𝜒(𝑆2) = 2;
𝜒(RP2) = 1;
𝜒(𝐾) = 0;
𝜒(𝑇 ) = 0;

𝜒

⎛⎝RP2# · · · #RP2⏟  ⏞  
𝑛

⎞⎠ = 2 − 𝑛;

𝜒

⎛⎝𝑇# · · · #𝑇⏟  ⏞  
𝑛

⎞⎠ = 2 − 2𝑛.

5.5 Orientation
The orientation is another object that we consider when studying manifolds. In R2, there are
precisely two orientations. We consider a frame in R2 which is formed by two vectors. Consider
the matrix formed by these vectors. The sign of the determinant is called an orientation of R2.
Given an triangle, we can talk about its orientation.

For a general surface, we will use triangulation to study its orientability. Consider a collection
of triangles glued together to get a surface Σ. We start by choosing an orientation on one triangle,
then we may try to extend it to the entire Σ. However, this is not always doable. For example,
one may consider the Möbius band.

To make this more precise, we give the following definitions. Let 𝑇 be a triangulation of Σ.
To each face 𝑓 , we associate to it an orientation 𝑂𝑓 . Let 𝒪 be the collection of all 𝑂𝑓 ’s.
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Definition 5.5.1

The collection 𝒪 is coherent if the two orientation on each edge induced by its adjacent
triangles are inverse to each other. In this case, we say that the triangulation is orientable.

Definition 5.5.2

A surface is orientable if it admits an orientable triangulation.

Proposition 5.5.3

If a surface admits an orientable triangulation, then all its triangulations are orientable.

The idea of the proof is the same as the one above for showing that the Euler characteristic is
independent of choice of the triangulation. We should show that if a triangulation is orientable,
so are all its refinements. This can be shown by observing that any refinement of 𝑇 is obtained
by taking subdivision of 𝑇 .

Given any two triangulations 𝑇 and 𝑇 ′ of Σ, up to homotopy, they admits a common refinement
𝑇 ′′. Let 𝒪 be collections of orientations chosen for faces of 𝑇 . Denote by 𝒪0 be the collection
of orientations on faces of 𝑇 ′′ induced by 𝒪. If 𝒪 is coherent, so is 𝒪0. Since a face 𝑓 ′ of 𝑇 ′ is
subdivided into faces of 𝑇 ′′. The coherent collection 𝒪0 induces a collection 𝒪′ of orientations of
faces of 𝑇 ′ which is coherent. Hence 𝑇 ′ is also orientable.



Chapter 6

Simplicial and singular homology

In this chapter, we will give an elementary introduction to the homology theory for a general
topological space.

6.1 Rough idea of homology after Poincaré
Recall that a space is path connected if any two points can be connected by a path. Or in the
other words, any two points are boundary of some 1-submanifold, i.e. a subset of the space which
is a 1-manifold. For a general topological space 𝑋, we can try to use this as an equivalence relation
and the number of corresponding equivalence classes is exactly the number of path connected
components of 𝑋.

Topologically there are many different topological spaces which are path connected. In order
to have a finer classification, we have to considering a somewhat higher level "connectivity". In
the world of manifolds, there is a natural way to do this which is called "bordism". This is a
generalization of the above observation. More precisely, let 𝑀 be a 𝑛-manifold. We consider 1-
submanifolds of 𝑀 . If 𝛼 and 𝛽 are two 1-submanifolds, which form a boundary of a 2-submanifold
of 𝑀 , we say that they are equivalent. Then we consider the spaces of equivalence classes of
1-submanifolds of 𝑀 , which could give more information about the connectivity of 𝑀 . We can
continue to study 𝑘-submanifolds of 𝑀 , and define that two 𝑘-submanifolds are equivalent if and
only if they form the boundary of a (𝑘 + 1)-submanifold of 𝑀 .

One observation made by Poincaré is that "the boundary of boundary of a manifold is empty."
(See Figure 6.1.1 for an illustration.)

Figure 6.1.1: The boundary of a one-holed torus is homeomorphic to 𝑆1 which has no boundary.

Instead of considering all 𝑘-submanifolds, we consider only those equivalence classes of closed
ones. In this way, we obtain a set which is topologically invariant by considering its definition.
This is the rough idea of the homology in the beginning.

We are going to introduce three homology for a space: simplicial homology, singular homology
and cellular homology. For a space where all of them are well defined, they are algebraically the
same.

207
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6.2 Simplicial homology
As suggested by its name, we consider a space which admits a decomposition into a collection of
"triangles" of different dimensions.

Euclidean simplices

For any 𝑛 ∈ N, a "triangle" of dimension 𝑛 is usually called an 𝑛-simplex. We call the following
subset of R𝑛+1 the standard 𝑛-simplex

Δ𝑛 = {(𝑥0, ..., 𝑥𝑛) ∈ R𝑛+1 | 𝑥0 + · · · + 𝑥𝑛 = 1, 𝑥0 ≥ 0, ..., 𝑥𝑛 ≥ 0}.

(See Figure 6.2.1 for an illustration.)

0 1 0 1

1

0

1

1
1

Figure 6.2.1: From left to right: Δ0, Δ1 and Δ2.

For any 0 ≤ 𝑖 ≤ 𝑛, Let 𝑒𝑖 denote the point of R𝑛+1 with 𝑖-th coordinate 1 and all others 0.
Then we have

Δ𝑛 = {𝑥0𝑒0 + · · · + 𝑥𝑛𝑒𝑛 ∈ R𝑛+1 | 𝑥0 + · · · + 𝑥𝑛 = 1, 𝑥0 ≥ 0, ..., 𝑥𝑛 ≥ 0}.

This construction can be done for any 𝑛+ 1 points of R𝑛+1 in general position. When 𝑛 = 0, any
point in R is in general position. When 𝑛 > 0, let 𝑣0, ..., 𝑣𝑛 be 𝑛+ 1 points in R𝑛+1. We say that
they are in general position if the vectors

𝑣1 − 𝑣0, ..., 𝑣𝑛 − 𝑣0,

are linearly independent. An 𝑛-simplex in R𝑛+1 determined by 𝑣0, ..., 𝑣𝑛 in general position is
the following subset

{𝑥0𝑣0 + · · · + 𝑥𝑛𝑣𝑛 ∈ R𝑛+1 | 𝑥0 + · · · + 𝑥𝑛 = 1, 𝑥0 ≥ 0, ..., 𝑥𝑛 ≥ 0}.

Points 𝑣0, ..., 𝑣𝑛 are called vertices of this 𝑛-simplex. Notice that for any 𝑚 ≥ 𝑛, we can define
𝑛-simplices in R𝑚. If a simplex Δ1 determined by all but one vertex of another simplex Δ2 with
positive dimension, we say that Δ1 is a face of Δ2 (see Figure 6.2.2 for an illustration). For any
simplex Δ determined by some vertices of another simplex Δ′, we denote Δ ≤ Δ′.

Let 𝑛 ≥ 1. Consider the simplex in R𝑚 determined by vertices 𝑣0, ..., 𝑣𝑛. It can be associated
with an orientation by first giving an order among its vertices:

(𝑣0, ..., 𝑣𝑛),

then consider the sign of the determinant of the matrix

[𝑣1 − 𝑣0 · · · 𝑣𝑛 − 𝑣0].

If the sign is positive, we say that the orientation is positive; if the sign is negative, we say the
orientation is negative. The simplex equipped with this orientation is denoted by [𝑣0, ..., 𝑣𝑛]. The
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𝑣0
𝑣1

𝑣2

𝑣4

Δ2

Δ1

Figure 6.2.2: The simplex Δ1 determined by 𝑣0, 𝑣1 and 𝑣2 is a face of Δ2 determined by 𝑣0, 𝑣1,
𝑣2 and 𝑣3.

order among 𝑣0, ..., 𝑣𝑛 is not unique and there is a natural action of the permutation group of
𝑆𝑛+1 on {𝑣0, ..., 𝑣𝑛} by permuting the index {0, ..., 𝑛}. As a convention, we may use −[𝑣0, ..., 𝑣𝑛]
to denote the same simplex with the opposite orientation. For any 𝜏 a permutation on {0, ..., 𝑛},
we denote.

[𝑣0, ..., 𝑣𝑛] = sgn(𝜏)[𝑣𝜏(0), ..., 𝑣𝜏(𝑛)].

A simplicial complex is a finite collection 𝐾 of simplices in some Euclidean space R𝑚, such
that

(i) if a simplex Δ ∈ 𝐾, so are all its faces;

(ii) if two simplices Δ and Δ′ in 𝐾 have non empty intersection, then Δ ∩ Δ′ ≤ Δ and
Δ ∩ Δ′ ≤ Δ′.

The union of simplices in 𝐾 will be denoted by ∪𝐾 and equipped with the subspace topology
from R𝑚.

Figure 6.2.3: The left is a simplicial complex formed by one 3-simplex, six 2-simplices, twelve
1-simplices and eight 0-simplices, while the right is not a simplicial complex.

Simplicial chain complex and simplicial homology groups

Let 𝑋 be a topological space. A simplicial complex structure on 𝑋 is a homeomorphism

𝑓 : ∪𝐾 → 𝑋,

where 𝐾 is a simplicial complex in an Euclidean space R𝑚 for some 𝑚 ∈ N* (see Figure 6.2.4
and 6.2.5 for illustrations).
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Figure 6.2.4: A simplicial complex structure on a 3 dimensional ball.

Figure 6.2.5: A simplicial complex structure on a torus.

A simplicial complex structure on 𝑋 can also be defined to be a collection of compatible
continuous maps from standard simplices to 𝑋. More precisely, consider the standard 𝑛-simplex
Δ𝑛. There are orientation preserving affine maps to identity faces of Δ𝑛 with standard simplices
of same dimensions. We choose once for all such identification. A simplicial complex structure is
then defined to be a collection of maps indexed by Ω:

Λ = {𝜎𝛼 : Δ𝑛𝛼 → 𝑋 | 𝛼 ∈ Ω, Δ𝑛𝛼 is a standard simplex of dimension 𝑛𝛼, and 𝜎𝛼 is continuous},

such that

1) The restriction of each 𝜎𝛼 ∈ Λ to Δ̊𝑛𝛼 is injective.

2) Each 𝑝 ∈ 𝑋 belongs to the image of an unique map 𝜎𝛼|Δ̊𝑛𝛼 .

3) The restriction of each 𝜎𝛼 to a face of Δ𝑛𝛼 is one map

𝜎𝛽 : Δ𝑛𝛽 → 𝑋

in Λ.

4) For any 𝐴 ⊂ 𝑋, the subset 𝐴 is open if and only if for any 𝜎𝛼 ∈ Λ, the preimage 𝜎−1
𝛼 (𝐴) is

open in Δ𝑛𝛼 .
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Remark 6.2.1.
Roughly speaking, the space 𝑋 can be considered as a result of gluing of a collection of simplies.
Moreover the topology on 𝑋 is induced by the topology on each simplies.

We call the image of each 𝜎𝛼 an 𝑛𝛼-simplex in 𝑋, and denote it by 𝑒𝛼. By considering each
such simplex 𝑒𝛼 as a formal generator, we associated to it a copy of Z whose elements are denoted
as 𝑛𝑒𝛼. In this way, we have the following abelian group

𝐶Δ
𝑛 (𝑋) :=

{︃
𝑘∑︁
𝑖=0

𝑚𝑖𝑒𝛼𝑖

⃒⃒⃒⃒
⃒ 𝑘 ∈ N,𝑚0, ...,𝑚𝑘 ∈ Z

}︃
.

Each element 𝜎 ∈ 𝐶Δ
𝑛 is a finite Z-coefficient formal sum

𝑘∑︁
𝑖=0

𝑚𝑖𝑒𝛼𝑖 ,

which is called an 𝑛-chain. For 𝑛𝛼 > 0, the orientation on Δ𝑛𝛼 induces an orientation on 𝑒𝛼 by
𝜎𝛼. The elements −𝑒𝛼 can be considered as the same simplex with opposite orientation. As a
convention a 0-chain in 𝑋 is a finite Z-coefficient formal sum of 0-simplicies in 𝑋.

Notice that if 𝑛 ≥ 2, by restricting 𝜎𝛼 to the faces of Δ𝑛𝛼 , there is a natural map from
an 𝑛-chain to an (𝑛 − 1)-chain. More precisely, assume Δ𝑛𝛼 = [𝑣0, ..., 𝑣𝑛], for any simplex
𝑒𝛼 = 𝜎𝛼([𝑣0, ..., 𝑣𝑛]) in 𝑋, its boundary 𝜕𝑛(𝑒𝛼) is given as follows:

𝜕𝑛(𝜎𝛼([𝑣0, ..., 𝑣𝑛])) =
𝑛∑︁
𝑖=0

(−1)𝑖𝜎𝛼([𝑣0, ..., ̂︀𝑣𝑖, ..., 𝑣𝑛]).

Here [𝑣0, ..., ̂︀𝑣𝑖, ..., 𝑣𝑛] stands for oriented face determined by all vertices but 𝑣𝑖. With the coefficient
(−1)𝑖, the orientation associated to each face is induced by that on [𝑣0, ..., 𝑣𝑛]. We can formally
define the boundary of a 1-simplex in a same way. For any simplex 𝑒𝛼 = 𝜎𝛼([𝑣0, 𝑣1]) in 𝑋, its
boundary is defined to be

𝜕1(𝜎𝛼([𝑣0, 𝑣1])) = −𝜎𝛼([𝑣0]) + 𝜎𝛼([𝑣1]).

For any 𝑛 > 0, the boundary of an 𝑛-chain is then defined as follows:

𝜕𝑛

(︃
𝑘∑︁
𝑖=0

𝑚𝑖𝑒𝛼𝑖

)︃
=

𝑘∑︁
𝑖=0

𝑚𝑖𝜕𝑛(𝑒𝛼𝑖).

A direct computation can show that this induces a group homomorphism

𝜕𝑛 : 𝐶Δ
𝑛 (𝑋) → 𝐶Δ

𝑛−1(𝑋)

for 𝑛 > 0. When 𝑛 = 0, we set
𝜕0 : 𝐶Δ

0 (𝑋) → 0

where 0 stands for the trivial group.
Put all pieces together, we have the following chain of group homomorphisms:

· · ·
𝜕𝑛+2
// 𝐶Δ
𝑛+1(𝑋)

𝜕𝑛+1
// 𝐶Δ
𝑛 (𝑋) 𝜕𝑛 // 𝐶Δ

𝑛−1(𝑋)
𝜕𝑛−1

// · · · 𝜕2 // 𝐶Δ
1 (𝑋) 𝜕1 // 𝐶Δ

0 (𝑋) 𝜕0 // 0
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Proposition 6.2.2

The composition of two successive boundary homomorphisms is trivial, i.e. for any 𝑛 ∈ N,
we have

𝜕𝑛 ∘ 𝜕𝑛+1 = 0,

where 0 is the trivial homomorphism.

Proof. For any 𝑛 ∈ N, it is enough to show that this holds for any 𝑛+ 2-simplex.
Let Δ𝑛+1 = [𝑣0, ..., 𝑣𝑛+1] and 𝑒 = 𝜎([𝑣0, ..., 𝑣𝑛+1]𝑜] be an open 𝑛+ 1-simplex in 𝑋. Hence we

have

𝜕𝑛+1(𝑒) = 𝜕(𝜎([𝑣0, ..., 𝑣𝑛+1])) =
𝑛+1∑︁
𝑖=0

(−1)𝑖𝜎([𝑣0, ..., ̂︀𝑣𝑖, ..., 𝑣𝑛+1]).

We then compute its image under 𝜕𝑛:

𝜕𝑛(𝜕𝑛+1(𝑒)) =
𝑛+1∑︁
𝑖=0

(−1)𝑖𝜕𝑛(𝜎([𝑣0, ..., ̂︀𝑣𝑖, ..., 𝑣𝑛+1])).

=
𝑛+1∑︁
𝑖=0

⎛⎝∑︁
𝑗<𝑖

(−1)𝑖(−1)𝑗(𝜎([𝑣0, ..., ̂︀𝑣𝑗 , ..., ̂︀𝑣𝑖, ..., 𝑣𝑛+1]))

+
∑︁
𝑗>𝑖

(−1)𝑖(−1)𝑗−1(𝜎([𝑣0, ..., ̂︀𝑣𝑖, ..., ̂︀𝑣𝑗 , ..., 𝑣𝑛+1]))

⎞⎠
= 0.

Hence we have the proposition.

Equivalently, we have the following fact.

Corollary 6.2.3

For any 𝑛 ∈ N, we have
Im(𝜕𝑛+1) ⊂ ker(𝜕𝑛).

We have a name for such a diagram. Let (𝐶𝑛)𝑛∈N be a sequence of abelian groups and for
each 𝑛 ∈ N*, we have a group homomorphism

𝜕𝑛 : 𝐶𝑛 → 𝐶𝑛−1.

We denote by 𝜕0 the trivial homomorphism from 𝐶0 to 0 the trivial group. Hence we have the
following diagram:

· · ·
𝜕𝑛+2
// 𝐶𝑛+1

𝜕𝑛+1
// 𝐶𝑛

𝜕𝑛 // 𝐶𝑛−1
𝜕𝑛−1

// · · · 𝜕2 // 𝐶1
𝜕1 // 𝐶0

𝜕0 // 0

Definition 6.2.4

We say that (𝐶𝑛)𝑛∈N with (𝜕𝑛)𝑛∈N is a chain complex, if for any 𝑛 ∈ N, we have

𝜕𝑛 ∘ 𝜕𝑛+1 = 0.
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Given a chain complex

· · ·
𝜕𝑛+2
// 𝐶𝑛+1

𝜕𝑛+1
// 𝐶𝑛

𝜕𝑛 // 𝐶𝑛−1
𝜕𝑛−1

// · · · 𝜕2 // 𝐶1
𝜕1 // 𝐶0

𝜕0 // 0

for any 𝑛 ∈ N, we denote

𝑍𝑛 := ker 𝜕𝑛 and 𝐵𝑛 := Im𝜕𝑛+1,

by the definition of chain complex, we have

𝐵𝑛 ⊂ 𝑍𝑛.

Definition 6.2.5

For any 𝑛 ∈ N, an element of 𝐶𝑛 is called an 𝑛-chain. Let 𝜎 ∈ 𝐶𝑛 be an 𝑛-chain. If we
have 𝜎 ∈ 𝑍𝑛, we call 𝜎 an 𝑛-cycle. If we have 𝜎 ∈ 𝐵𝑛, we call 𝜎 an 𝑛-boundary. The
quotient group

𝐻𝑛 := 𝑍𝑛/𝐵𝑛

is called the 𝑛-th homology group.
For any 𝑛 ∈ N, an element in 𝐻𝑛 is called a homology class. If two cycles 𝑧 and 𝑧′

belong to a same homology class, we say that they are homologous.

We now consider the abelian groups (𝐶Δ
𝑛 )𝑛∈N and (𝜕𝑛)𝑛∈N constructed previously for 𝑋 with

a simplicial complex structure, we have a chain complex.

Definition 6.2.6

For any 𝑛 ∈ N, the homology group 𝐻Δ
𝑛 (𝑋) for this chain complex is called the 𝑛-th

simplicial homology group.

Example 6.2.7 (Standard simplices).
Let 𝑛 ∈ N* and let 𝑋 = Δ𝑛 = [𝑣0, ..., 𝑣𝑛] be the standard 𝑛-simplex. The numbers of simplices in
Δ𝑛 of different dimensions are as follows:

dim 𝑛 𝑛− 1 𝑛− 2 · · · 1
# 1 𝑛+1

1!
(𝑛+1)𝑛

2! · · · 𝑛

re are one 𝑛-simplex, 𝑛+ 1 (𝑛− 1)-simplices, 𝑛(𝑛+1)
2 (𝑛− 2)-simplices,..., 𝑛 0-simplicies. The

abelian groups 𝐶Δ
𝑘 (Δ𝑛)’s are as follows:

𝐶Δ
𝑘 (Δ𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑘 > 𝑛

Z[𝑣0, ..., 𝑣𝑛] 𝑘 = 𝑛⨁︁
0≤𝑖≤𝑛

Z[𝑣0, ..., ̂︀𝑣𝑖, ...𝑣𝑛] 𝑘 = 𝑛− 1

⨁︁
0≤𝑖1<𝑖2≤𝑛

Z[𝑣0, ...,̂︁𝑣𝑖1 , ...,̂︁𝑣𝑖2 ...𝑣𝑛] 𝑘 = 𝑛− 2

· · ·⨁︁
0≤𝑖≤𝑛

Z[𝑣𝑖] 𝑘 = 0
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Example 6.2.8 (Triangulated torus with boundary).
We consider the torus with a simplicial complex structure in Figure 6.2.5. Denote the torus by 𝑇 .
Let 𝑆 be the interior of a triangle in 𝑇 which is the image of 𝜎𝛼|Δ2 for some 𝛼. Topologically
we remove an open disc from the torus. The resulting surface is a torus with one boundary
component, denoted by 𝑇 ′. By removing the map 𝜎𝛼 from the simplicial complex structure of 𝑇 ,
we obtain a simplicial complex structure of 𝑇 ′.

Let 𝑒𝛼1 , ..., 𝑒𝛼𝑘
be all 2-simplicies in 𝑇 ′. An orientation on Δ2 induces orientations on

𝑒𝛼1 , ..., 𝑒𝛼𝑘
by 𝜎𝛼1 , ..., 𝜎𝛼𝑘

. If two 2-simplices 𝑒𝛼𝑗
and 𝑒𝛼𝑙

are adjacent, then by the definition of
the simplicial complex structure 𝜎𝛼𝑗

and 𝜎𝛼𝑙
induces a same orientation on the common 1-simplex

𝑒𝛼𝑗 ∩ 𝑒𝛼𝑙
. Hence the orientation on 𝑒𝛼𝑗 and that on 𝑒𝛼𝑙

are not coherent.
Consider the 2-chain

𝜎 =
𝑘⨁︁
𝑖=1

𝜖𝑖𝑒𝛼𝑖 ,

such that 𝜖1, ..., 𝜖𝑘 ∈ {1,−1}, and for any two given neighbor simplicies 𝑒𝛼𝑗
and 𝑒𝛼𝑙

, we have
𝜖𝑗 = −𝜖𝑙. In this way, we use this chain to represent the torus 𝑇 ′ with an orientation. The
simplex removed from 𝑇 to get 𝑇 ′ is given by 𝜎𝛼. Up to a sign, the boundary of chain 𝜎 is then

𝜕𝜎 = 𝜎𝛼([𝑣0, 𝑣1]) + 𝜎𝛼([𝑣1, 𝑣2]) − 𝜎𝛼([𝑣0, 𝑣2]).

Consider its boundary, we then have

𝜕(𝜕𝜎) = 𝜎𝛼(𝑣1) − 𝜎𝛼(𝑣0) + 𝜎𝛼(𝑣2) − 𝜎𝛼(𝑣1) − 𝜎𝛼(𝑣2) + 𝜎𝛼(𝑣0) = 0.

Topologically the boundary of 𝑇 ′ is a circle which has empty boundary.

6.3 Singular homology
Recall that our initial goal is to study the topological space 𝑋 and a simplicial complex structure
is an additional structure on 𝑋. Given a space 𝑋, its simplicial complex structures are not
unique in general. For example, a compact surface 𝑋 may have different triangulations which
are different combinatorically. On the other hand the simplicial homology group depends on the
existence and choice of a simplicial complex structiure on 𝑋. Hence we may face two immediate
questions:

1) Does a space 𝑋 has a simplicial complex structure?

2) Are the homology groups for different simplicial complex structures on 𝑋 isomorphic to
each other?

In fact the construction of simplicial homology groups can be generalized to avoid these
problems. We now present the construction of singular homology groups for a space. Let 𝑋 be a
topological space. For any 𝑛 ∈ N, we still denote by Δ𝑛 the standard 𝑛-simplex. Instead of focus
on simplices as subsets in 𝑋, we consider the map from Δ𝑛 to 𝑋.

Definition 6.3.1

For any 𝑛 ∈ N, a singular 𝑛-simplex in 𝑋 is a continuous map

𝜎 : Δ𝑛 → 𝑋.

As in the construction of simplicial chain complex, we also associated to Δ𝑛 an orientation.
Then define

𝐶𝑛(𝑋) :=
{︃

𝑘∑︁
𝑖=0

𝑚𝑖𝜎𝑖

⃒⃒⃒⃒
⃒ 𝑘 ∈ N,𝑚0, ...,𝑚𝑘 ∈ Z

}︃
.
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The construction of boundary homomorphisms still works here for 𝐶𝑛(𝑋). For any 𝑛 ∈ N*, we
may express Δ𝑛 with an orientation as an ordered sequence of its vertices

[𝑣0, ..., 𝑣𝑛].

Then for any singular 𝑛-simplex 𝜎, we define

𝜕𝑛𝜎 =
𝑛∑︁
𝑖=0

(−1)𝑛𝜎|[𝑣0,...,̂︀𝑣𝑖,...,𝑣𝑛].

Here we identify a (𝑛 − 1)-face [𝑣0, ..., ̂︀𝑣𝑖, ..., 𝑣𝑛] with the standard (𝑛 − 1)-simplex Δ𝑛−1 by
identifying the vertices in order and extending this identification to [𝑣0, ..., ̂︀𝑣𝑖, ..., 𝑣𝑛] to Δ𝑛−1

using linear maps. Then for any 𝑛-chain

𝜎′ =
𝑘∑︁
𝑖=1

𝜎𝑖 ∈ 𝐶𝑛(𝑋),

we define

𝜕𝑛(𝜎′) =
𝑘∑︁
𝑖=1

𝜕𝜎𝑖.

This gives a group homomorphism

𝜕𝑛 : 𝐶𝑛(𝑋) → 𝐶𝑛−1(𝑋).

For 𝑛 = 0, we define 𝜕0 to be the trivial homomorphism from 𝐶0(𝑋) to the trivial group 0. In
this way, we have the following diagram

· · ·
𝜕𝑛+2

// 𝐶𝑛+1(𝑋)
𝜕𝑛+1
// 𝐶𝑛(𝑋) 𝜕𝑛 // 𝐶𝑛−1(𝑋)

𝜕𝑛−1
// · · · 𝜕2 // 𝐶1(𝑋) 𝜕1 // 𝐶0(𝑋) 𝜕0 // 0

A similar computation shows the following fact.

Proposition 6.3.2

For any 𝑛 ∈ N, we have
𝜕𝑛 ∘ 𝜕𝑛+1 = 0.

Hence (𝐶𝑛(𝑋))𝑛∈N with (𝜕𝑛)𝑛∈N is a chain complex.

Definition 6.3.3

The homology group 𝐻𝑛(𝑋) for this chain complex is called the 𝑛-th singular homology
group of 𝑋.

Compare with simplicial homology groups, singular homology groups are independent of choice
of simplicial complex structure and can be defined for the space even without any simplicial
complex structures. Moreover by considering composition of continuous maps, we may immediately
conclude that singular homology groups are topological invariants. More precisely, if two spaces
are homeomorphic to each other, they have isomorphic 𝑛-th singular homology groups for any
𝑛 ∈ N.

Of course, there is a price to pay. We consider too many simplices. It is not easy to compute
it directly by definition in general. We will study it more closely in the next several sections. But
before that, let us check some simple cases first.
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Proposition 6.3.4

For any path connected space 𝑋, we have 𝐻0(𝑋) ∼= Z.

Proof. Notice that 𝜕0 is trivial, hence

𝑍0(𝑋) = 𝐶0(𝑋).

We will show next that all singular 0-simplices in 𝑋 are homologous to each other. Notice that
Δ0 is a single point set. Hence an 0-simplex is determined by its image. For any 𝑝 and 𝑞 two
points in 𝑋, we have

𝜎 : Δ0 → {𝑝} and 𝜏 : Δ0 → {𝑞}.

Since 𝑋 is path connected, there is a path

𝛼 : [0, 1] → 𝑋

with 𝛼(0) = 𝑝 and 𝛼(1) = 𝑞. We identify [0, 1] with

Δ1 = [𝑣0, 𝑣1],

where 0 and 1 are identified with 𝑣0 and 𝑣1 respectively. Then 𝛼 can be considered as a singular
1-simplex in 𝑋, and we have

𝜕𝛼 = 𝜏 − 𝜎.

Hence 𝜏 and 𝜎 are different by a 0-boundary, and we have in the homology group

[𝜏 ] = [𝜎].

Hence 𝐻0(𝑋) has one generator [𝜏 ] and

𝐻0(𝑋) ∼= Z.

Another obvious fact comes from the fact that a continuous map sends a path connected space
to a path connected space.

Proposition 6.3.5

Let 𝑋 be a topological space with a path connected component decomposition

𝑋 =
⨆︁
𝛼∈Ω

𝑋𝛼.

Then for any 𝑛 ∈ N, we have
𝐻𝑛(𝑋) ∼=

⨁︁
𝛼∈Ω

𝐻𝑛(𝑋).

Proof. For any 𝑛 ∈ N, for any singular 𝑛-simplex 𝜎 in 𝑋, since Δ𝑛 is path connected and 𝜎 is
continuous, there is an index 𝛼 ∈ Ω, such tha

𝜎(Δ𝑛) ⊂ 𝑋𝛼.

Hence we have
𝐶𝑛(𝑋) =

⨁︁
𝛼∈Ω

𝐶𝑛(𝑋𝛼).
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Moreover, for any 𝑛 ∈ N*, any 𝛼 ∈ Ω, and any 𝜎 ∈ 𝐶𝑛(𝑋𝛼), we have

𝜕𝑛𝜎 ∈ 𝐶𝑛−1(𝑋).

Hence we have
𝑍𝑛(𝑋) =

⨁︁
𝛼∈Ω

𝑍𝑛(𝑋𝛼),

and
𝐵𝑛(𝑋) =

⨁︁
𝛼∈Ω

𝐵𝑛(𝑋𝛼).

Hence by the fundamental theorem of group homomorphism, we have

𝐻𝑛(𝑋) = 𝑍𝑛(𝑋)/𝐵𝑛(𝑋) ∼=
⨁︁
𝛼∈Ω

𝑍𝑛(𝑋𝛼)/𝐵𝑛(𝑋𝛼) =
⨁︁
𝛼∈Ω

𝐻𝑛(𝑋𝛼).

Corollary 6.3.6

Let 𝑋 be a topological space with a path connected component decomposition

𝑋 =
⨆︁
𝛼∈Ω

𝑋𝛼.

Then we have
𝐻0(𝑋) ∼=

⨁︁
𝛼∈Ω

Z

The "simplest" topological space is the single point space. In this case, we can explicitly
compute its singular homology groups using definition.

Proposition 6.3.7

Let 𝑋 be a single point space. Then we have

𝐻𝑛(𝑋) ∼=
{︃
Z, 𝑛 = 0,
0, 𝑛 > 0.

Proof. We denote by 𝑝 the point in 𝑋. For any 𝑛 ∈ N, there is a unique singular 𝑛-simplex in 𝑋:

𝜎𝑛 : Δ𝑛 → 𝑋

𝑤 ↦→ 𝑝

which is a constant map. We compute the boundary of 𝜎𝑛. For any 𝑛 ∈ N*, we have

𝜕𝑛𝜎𝑛 =
𝑛∑︁
𝑖=0

(−1)𝑖𝜎𝑛−1.

Hence we have

𝜕𝑛𝜎𝑛 =
{︃
𝜎𝑛−1, 𝑛 even,
0, 𝑛 odd.

Therefore up to isomorphism, the chain complex

· · ·
𝜕𝑛+2

// 𝐶𝑛+1(𝑋)
𝜕𝑛+1
// 𝐶𝑛(𝑋) 𝜕𝑛 // 𝐶𝑛−1(𝑋)

𝜕𝑛−1
// · · · 𝜕2 // 𝐶1(𝑋) 𝜕1 // 𝐶0(𝑋) 𝜕0 // 0
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can be identified with the following one

· · · id // Z 0 // Z id // Z 0 // · · · id // Z 0 // Z 0 // 0

where 𝑛 is even.
Hence for any 𝑛 ∈ N*, we have

𝑍𝑛(𝑋) =
{︃

0, 𝑛 even,
𝐶𝑛(𝑋), 𝑛 odd,

and

𝐵𝑛(𝑋) =
{︃

0, 𝑛 even,
𝐶𝑛(𝑋), 𝑛 odd.

Hence for any 𝑛 ∈ N*, we have
𝑍𝑛(𝑋) = 𝐵𝑛(𝑋),

and
𝐻𝑛(𝑋) = 𝑍𝑛(𝑋)/𝐵𝑛(𝑋) ∼= 0.

Since 𝑋 is path connected, we have 𝐻0(𝑋) = 0. We can also get it from the above discussion
which shows that

𝑍0(𝑋) = 𝐶0(𝑋) and 𝐵0(𝑋) = 0.
Therefore, we have

𝐻0(𝑋) ∼= 𝐶0(𝑋) ∼= Z.

Remark 6.3.8.
To simplify the notation, we will denote 𝜕 for all 𝜕𝑛. The meaning will be clear by considering
the context

6.4 Homotopy invariance of singular homology groups
We have seen that the singular homology is invariant under homeomorphisms. In fact, it is also
invariant under homotopy equivalence.

Consider two topological spaces 𝑋 and 𝑌 . Let

𝑓 : 𝑋 → 𝑌

be a continuous map. Then for any 𝑛 ∈ N and any 𝑛-simplex in 𝑋:

𝜎 : Δ𝑛 → 𝑋,

we have
𝑓 ∘ 𝜎 : Δ𝑛 → 𝑌

an 𝑛-simplex in 𝑌 (see Figure 6.4.1 for an illustration).
Hence for each 𝑛 ∈ N, the map 𝑓 induces a group homomorphism

𝑓# : 𝐶𝑛(𝑋) → 𝐶𝑛(𝑌 )
𝑘∑︁
𝑖=1

𝑛𝑖𝜎𝑖 ↦→
𝑘∑︁
𝑖=1

𝑛𝑖(𝑓 ∘ 𝜎𝑖).

Here to avoid too many subscription, we use 𝑓# for all 𝑛 ∈ N. The meaning will be clear by
considering the context.

This homomorphism satisfies the following property:
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Δ𝑛 𝑋 𝑌

𝜎 𝑓

Figure 6.4.1

Proposition 6.4.1

We have
𝜕 ∘ 𝑓# = 𝑓# ∘ 𝜕.

Here the 𝜕 on the left hand side is the boundary homomorphism for (𝐶𝑛(𝑌 ))𝑛∈N and the
one on the right hand side is the boundary homomorphism for (𝐶𝑛(𝑋))𝑛∈N

It comes from the observation that 𝑓 sends an (𝑛−1)-face of an 𝑛-simplex 𝜎 in 𝑋 to an (𝑛−1)-face
of 𝑓 ∘ 𝜎 in 𝑌 . The proof of the fact that 𝑓# is a group homomorphism and the proof of the above
proposition are left to readers.

Hence we have the following commutative diagram

· · · 𝜕 // 𝐶𝑛+1(𝑋) 𝜕 //

𝑓#

��

𝐶𝑛(𝑋) 𝜕 //

𝑓#

��

𝐶𝑛−1(𝑋) 𝜕 //

𝑓#

��

· · · 𝜕 // 𝐶1(𝑋) 𝜕 //

𝑓#

��

𝐶0(𝑋) 𝜕 //

𝑓#

��

0

· · · 𝜕 // 𝐶𝑛+1(𝑌 ) 𝜕 // 𝐶𝑛(𝑌 ) 𝜕 // 𝐶𝑛−1(𝑌 ) 𝜕 // · · · 𝜕 // 𝐶1(𝑌 ) 𝜕 // 𝐶0(𝑌 ) 𝜕 // 0

Definition 6.4.2

The homomorphisms 𝑓#’s are called the chain maps induced by 𝑓 .

One important property of the chain maps 𝑓#’s is that it builds the connection in the homology
group level.

Proposition 6.4.3

For each 𝑛 ∈ N, the chain maps 𝑓# induces a group homomorphism

𝑓* : 𝐻𝑛(𝑋) → 𝐻𝑛(𝑌 ).

Proof. It is enough to show that for any 𝑛 ∈ N, the map 𝑓# sends 𝑛-cycles and 𝑛-boundaries in
𝐶𝑛(𝑋) to 𝑛-cycles and 𝑛-boundaries in 𝐶𝑛(𝑌 ) respectively.

Let 𝑛 ∈ N. For any 𝑧 ∈ 𝑍𝑛(𝑋), we have

𝜕(𝑓#(𝑧)) = 𝑓#(𝜕(𝑧)) = 𝑓#(0) = 0.

Hence 𝑓#(𝑍) ∈ 𝑍𝑛(𝑌 ). Therefore we have a homomorphism

𝜋𝑌 ∘ 𝑓# : 𝑍𝑛(𝑋) → 𝑍𝑛(𝑌 ) → 𝐻𝑛(𝑌 ) := 𝑍𝑛(𝑌 )/𝐵𝑛(𝑌 ).
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For any 𝑏 ∈ 𝐵𝑛(𝑋), there is a (𝑛+ 1)-chain 𝜎 ∈ 𝐶𝑛+1(𝑋), such that

𝑏 = 𝜕𝜎.

We have
𝑓#(𝑏) = 𝑓#(𝜕(𝜎)) = 𝜕(𝑓#(𝜎)).

Therefore 𝑓#(𝑏) ∈ 𝐵𝑛(𝑋), and
𝐵𝑛(𝑋) ⊂ ker(𝜋𝑌 ∘ 𝑓#).

We have a group homomorphism

𝑓* : 𝐻𝑛(𝑋) → 𝐻𝑛(𝑌 ),

which satisfies the following commutative diagram

𝑍𝑛(𝑋)
𝑓#
//

𝜋𝑋

��

𝑍𝑛(𝑌 ) 𝜋𝑌 // 𝐻𝑛(𝑌 )

𝐻𝑛(𝑋)
𝑓*

44

Now we consider two continuous maps

𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑌,

homotopic to each other. We should like to show the following theorem.

Theorem 6.4.4

For any 𝑛 ∈ N, we have 𝑓* = 𝑔*.

Proof. Since 𝑓 and 𝑔 are homotopic, there is a homotopy

𝐻 : 𝑋 × [0, 1] → 𝑌,

between them, such that 𝐻0 = 𝑓 and 𝐻1 = 𝑔.

Δ𝑛

𝑋 𝑌

𝜎 𝜎(Δ𝑛)

𝑓

𝐻𝑡

𝑔

𝑓(𝜎(Δ𝑛))
𝐻𝑡(𝜎(Δ𝑛))
𝑔(𝜎(Δ𝑛))

Figure 6.4.2: The relation between 𝑓# and 𝑔#.

Let 𝑛 ∈ N. We consider the induced chain maps 𝑓# and 𝑔# (see Figure 6.4.2 for an illustration).
It is enough to show that for any 𝑧 ∈ 𝑍𝑛(𝑋), we have

𝑓#(𝑧) − 𝑔#(𝑧) ∈ 𝐵𝑛(𝑌 ).
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For any 𝑘 ∈ N, Given any 𝑘-simplex 𝜏 in 𝑋, we can extend this to a continuous map

̃︀𝜏 : Δ𝑘 × [0, 1] → 𝑋 × [0, 1],
(𝑎, 𝑡) ↦→ (𝜏(𝑎), 𝑡).

Notice that Δ𝑘 × [0, 1] is a prism. We denote the simplex Δ𝑘 using its vertices

[𝑢0, ..., 𝑢𝑘].

Then we denote the simplex Δ𝑘 × {0} still by

[𝑣0, ..., 𝑣𝑘].

and the simplex Δ𝑘 × {1} by
[𝑤0, ..., 𝑤𝑘],

such that for any 0 ≤ 𝑖 ≤ 𝑘, we have 𝑣𝑖 = (𝑢𝑖, 0) and 𝑤𝑖 = (𝑢𝑖, 1).
We consider Δ𝑛 × [0, 1] and the map 𝐻 ∘ ̃︀𝜎 (see Figure 6.4.3 for an illustration).

Δ𝑛 × [0, 1] 𝑋 × [0, 1] 𝑌

̃︀𝜎 𝐻

Figure 6.4.3: An illustration of the map 𝐻 ∘ ̃︀𝜎.

Then the prime can be decomposed in to the union of the following 𝑛-simplices whose interiors
have empty intersections:

{[𝑣0, ..., 𝑣𝑖, 𝑤𝑖, ..., 𝑤𝑛] | 0 ≤ 𝑖 ≤ 𝑛}.

𝑣0 𝑣1

𝑣2

𝑤0 𝑤1

𝑤2

𝑣0 𝑣1

𝑣2

𝑤2

𝑣0 𝑣1

𝑤1

𝑤2

𝑣0

𝑤0 𝑤1

𝑤2

Figure 6.4.4: An illustration of the decomposition of the prism Δ2 × [0, 1].

For any 𝑛-simplex 𝜎 in 𝑋, we then can define

𝑃 (𝜎) =
𝑛∑︁
𝑖=0

(−1)𝑖𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑖,𝑤𝑖,...,𝑤𝑛].
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This can be extend to a group homomorphism

𝑃 : 𝐶𝑛(𝑋) → 𝐶𝑛+1(𝑌 )

and 𝑃 is called the prime operator.
One important property satisfied by 𝑃 is the following identity

𝑔# − 𝑓# = 𝜕 ∘ 𝑃 + 𝑃 ∘ 𝜕.

To prove this identity, it is enough to check it for one 𝑛-simplex. We first compute (𝜕 ∘ 𝑃 )(𝜎):

(𝜕 ∘ 𝑃 )(𝜎) = 𝜕

(︃
𝑛∑︁
𝑖=0

(−1)𝑖𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑖,𝑤𝑖,...,𝑤𝑛]

)︃

=
𝑛∑︁
𝑖=0

⎛⎝∑︁
𝑗≤𝑖

(−1)𝑖(−1)𝑗𝐻 ∘ ̃︀𝜎|[𝑣0,...,̂︀𝑣𝑗 ,...,𝑣𝑖,𝑤𝑖,...,𝑤𝑛]

+
∑︁
𝑗≥𝑖

(−1)𝑖(−1)𝑗+1𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑖,𝑤𝑖,..., ̂︀𝑤𝑗 ,...,𝑤𝑛]

⎞⎠ .

On the other hand, we have

(𝑃 ∘ 𝜕)(𝜎) =
𝑛∑︁
𝑗=0

(−1)𝑗𝑃 (𝜎|[𝑣0,...,̂︀𝑣𝑖,...,𝑣𝑛])

=
𝑛∑︁
𝑗=0

⎛⎝∑︁
𝑗<𝑖

(−1)𝑗(−1)𝑖−1𝐻 ∘ ̃︀𝜎|[𝑣0,...,̂︀𝑣𝑗 ,...,𝑣𝑖,𝑤𝑖,...,𝑤𝑛]

+
∑︁
𝑗>𝑖

(−1)𝑗(−1)𝑖𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑖,𝑤𝑖,..., ̂︀𝑤𝑗 ,...,𝑤𝑛]

⎞⎠ .

Hence we have

(𝜕 ∘ 𝑃 + 𝑃 ∘ 𝜕)(𝜎) = 𝐻 ∘ ̃︀𝜎|[𝑤0,...,𝑤𝑛] +
𝑛−1∑︁
𝑖=0

(−1)2𝑖𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑖,𝑤𝑖+1,...,𝑤𝑛]+

+
𝑛−1∑︁
𝑖=0

(−1)2𝑖+1𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑖,𝑤𝑖+1,...,𝑤𝑛] −𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑛]

= 𝐻 ∘ ̃︀𝜎|[𝑤0,...,𝑤𝑛] −𝐻 ∘ ̃︀𝜎|[𝑣0,...,𝑣𝑛]

= 𝑔#(𝜎) − 𝑓#(𝜎).

For any 𝑧 ∈ 𝑍𝑛(𝑋), we have

(𝑔# − 𝑓#)(𝑧) = (𝜕 ∘ 𝑃 + 𝑃 ∘ 𝜕)(𝑧) = 𝜕(𝑃 (𝑧)) ∈ 𝐵𝑛(𝑌 ).

Hence the theorem.

Definition 6.4.5

Any chain map 𝐿 mapping 𝐶𝑛(𝑋) to 𝐶𝑛+1(𝑌 ) for any 𝑛 ∈ N and satisfying

𝑔# − 𝑓# = 𝜕 ∘ 𝐿+ 𝐿 ∘ 𝜕,

is called a chain homotopy between chain maps 𝑓# and 𝑔#.

With this theorem, we can show the homotopy invariance of homology groups.
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Theorem 6.4.6

Let 𝑋 and 𝑌 be two spaces homotopy equivalent to each other. Then for any 𝑛 ∈ N, we
have

𝐻𝑛(𝑋) ∼= 𝐻𝑛(𝑌 ).

Proof. Since 𝑋 and 𝑌 are homotopy equivalent, there are continuous maps

𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋,

such that 𝑓 ∘ 𝑔 ∼ id𝑌 and 𝑔 ∘ 𝑓 ∼ id𝑋 .
By the previous theorem, for any 𝑛 ∈ N, we have

𝑓* ∘ 𝑔* = (𝑓 ∘ 𝑔)* = (id𝑌 )* = id𝐻𝑛(𝑌 ),

and
𝑔* ∘ 𝑓* = (𝑔 ∘ 𝑓)* = (id𝑋)* = id𝐻𝑛(𝑋).

This implies that both 𝑓* and 𝑔* are bijective. Therefore both of them are isomorphisms and we
have

𝐻𝑛(𝑋) ∼= 𝐻𝑛(𝑌 ).

As an application, we consider contractible spaces and have the following statement.

Corollary 6.4.7

If 𝑋 be a contractible space, then for any 𝑛 ∈ N, we have

𝐻𝑛(𝑋) ∼=
{︃
Z, 𝑛 = 0
0, 𝑛 > 0

Proof. Since 𝑋 is contractible, it is homotopy equivalent to a single point space. By Proposition
6.3.7, we have the corollary.

6.5 Singular homology and subspaces
When studying topological spaces, sometimes the whole space is difficult to study but it has some
subspace which is easy to study and the quotient space is also easy to study. Sometimes it also
happens that a space is difficult to study, but can be viewed as part of a space easy to be studied.
Hence studying homology groups of a space relative to it subspace would be useful in these cases.

Let 𝑋 be a topological space and 𝐴 be a non-empty subspace in 𝑋. In order to make the
homology machinery work, we assume that 𝐴 has an open neighborhood 𝑈 in 𝑋, such that 𝐴 is
a strong deformation contraction of 𝑈 . We define the relative chain complex in the following way.

For any 𝑛 ∈ N, we define
𝐶𝑛(𝑋,𝐴) := 𝐶𝑛(𝑋)/𝐶𝑛(𝐴).

Hence we have the short exact sequence

0 // 𝐶𝑛(𝐴) 𝑖 // 𝐶𝑛(𝑋) pr
// 𝐶𝑛(𝑋,𝐴) // 0

where 𝑖 is the inclusion map and pr is the quotient map.
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Notice that 𝜕 maps an 𝑛-chain in 𝐴 to an (𝑛 − 1)-chain in 𝐴. Hence for any 𝑛 ∈ N, the
boundary homomorphism for 𝐶𝑛(𝑋) induces a homomorphism

𝜕 : 𝐶𝑛+1(𝑋,𝐴) → 𝐶𝑛(𝑋,𝐴).

Then we have a chain complex

· · · 𝜕 // 𝐶𝑛+1(𝑋,𝐴) 𝜕 // 𝐶𝑛(𝑋,𝐴) 𝜕 // · · · 𝜕 // 𝐶1(𝑋,𝐴) 𝜕 // 𝐶0(𝑋,𝐴) 𝜕 // 0

The last 𝜕 from 𝐶0(𝑋,𝐴) is unique trivial homomorphism to the trivial group. Since the identity
element in 𝐶𝑛(𝑋) is sent to the identity element in 𝐶𝑛(𝑋,𝐴), hence we have

𝜕 ∘ 𝜕 = 0,

and (𝐶𝑛(𝑋,𝐴), 𝜕)𝑛∈N is a chain complex.

Definition 6.5.1

For any 𝑛 ∈ N, the homology groups 𝐻𝑛(𝑋,𝐴)’s associated to this chain complex is called
the 𝑛-th homology group of 𝑋 relative to 𝐴.

For any 𝑛 ∈ N, for any 𝛼 ∈ 𝐶𝑛(𝑋), we denote

𝛼 = pr(𝛼).

Definition 6.5.2

For any 𝑛 ∈ N, for any 𝛼 ∈ 𝐶𝑛(𝑋), we call 𝛼 an 𝑛-cycle relative to 𝐴, if

𝜕𝛼 ∈ 𝐶𝑛−1(𝐴),

and we call 𝛼 an 𝑛-boundary relative to 𝐴, if there is an (𝑛+ 1)-chain 𝛽 ∈ 𝐶𝑛+1(𝑋) and
an 𝑛-chain 𝛾 ∈ 𝐶𝑛(𝐴), such that

𝛼 = 𝜕𝛽 + 𝛾.

For any 𝑛 ∈ N, by the definition, we have

𝑍𝑛(𝑋,𝐴) := {𝛼 ∈ 𝐶𝑛(𝑋,𝐴) | 𝛼 ∈ 𝐶𝑛(𝑋) is an 𝑛-cycle relative to 𝐴},
𝐵𝑛(𝑋,𝐴) := {𝛼 ∈ 𝐶𝑛(𝑋,𝐴) | 𝛼 ∈ 𝐶𝑛(𝑋) is an 𝑛-boundary relative to 𝐴}.

and then

𝐻𝑛(𝑋,𝐴) := 𝑍𝑛(𝑋,𝐴)/𝐵𝑛(𝑋,𝐴).

Another observation is that the map 𝑖 and pr commute with 𝜕. In particular, we have the
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following commutative diagram which extends the above short exact sequence to the whole chain:

0

��

0

��

0

��

· · · 𝜕 // 𝐶𝑛+1(𝐴)

𝑖

��

𝜕 // 𝐶𝑛(𝐴)

𝑖

��

𝜕 // 𝐶𝑛−1(𝐴)

𝑖

��

𝜕 // · · ·

· · · 𝜕 // 𝐶𝑛+1(𝑋)

pr
��

𝜕 // 𝐶𝑛(𝑋)

pr
��

𝜕 // 𝐶𝑛−1(𝑋)

pr
��

𝜕 // · · ·

· · · 𝜕 // 𝐶𝑛+1(𝑋,𝐴)

��

𝜕 // 𝐶𝑛(𝑋,𝐴)

��

𝜕 // 𝐶𝑛−1(𝑋,𝐴)

��

𝜕 // · · ·

0 0 0

Definition 6.5.3

The above diagram is called a short exact sequence of chain complex.

We would like to show the following long exact sequence which relates homology groups 𝐻𝑛(𝑋)’s,
𝐻𝑛(𝐴)’s and 𝐻𝑛(𝑋,𝐴)’s. To distinguish the homology in 𝑋 and that in 𝐴, for any 𝛼 ∈ 𝑍𝑛(𝐴),
we will denote by [𝛼]𝐴 the homology class in 𝐻𝑛(𝐴), and by [𝛼]𝑋 the homology class in 𝐻𝑛(𝑋).

Theorem 6.5.4

There is a long exact sequence

· · · 𝜕 // 𝐻𝑛+1(𝐴) 𝑖* // 𝐻𝑛+1(𝑋)
pr* // 𝐻𝑛+1(𝑋,𝐴) 𝜕 // 𝐻𝑛(𝐴) 𝑖* // · · ·

· · ·
pr* // 𝐻0(𝑋,𝐴) 𝜕 // 0,

where the partial map is defined as follows: for any 𝑛 ∈ N,

𝜕 : 𝐻𝑛(𝑋,𝐴) → 𝐻𝑛−1(𝐴),
[𝛼] ↦→ [𝜕𝛼]𝐴.

Proof. First we have check that the map

𝜕 : 𝐻𝑛(𝑋,𝐴) → 𝐻𝑛−1(𝐴),

is well defined.
Let 𝛼 ∈ 𝐶𝑛(𝑋) be a relative 𝑛-cycle, then we have

𝜕𝛼 ∈ 𝐶𝑛−1(𝐴).

Since as an 𝑛-chain in 𝑋, we have

𝜕(𝜕(𝛼)) = 0 ∈ 𝐶𝑛−2(𝐴),

hence 𝜕𝛼 ∈ 𝑍𝑛−1(𝐴). Hence the map is well defined.
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Notice that we do not know if 𝜕𝛼 ∈ 𝐵𝑛−1(𝐴) is true, since 𝛼 is in 𝐶𝑛(𝑋), not necessary in
𝐶𝑛(𝐴).

Now we try to show the following three equality

Im 𝜕 = ker 𝑖*
Im 𝑖* = ker pr*

Im pr* = ker 𝜕

We firs consider for any 𝑛 ∈ N

𝐻𝑛+1(𝑋,𝐴) 𝜕 // 𝐻𝑛(𝐴) 𝑖* // 𝐻𝑛(𝑋)

Im 𝜕 ⊂ ker 𝑖*: Let [𝛼] ∈ Im 𝜕, then there is a relative (𝑛+ 1)-cycle

𝛽 ∈ 𝐶𝑛+1(𝑋),

such that
[𝛼]𝐴 = 𝜕[𝛽] = [𝜕𝛽]𝐴.

Now we consider the 𝑛-chain 𝜕𝛽 in 𝐶𝑛(𝑋). Since

𝜕𝛽 ∈ 𝐵𝑛(𝑋),

we have
𝑖*([𝛼]𝐴) = [𝛼]𝑋 = [𝜕𝛽]𝑋 = [0]𝑋 .

Hence
[𝛼]𝐴 ∈ ker 𝑖*,

and we have
Im 𝜕 ⊂ ker 𝑖*.

Im 𝜕 ⊃ ker 𝑖*: Let [𝛼]𝐴 ∈ ker 𝑖*, we have

[𝛼]𝑋 = [0]𝑋 .

Hence 𝛼 ∈ 𝐵𝑛(𝑋), or equivalently, there is an (𝑛+ 1)-chain 𝛽 ∈ 𝐶𝑛+1(𝑋), such that

𝛼 = 𝜕𝛽.

We consider 𝛽 ∈ 𝐶𝑛+1(𝑋,𝐴). Since

𝜕𝛽 = 𝛼 ∈ 𝑍𝑛(𝐴) ⊂ 𝐶𝑛(𝐴),

the (𝑛+ 1)-chain 𝛽 is a relative (𝑛+ 1)-cycle, hence

𝛽 ∈ 𝑍𝑛+1(𝑋,𝐴).

We then have
[𝛼]𝐴 = [𝜕𝛽]𝐴 = 𝜕([𝛽]) ∈ Im 𝜕.

Hence
Im 𝜕 ⊃ ker 𝑖*.

Now for any 𝑛 ∈ N, we consider

𝐻𝑛(𝐴) 𝑖* // 𝐻𝑛(𝑋)
pr* // 𝐻𝑛(𝑋,𝐴)
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Im 𝑖* ⊂ ker pr*: Let [𝛼]𝑋 ∈ Im 𝑖*, then there is an 𝑛-cycle

𝛾 ∈ 𝑍𝑛(𝐴),

such that
[𝛾]𝑋 = [𝛼]𝑋 ,

or equivalently
𝛼− 𝛾 ∈ 𝐵𝑛(𝑋).

Therefore, there is a (𝑛+ 1)-chain 𝛽 ∈ 𝐶𝑛+1(𝑋), such that

𝛼− 𝛾 = 𝜕𝛽.

Hence
𝛼 = 𝜕𝛽 + 𝛾,

which shows that 𝛼 is a relative 𝑛-boundary. Hence

𝛼 ∈ 𝐵𝑛(𝑋,𝐴),

and
pr*([𝛼]𝑋) = [𝛼] = [0].

Hence we have
[𝛼]𝑋 ∈ ker pr*,

and
Im 𝑖* ⊂ ker pr*.

Im 𝑖* ⊃ ker pr*: Let [𝛼]𝑋 ∈ ker pr*, we have

𝛼 ∈ 𝐵𝑛(𝑋,𝐴),

and 𝛼 is a relative 𝑛-boundary. There are an (𝑛+ 1)-chain 𝛽 ∈ 𝐶𝑛+1(𝑋) and 𝛾 ∈ 𝐶𝑛(𝐴), such
that

𝛼 = 𝜕𝛽 + 𝛾.

Hence we have
[𝛼]𝑋 = [𝛾]𝑋 = 𝑖*([𝛾]𝐴) ∈ Im 𝑖*.

Therefore we have
Im 𝑖* ⊃ ker pr*.

Finally for any 𝑛 ∈ N, we consider

𝐻𝑛+1(𝑋)
pr* // 𝐻𝑛+1(𝑋,𝐴) 𝜕 // 𝐻𝑛(𝐴)

Im pr* ⊂ ker 𝜕: Let [𝛼] ∈ Im pr*, then there is an (𝑛+ 1)-cycle

𝛾 ∈ 𝑍𝑛+1(𝑋),

such that
pr*([𝛾]𝑋) = [𝛾] = [𝛼].

Hence
𝛼− 𝛾 ∈ 𝐵𝑛(𝑋,𝐴),

or equivalently 𝛼− 𝛾 is a relative (𝑛+ 1)-boundary. Hence there is an (𝑛+ 2)-chain 𝛽 ∈ 𝐶𝑛+2,
and an (𝑛+ 1)-chain 𝜂 ∈ 𝐶𝑛+1(𝐴), such that in 𝐶𝑛+1(𝑋), we have

𝛼− 𝛾 = 𝜕𝛽 + 𝜂.
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Now we have
𝜕𝛼− 𝜕𝛾 = 𝜕𝜂 ∈ 𝐵𝑛(𝐴).

Hence
[𝜕𝛼]𝐴 = [𝜕𝛾]𝐴.

Notice that 𝛾 is an (𝑛+ 1)-cycle, hence 𝜕𝛾 = 0 in 𝐶𝑛(𝐴). Therefore we have

𝜕[𝛼] = [𝜕𝛼]𝐴 = [0]𝐴.

and
[𝛼] ∈ ker 𝜕.

Hence we have
Im pr* ⊂ ker 𝜕.

Im pr* ⊃ ker 𝜕: Let [𝛼] ∈ ker 𝜕, then
[𝜕𝛼]𝐴 = [0]𝐴.

Hence 𝜕𝛼 ∈ 𝐵𝑛(𝐴) and there is an (𝑛+ 1)-chain 𝛾 ∈ 𝐶𝑛+1(𝐴), such that

𝜕𝛼 = 𝜕𝛾.

Therefore
𝛼− 𝛾 ∈ 𝑍𝑛+1(𝑋),

and we have
pr*([𝛼− 𝛾]𝑋) = [𝛼− 𝛾] = [𝛼].

Therefore we have
Im pr* ⊃ ker 𝜕.

Another important tool when study relative homology is called the excision theorem. If one
consider the homology of 𝑋 relative to a subspace 𝐴, then naively, taking out a part of 𝐴 should
not effect on the relative homology groups. The excision theorem shows that it is indeed the case.
There are two equivalent versions of this theorem.

We consider the subspace 𝑈 of a space 𝑋. Let 𝑉 be a subspace of 𝑋 such that

𝑉 ⊂ 𝑈.

Theorem 6.5.5 (Excision Theorem I)

For any 𝑛 ∈ N, we have
𝐻𝑛(𝑋,𝑈) ∼= 𝐻𝑛(𝑋 − 𝑉,𝑈 − 𝑉 ).

Equivalently, we can state it in the following way. Let 𝐴 and 𝐵 be two subspaces of 𝑋 such that

𝑋 = 𝐴 ∪𝐵.
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Theorem 6.5.6 (Excision Theorem II)

For any 𝑛 ∈ N, we have
𝐻𝑛(𝐴,𝐴 ∩𝐵) ∼= 𝐻𝑛(𝑋,𝐵).

Remark 6.5.7.
To see the equivalence, we can take take 𝑈 = 𝐵 and 𝑉 = 𝑋 ∖𝐴.

We will proof the second version. Before giving the details, let us first have a look at the situation.
Notice that 𝐴 ⊂ 𝑋 and 𝐵 ⊂ 𝑋 are both subspaces, hence any simplex in 𝐴 or in 𝐵 is also a
simplex in 𝑋. Therefore for any 𝑛, the abelian group 𝐶𝑛(𝐴) and 𝐶𝑛(𝐵) are two subgroups of
𝐶𝑛(𝑋). We define

𝐶𝑛(𝐴+𝐵) :=
{︃

𝑚∑︁
𝑖=1

𝑘𝑖𝜎𝑖 | 𝜎𝑖 is an 𝑛-simplex in 𝐴 or in 𝐵

}︃
.

In fact, this is just the subgroup of 𝐶𝑛(𝑋) generalized by 𝐶𝑛(𝐴) and 𝐶𝑛(𝐵). Since 𝐶𝑛(𝑋) is an
abelian group, we can also rewrite it into

𝐶𝑛(𝐴+𝐵) = 𝐶𝑛(𝐴) + 𝐶𝑛(𝐵).

Another subgroup of 𝐶𝑛(𝑋) is given by considering simplices in 𝐴 ∩𝐵. We define

𝐶𝑛(𝐴 ∩𝐵) :=
{︃

𝑚∑︁
𝑖=1

𝑘𝑖𝜎𝑖 | 𝜎𝑖 is an 𝑛-simplex in 𝐴 ∩𝐵

}︃
.

Since all subgroups of an abelian group are normal subgroup, by the fundamental theorem of
group homomorphisms, for any 𝑛 ∈ N, we have

𝐶𝑛(𝐴)/𝐶𝑛(𝐴 ∩𝐵) ∼= 𝐶𝑛(𝐴+𝐵)/𝐶𝑛(𝐵),

or equivalently, we have
𝐶𝑛(𝐴,𝐴 ∩𝐵) ∼= 𝐶𝑛(𝐴+𝐵,𝐵).

Moreover, by the definition of the groups involved here, this isomorphism also induces isomorphism
between the subgroup of relatives cycles and the subgroup of relative boundaries:

𝑍𝑛(𝐴,𝐴 ∩𝐵) ∼= 𝑍𝑛(𝐴+𝐵,𝐵) and 𝐵𝑛(𝐴,𝐴 ∩𝐵) ∼= 𝐵𝑛(𝐴+𝐵,𝐵)

The details are left to readers to check. With these facts, we have the following observation:

Observation 6.5.8
For any 𝑛 ∈ N, we have

𝐻𝑛(𝐴,𝐴 ∩𝐵) ∼= 𝐻𝑛(𝐴+𝐵,𝐵).

Hence it is enough to show for each 𝑛 ∈ N the following isomorphism

𝐻𝑛(𝐴+𝐵,𝐵) ∼= 𝐻𝑛(𝑋,𝐵).

The difference between two sides is this: for 𝐻𝑛(𝑋,𝐵), we use simplices in 𝑋, and for 𝐻𝑛(𝐴+𝐵,𝐵)
we use simplices in 𝐴 or 𝐵. In the other words, if the above isomorphism holds, it means using
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"smaller" simplices, we obtain the same homology group for each 𝑛 ∈ N. This will be the key
point in the proof of the excision theorem.

The main tool used here is the barycentric subdivision for an Euclidean simplex. We will
apply such subdivision on Δ𝑛 to subdivide simplex in 𝑋. Notice that by hypothesis, we have

𝑋 = 𝐴 ∪𝐵.

Hence for any 𝑛 ∈ N and any 𝑛-simplex 𝜎 in 𝑋, if the preimage of 𝜎−1(𝐴) and 𝜎−1(𝐵) form an
open cover of Δ𝑛. Since Δ𝑛 is compact, there is an open cover of balls of Δ𝑛 such that the image
of each ball is either in 𝐴 or in 𝐵. Hence all we have to do in this step is to subdivide Δ𝑛 into
simplices with diameter uniformly small enough.

Let us first recall the varycentric subdivision. Let 𝜎 be a Euclidean 𝑛-simplex determined by
𝑛+ 1 points 𝑣0, ..., 𝑣𝑛 ∈ R𝑚 (𝑚 ≥ 𝑛). Then the barycenter of 𝜎 is given by

𝑣𝜎 = 1
𝑛+ 1(𝑣0 + · · · + 𝑣𝑛).

If 𝜏 is a 𝑘-face of 𝜎 with 𝑘 < 𝑛, we denote 𝜏 < 𝜎. Then in a barycentric subdivision, we first
take the barycenters of all faces of 𝜎 and 𝑣𝜎. Then we subdivide 𝜎 into the union of Euclidean
𝑛-simplices, each of with can be written as

[𝑣𝜏0 , ..., 𝑣𝜏𝑛−1 , 𝑣𝜎],

such that the faces 𝜏0, ..., 𝜏𝑛−1 satisfy

𝜏0 < · · · < 𝜏𝑛−1 < 𝜎.

We denote by 𝑑 the diameter of 𝜎 and

𝑑′ = max{𝜂 | 𝜂 is an 𝑛-simplex obtained from the barycentric subdivision of 𝜎}.

Then we have the following comparison.

Lemma 6.5.9

We have
𝑑′ ≤ 𝑛

𝑛+ 1𝑑.

Proof. The diameter of an Euclidean simplex is given by its longest edge (1-face).
We use induction on 𝑛. Notice that for 𝑛 = 0, we have 0 = 0.
Assume that the inequality holds for 𝑘-simplicies with 0 ≤ 𝑘 ≤ 𝑛− 1 for some 𝑛 > 0, then let

𝜏 < 𝜏 ′ be two faces of 𝜎. Without loss of generality, we may assume that

𝜏 = [𝑣0, ..., 𝑣𝑘] < [𝑣0, ..., 𝑣𝑙] = 𝜏 ′

with 𝑘 < 𝑙 ≤ 𝑛.
If 𝑙 < 𝑛, then

||𝑣𝜏 − 𝑣′
𝜏 || ≤ 𝑙

𝑙 + 1diam(𝜏 ′) ≤ 𝑛

𝑛+ 1diam(𝜎) = 𝑛

𝑛+ 1𝑑.

For the case 𝑙 = 𝑛, notice that

||𝑣𝜎 − 𝑣𝜏 || ≤ 𝑘 + 1
𝑘 + 1 max{||𝑣𝜎 − 𝑣𝑖|| | 0 ≤ 𝑖 ≤ 𝑘}

= max{||𝑣𝜎 − 𝑣𝑖|| | 0 ≤ 𝑖 ≤ 𝑘}
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On the other hand, for each 𝑖, we have

𝑣𝜎 − 𝑣𝑖 = 1
𝑛+ 1(𝑣0 + · · · + 𝑣𝑛) − 𝑛+ 1

𝑛+ 1𝑣𝑖 = 1
𝑛+ 1

∑︁
𝑗 ̸=𝑖

(𝑣0 − 𝑣𝑖).

Hence we have

||𝑣𝜎 − 𝑣𝑖|| ≤ 𝑛

𝑛+ 1 max{||𝑣𝑗 − 𝑣𝑖|| | 0 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖} = 𝑛

𝑛+ 1diam(𝜎) = 𝑛

𝑛+ 1𝑑.

Hence we have
|||𝑣𝜎 − 𝑣𝜏 || ≤ 𝑛

𝑛+ 1𝑑.

As a conclusion, we have
𝑑′ ≤ 𝑛

𝑛+ 1𝑑.

We then have the following corollary.

Corollary 6.5.10

Given any Euclidean 𝑛-simplex 𝜎, for any 𝜖 > 0, there is an 𝑚 ∈ N*, such that after taking
𝑚 times barycentric subdivision, all simplices obtained have diameter smaller than 𝜖.

Proof. Let 𝑑 denote the diameter of 𝜎. Let 𝑚 ∈ N* be such that(︂
𝑛

𝑛+ 1

)︂𝑚
𝑑 < 𝜖.

By the previous lemma, applying 𝑚 times barycentric subdivision, all 𝑛-simplices obtained have
diameter smaller than 𝜖.

For any 𝑛 ∈ N, we consider the barycentric subdivision of Δ𝑛, and denote the resulting
Euclidean 𝑛-simplices by

𝜏0, ..., 𝜏𝑘.

There is a chosen orientation on Δ𝑛 for the singular homology. For each 𝜏𝑖, we consider a linear
homeomorphism

𝑓𝑖 : Δ𝑛 → 𝜏𝑖

such that the induced orientation on 𝜏𝑖 is the same as the one given by considering 𝜏𝑖 as subspace
of Δ𝑛. We then define for any 𝑛-simplex in 𝑋, the following 𝑛-chain

𝑆(𝜎) =
𝑘∑︁
𝑖=0

𝜎 ∘ 𝑓𝑖

Then 𝑆 can be extended to a group homomorphism

𝑆 : 𝐶𝑛(𝑋) → 𝐶𝑛(𝑋),

for any 𝑛 ∈ N. We then have the following proposition.
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Proposition 6.5.11

For any 𝑛 ∈ N, for any 𝜎 an 𝑛-chain in 𝐶𝑛(𝑋), there is an 𝑚 ∈ N*, such that

𝑆(𝑚)(𝜎) ∈ 𝐶𝑛(𝐴+𝐵),

where 𝑆(𝑚) = 𝑆 ∘ · · · ∘ 𝑆⏟  ⏞  
𝑚

.

Remark 6.5.12.
It should be noticed that here the constant 𝑚 depends on 𝜎.

Another observation on 𝑆 is that it commute with the boundary homomorphism.

Lemma 6.5.13

We have
𝑆 ∘ 𝜕 = 𝜕 ∘ 𝑆.

Now we would like to show that for any 𝑛 ∈ N, for any 𝜎 ∈ 𝑍𝑛(𝑋), there is an 𝑛-cycle
𝜎′ ∈ 𝑍𝑛(𝐴+𝐵), such that

𝜎 − 𝜎′ ∈ 𝐵𝑛(𝑋).
In particular, we would like to show

𝜎 − 𝑆(𝑚)(𝜎) ∈ 𝐵𝑛(𝑋),

where 𝑚 is given by the previous proposition. For this purpose, we start construct a chain
homotopy 𝑇 between the chain maps Id and 𝑆, where Id is the identity map.

The construction of 𝑇 is inductive. To make it clear, we discuss what happens to the chains in
Euclidean spaces given with simplices defined by linear maps from standard simplices to Euclidean
spaces.

Consider the Euclidean space R𝑚. Let 𝑛 ∈ N. we denote by 𝐿𝑛(R𝑚) the abelian group
of singular 𝑛-chains given by singular linear 𝑛-simplices, i.e. maps from Δ𝑛 to R𝑚 which are
restrictions of linear maps.

For any linear 𝑛-simplex 𝜎 in R𝑚, denote

Δ𝑛 = [𝑣0, ..., 𝑣𝑛].

Choose 𝑏 ∈ R𝑚, then we have an linear (𝑛+ 1)-simplex 𝑏(𝜎) given by mapping

Δ𝑛+1 = [𝑢0, ..., 𝑢𝑛+1]

to R𝑚 linearly and sending 𝑢0 to 𝑏 and 𝑢𝑖 to 𝜎(𝑣𝑖−1) for 𝑖 > 0.
This gives us a homomorphism

𝑏 : 𝐿𝑛(R𝑚) → 𝐿𝑛+1(R𝑚)

Lemma 6.5.14

We have
𝑏 ∘ 𝜕 + 𝜕 ∘ 𝑏 = Id.
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Proof. For any 𝜎 ∈ 𝐿𝑛(R𝑚) a linear 𝑛-simplex, we have

𝑏(𝜕𝜎) =
𝑛∑︁
𝑖=0

(−1)𝑖𝑏(𝜎|[𝑣0,...,̂︀𝑣𝑖,...,𝑣𝑛]) =
𝑛∑︁
𝑖=0

(−1)𝑖𝑏(𝜎)|[𝑢0,...,̂︂𝑢𝑖+1,...,𝑢𝑛]

On the other hand

𝜕(𝑏𝜎) =
𝑛+1∑︁
𝑖=1

(−1)𝑖𝑏(𝜎)|
𝑢0,...,̂︀𝑢𝑖,...,𝑢𝑛+1

+ 𝑏(𝜎)|[𝑢1,...,𝑢𝑛+1].

Since 𝑏(𝜎)|[𝑢1,...,𝑢𝑛+1] = 𝜎, the lemme is proved.

Lemma 6.5.15

Let 𝜎 be an Euclidean 𝑛-simplex with 𝑏 its barycenter, then we have

𝑆(𝜎) = 𝑏(𝑆(𝜕𝜎)),

where 𝑆 is the barycentric map for the chain complex (𝐿𝑛(R𝑚))𝑛∈N.

Now we consider the following commutative diagram

· · · 𝜕 // 𝐿𝑛+1(R𝑚) 𝜕 //

𝑆

��

𝐿𝑛(R𝑚) 𝜕 //

𝑆

��

· · · 𝜕 // 𝐿1(R𝑚) 𝜕 //

𝑆

��

𝐿0(R𝑚) 𝜕 //

𝑆

��

0

· · · 𝜕 // 𝐿𝑛+1(R𝑚) 𝜕 // 𝐿𝑛(R𝑚) 𝜕 // · · · 𝜕 // 𝐿1(R𝑚) 𝜕 // 𝐿0(R𝑚) 𝜕 // 0

Now we define the chain map
𝑇𝑛 : 𝐿𝑛(R𝑚) → 𝐿𝑛+1(R𝑚)

inductively.
For 𝑛 = 0, we define 𝑇0 : 𝐿𝑛(R𝑚) → 𝐿𝑛+1(R𝑚) by sending each 0-simplex 𝜎 to 𝑏𝜎(𝜎) where

𝑏𝜎 is the barycenter of 𝜎. For example, if 𝜎(𝑣0) = 𝑝 ∈ R𝑚, we have 𝑏𝜎(𝜎) a linear map from
[𝑣0, 𝑣1] to R𝑚, such that 𝜎(𝑣0) = 𝜎(𝑣1) = 𝑝.

Then for any 𝑛 ∈ N, for any 𝑛-simplex 𝜎 ∈ 𝐿𝑛(R𝑚), we define

𝑇 (𝜎) = 𝑏𝜎(𝜎 − 𝑇 (𝜕(𝜎))),

where 𝑏𝜎 is the barycenter of 𝜎. Then we have the following proposition

Proposition 6.5.16

We have
Id − 𝑆 = 𝑇 ∘ 𝜕 + 𝜕 ∘ 𝑇.

Proof. We show it by induction on 𝑛.
When 𝑛 = 0, for any 0-simplex 𝜎, we have 𝜕𝜎 = 0. Consider

(𝜕 ∘ 𝑇 )(𝜎) = 𝜎 − 𝜎 = Id(𝜎) − 𝑆(𝜎) = 0.

Assume that 𝑛 ∈ N and the identity holds for any 𝑘 with 0 ≤ 𝑘 < 𝑛− 1. It is enough to show
it for an 𝑛-simplex 𝜎 ∈ 𝐿𝑛(R𝑚), we have

𝜎 − 𝑆(𝜎) = 𝑇 (𝜕(𝜎)) + 𝜕(𝑇 (𝜎)).
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Notice that

𝜕(𝑇 (𝜎)) = 𝜕(𝑏𝜎(𝜎 − 𝑇 (𝜕(𝜎))))
= (Id − 𝑏𝜎 ∘ 𝜕)(𝜎 − 𝑇 (𝜕(𝜎)))
= 𝜎 − 𝑇 (𝜕(𝜎)) − 𝑏𝜎(𝜕𝜎) + (𝑏𝜎 ∘ 𝜕 ∘ 𝑇 ∘ 𝜕)(𝜎)
= 𝜎 − 𝑇 (𝜕(𝜎)) − 𝑏𝜎(𝜕𝜎) + (𝑏𝜎 ∘ (Id − 𝑆 − 𝑇 ∘ 𝜕))(𝜕𝜎)
= 𝜎 − 𝑇 (𝜕(𝜎)) − 𝑏𝜎(𝜕𝜎) + 𝑏𝜎(𝜕𝜎) − 𝑏𝜎(𝑆(𝜕𝜎)) − 𝑇 (𝜕(2)𝜎)
= 𝜎 − 𝑇 (𝜕(𝜎)) − 𝑏𝜎(𝑆(𝜕𝜎))
= 𝜎 − 𝑇 (𝜕(𝜎)) − 𝑆(𝜎).

Here the second identity comes from

𝑏 ∘ 𝜕 + 𝜕 ∘ 𝑏 = Id,

the fourth identity comes from the induction, the sixth identity comes from 𝜕(2) = 0, and the last
identity comes from

𝑆(𝜎) = 𝑏𝜎(𝑆(𝜎)).

Now we consider simplices in 𝑋. Given any 𝑛-simplex 𝜎 in 𝑋, whatever happen to Δ𝑛 (as
an linear 𝑛-simplex) could be translate to 𝜎 by taking composition. Consider the following
commutative diagram

· · · 𝜕 // 𝐶𝑛+1(𝑋) 𝜕 //

𝑆

��

𝐶𝑛(𝑋) 𝜕 //

𝑆

��

· · · 𝜕 // 𝐶1(𝑋) 𝜕 //

𝑆

��

𝐶0(𝑋) 𝜕 //

𝑆

��

0

· · · 𝜕 // 𝐶𝑛+1(𝑋) 𝜕 // 𝐶𝑛(𝑋) 𝜕 // · · · 𝜕 // 𝐶1(𝑋) 𝜕 // 𝐶0(𝑋) 𝜕 // 0

For any 𝑛 ∈ N, we also have
𝑇 : 𝐶𝑛(𝑋) → 𝐶𝑛+1(𝑋).

The relation
Id − 𝑆 = 𝑇 ∘ 𝜕 + 𝜕 ∘ 𝑇,

still holds.

Proposition 6.5.17

For any 𝑛 ∈ N, for any 𝛼 ∈ 𝑍𝑛(𝑋), for any 𝑚 ∈ N*, we have

[𝑆(𝑚)(𝛼)] = [𝛼] ∈ 𝐻𝑛(𝑋),

where 𝑆(𝑚) = 𝑆 ∘ · · · ∘ 𝑆⏟  ⏞  
𝑚

.

Corollary 6.5.18

For any 𝑛 ∈ N, for any 𝛼 ∈ 𝑍𝑛(𝑋), there is an 𝑛-cycle 𝛽 ∈ 𝑍𝑛(𝐴+𝐵), such that

[𝛼] = [𝛽] ∈ 𝐻𝑛(𝑋).

Hence we have the following theorem
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Theorem 6.5.19

For any 𝑛 ∈ N, the homomorphism

𝐻𝑛(𝐴+𝐵) → 𝐻𝑛(𝑋),

induced by the inclusion 𝐶𝑛(𝐴+𝐵) → 𝐶𝑛(𝑋) is an isomorphism.

Remark 6.5.20.
Roughly speaking this theorem says that to construct the homology group, we can use only small
simplices. This theorem can be extended to one for an open cover {𝑈𝛼}𝛼∈Ω of 𝑋

Now we consider the relative homology.

Lemma 6.5.21

For any 𝑛 ∈ N, for any 𝛼 ∈ 𝑍𝑛(𝑋,𝐵), then for any 𝑚 ∈ N*, we have

𝑆(𝑚)(𝛼) ∈ 𝑍𝑛(𝑋,𝐵),

and [𝑆(𝑚)(𝛼)] = [𝛼] in 𝐻𝑛(𝑋,𝐵) where 𝑆(𝑚) = 𝑆 ∘ · · · ∘ 𝑆⏟  ⏞  
𝑚

.

Proof. Let 𝛼 be a relative 𝑛-cycle, then we have

𝜕𝛼 ∈ 𝐶𝑛−1(𝐵).

Since 𝑆 ∘ 𝜕 = 𝜕 ∘ 𝑆, we have

𝜕(𝑆(𝑚)(𝛼)) = 𝑆(𝑚)(𝜕𝛼) ∈ 𝐶𝑛−1(𝐵).

The previous discuss shows that

𝛼− 𝑆(𝛼) = 𝜕(𝑇 (𝜎)) + 𝑇 (𝜕𝛼).

By the definition of 𝑇 , since 𝜕𝛼 ∈ 𝐶𝑛−1(𝐵), we have

𝑇 (𝜕𝛼) ∈ 𝐶𝑛(𝐵).

Hence 𝛼− 𝑆(𝛼) is a relative boundary, and we have

[𝛼] = [𝑆(𝛼)].

Using induction, we can show that for any 𝑚 ∈ N*, we have

[𝛼] = [𝑆(𝑚)(𝜎)].

Corollary 6.5.22

For any 𝑛 ∈ N, the embedding

𝑖* : 𝐻𝑛(𝐴+𝐵,𝐵) → 𝐻𝑛(𝑋,𝐵)

is surjective.
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Lemma 6.5.23

The embedding 𝑖* is also injective.

Proof. For any 𝑛 ∈ N, let 𝛼 ∈ 𝐶𝑛(𝐴+𝐵) be a 𝑛-cycle relative to 𝐵. Hence we have

𝜕𝛼 ∈ 𝐶𝑛−1(𝐵).

Assume that
𝑖*([𝛼]𝐴+𝐵,𝐵) = [0]𝑋,𝐵 .

Then 𝛼 ∈ 𝐶𝑛(𝑋) is an 𝑛-boundary relative to 𝐵. Hence there is an (𝑛+ 1)-chain 𝛾 ∈ 𝐶𝑛+1(𝑋)
and 𝛽 ∈ 𝐶𝑛(𝐵), such that

𝛼 = 𝜕𝛾 + 𝛽.

Choose 𝑚 ∈ N* such that 𝑆(𝑚)(𝛾) ∈ 𝐶𝑛+1(𝐴+𝐵), then we have

𝑆(𝑚)(𝛼) = 𝜕(𝑆(𝑚)(𝛾)) + 𝑆(𝑚)(𝛽)

which is an 𝑛-boundary relative to 𝐵 in 𝐶𝑛(𝐴+𝐵). Notice that

[𝛼]𝐴+𝐵,𝐵 = [𝑆(𝑚)(𝜎)]𝐴+𝐵,𝐵

in 𝐻𝑛(𝐴+𝐵,𝐵). Hence

[𝛼]𝐴+𝐵,𝐵 = [0]𝐴+𝐵,𝐵 ∈ 𝐻𝑛(𝐴+𝐵,𝐵).

Therefore the homomorphism 𝑖* is injective.

Combining all discussion above, we proved Theorem 6.5.6.

6.6 Homology of quotient spaces
Topologically, if we do not care about the information in some subspace, we could also consider
the quotient space. In this part, we would like to consider a topological space 𝑋 and its subspace
𝐴, and compare the following two homology groups for each 𝑛 ∈ N:

𝐻𝑛(𝑋,𝐴) and 𝐻𝑛(𝑋/𝐴).

For technical reason, we assume that 𝐴 admits a neighborhood 𝑈 in 𝑋, such that 𝐴 is a
strong deformation retraction of 𝑈 .

The relative homology groups are also homotopy invariant. More precisely, let 𝑋 and 𝑌 be
two spaces. Let 𝐴 and 𝐵 be subspaces of 𝑋 and 𝑌 respectively. We consider the two pairs (𝑋,𝐴)
and (𝑌,𝐵). A morphism between the two pairs denoted by

𝑓 : (𝑋,𝐴) → (𝑌,𝐵),

is a continuous map
𝑓 : 𝑋 → 𝑌,

such that 𝑓(𝐴) ⊂ 𝐵. Two morphisms 𝑓, 𝑔 between (𝑋,𝐴) and (𝑌,𝐵) are said to be homotopic
to each other if there is a continuous map

𝐻 : 𝑋 × [0, 1] → 𝑌,

such that 𝐻0 = 𝑓 , 𝐻1 = 𝑔, and for any 0 ≤ 𝑡 ≤ 1, 𝐻𝑡(𝐴) ⊂ 𝐵.
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A morphism between pairs (𝑋,𝐴) and (𝑌,𝐵) induces the following commutative diagram for
any 𝑛 ∈ N:

𝐶𝑛(𝑋)
𝑓#

//

��

𝐶𝑛(𝑌 )

��

𝐶𝑛(𝑋,𝐴)
𝑓#
// 𝐶𝑛(𝑌,𝐵)

where the two vertical arrows are given by the quotient maps. This homomorphism 𝑓# between
the two relative chain groups then induces a homomorphism between relative homology groups:

𝑓* : 𝐻𝑛(𝑋,𝐴) → 𝐻𝑛(𝑌,𝐵).

Proposition 6.6.1

If 𝑓 and 𝑔 are two homotopic morphisms between pairs (𝑋,𝐴) and (𝑌,𝐵), then for any
𝑛 ∈ N, we have

𝑓* = 𝑔*,

for the relative homology groups.

The proof is essentially the same as the one for the absolute homology groups. We leave it as an
exercise.

Let 𝐵 be a subspace of 𝑋 containing 𝐴. The inclusions:

𝐴 ⊂ 𝐵 ⊂ 𝑋

and the morphisms between pairs:

𝑖 : (𝐵,𝐴) → (𝑋,𝐴) and 𝑗 : (𝑋,𝐴) → (𝑋,𝐵).

These maps induces an exact sequence for any 𝑛 ∈ N

0 // 𝐶𝑛(𝐵,𝐴)
𝑖#
// 𝐶𝑛(𝑋,𝐴)

𝑗#
// 𝐶𝑛(𝑋,𝐵) // 0.

The exactness comes from again the fundamental theorem of group homomorphism:

(𝐶𝑛(𝑋)/𝐶𝑛(𝐴))/(𝐶𝑛(𝐵)/𝐶𝑛(𝐴)) ∼= 𝐶𝑛(𝑋)/𝐶𝑛(𝐵).

Similar to the previous case, we have the following long exact sequence relating 𝐻𝑛(𝑋,𝐵),
𝐻𝑛(𝑋,𝐴) and 𝐻𝑛(𝐵,𝐴).

Proposition 6.6.2

There is a long exact sequence

· · · // 𝐻𝑛+1(𝐵,𝐴) 𝑖* // 𝐻𝑛+1(𝑋,𝐴) 𝑗* // 𝐻𝑛+1(𝑋,𝐵) 𝛿 // 𝐻𝑛(𝐵,𝐴) // · · ·

· · ·
𝑗* // 𝐻0(𝑋,𝐵) 𝛿 // 0
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Then back to out situation, since 𝐴 is a subspace in 𝑋 admitting an open neighborhood 𝑈
which has 𝐴 as a strong deformation retraction. Using the homotopy invariance of the relative
homology, we have

𝐻𝑛(𝑈,𝐴) ∼= 𝐻𝑛(𝐴,𝐴) ∼= 0.
As a consequence of this fact with the above long exact sequence, we have the following proposition.

Proposition 6.6.3

With the same notation 𝑋,𝐴,𝑈 as above, for any 𝑛 ∈ N, we have

𝐻𝑛(𝑋,𝐴) ∼= 𝐻𝑛(𝑋,𝑈).

Proof. Since for all 𝑛 ∈ N, we have
𝐻𝑛(𝑈,𝐴) = 0,

from the above long exact sequence, for each 𝑛 ∈ N, we have

0 𝑖* // 𝐻𝑛(𝑋,𝐴) 𝑗* // 𝐻𝑛(𝑋,𝑈) 𝛿 // 0.

Therefore, we have the isomorphism:

𝐻𝑛(𝑋,𝐴) ∼= 𝐻𝑛(𝑋,𝑈).

The last ingredient is again a consequence of the long exact sequence of the relative homology.

Proposition 6.6.4

For any point 𝑝 ∈ 𝑌 in a topological space 𝑌 , for any 𝑛 ∈ N*, we have

𝐻𝑛(𝑌, 𝑝) ∼= 𝐻𝑛(𝑌 ).

For 𝑛 = 0, the group 𝐻0(𝑌, {𝑝}) is generated by simplices in the path connected components
of 𝑌 not containing 𝑝.

Proof. By Theorem 6.5.4, we have the exact sequence for any 𝑛 > 2

0 ∼= 𝐻𝑛({𝑝}) 𝑖* // 𝐻𝑛(𝑌 )
pr* // 𝐻𝑛(𝑌, {𝑝}) 𝜕 // 𝐻𝑛−1({𝑝}) ∼= 0.

Hence we have
𝐻𝑛(𝑌, 𝑝) ∼= 𝐻𝑛(𝑌 ).

For 𝑛 = 0 and 1, we consider

0 ∼= 𝐻1({𝑝}) 𝑖* // 𝐻1(𝑌 )
pr* // 𝐻1(𝑌, {𝑝}) 𝜕 // 𝐻0({𝑝}) 𝑖* // 𝐻0(𝑌 )

pr* // 𝐻0(𝑌, {𝑝}) 𝜕 // 0.

Since
𝑖* : 𝐻0({𝑝}) → 𝐻0(𝑌 )

is injective, the 𝜕 on its left has trivial image, and we have

𝐻1(𝑌 ) ∼= 𝐻1(𝑌, {𝑝}).

The last part of the statement for 𝐻0(𝑌, {𝑝}) is given by the injectivity of 𝑖* in the following
exact sequence

𝐻0({𝑝}) 𝑖* // 𝐻0(𝑌 )
pr* // 𝐻0(𝑌, {𝑝}) 𝜕 // 0
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Next, we would like to show the following relation.

Theorem 6.6.5

Let 𝑋, 𝐴 and 𝑈 be as above. For any 𝑛 ∈ N, we have

𝐻𝑛(𝑋,𝐴) ∼= 𝐻𝑛(𝑋/𝐴,𝐴/𝐴).

Proof. Let 𝑉 be a subspace in 𝑈 , such that

𝐴 ⊂ 𝑉 ⊂ 𝑉 ⊂ 𝑈.

We use the following sequence of isomorphisms:

𝐻𝑛(𝑋,𝐴) ∼= 𝐻𝑛(𝑋,𝑈) ∼= 𝐻𝑛(𝑋 − 𝑉,𝑈 − 𝑉 )
∼=𝐻𝑛(𝑋/𝐴− 𝑉/𝐴,𝑈/𝐴− 𝑉/𝐴) ∼= 𝐻𝑛(𝑋/𝐴,𝑈/𝐴) ∼= 𝐻𝑛(𝑋/𝐴,𝐴/𝐴).

We explain these isomorphisms in order.
The first one is given by Proposition 6.6.3.
The second one is given by Excision Theorem 6.5.6.
The third one is given by Proposition 6.6.1 the homotopy invariance of relative homology,

considering the following morphism

𝑓 : (𝑋 − 𝑉,𝑈 − 𝑉 ) → (𝑋/𝐴− 𝑉/𝐴,𝑈/𝐴− 𝑉/𝐴).

which is given by a homeomorphism 𝑓 : (𝑋 − 𝑉 ) → (𝑋/𝐴 − 𝑉/𝐴), hence is homotopic to the
identity morphism between the pairs.

The fourth one is again given by Excision Theorem.
The last one is given by Proposition 6.6.3.

Corollary 6.6.6

Let 𝑋, 𝐴 and 𝑈 be as above. For any 𝑛 > 0, we have

𝐻𝑛(𝑋,𝐴) ∼= 𝐻𝑛(𝑋/𝐴).

Proof. The is given by considering the above theorem and Proposition 6.6.4.

6.7 Mayer-Vietoris Sequences and some applications
Let 𝑋 be a topological space. Let 𝐴 and 𝐵 be its subspaces, such that

𝐴 ∪𝐵 ∼= 𝑋.

Excision Theorem tells us that the 𝑛-th homology group 𝐻𝑛(𝑋) of 𝑋 can be define use only
𝑛-cycles in 𝐴 or in 𝐵.

By considering inclusions of subspaces, we have the following commutative diagram

𝐴 ∩𝐵
𝑗1 //

𝑗2
��

𝐴

𝑖1
��

𝐵
𝑖1 // 𝑋
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We also have the inclusion of pairs

𝜄 : (𝐴,𝐴 ∩𝐵) → (𝑋,𝐵).

From these, we have the following relation between the two long exact sequences

· · · // 𝐻𝑛+1(𝐴,𝐴 ∩𝐵) 𝜕 //

𝜄*

��

𝐻𝑛(𝐴 ∩𝐵)
(𝑗1)*

//

(𝑗2)*

��

𝐻𝑛(𝐴)
pr*//

(𝑖1)*

��

𝐻𝑛(𝐴,𝐴 ∩𝐵) 𝜕 //

𝜄*

��

· · ·

· · · // 𝐻𝑛+1(𝑋,𝐵) 𝜕 // 𝐻𝑛(𝐵)
(𝑖2)*

// 𝐻𝑛(𝑋)
pr* // 𝐻𝑛(𝑋,𝐵) 𝜕 // · · ·

Notice that the map 𝜄* is isomorphism by Excision Theorem.

We also have an short exact sequence fo chain complex

0 // 𝐶𝑛(𝐴 ∩𝐵) 𝜙
// 𝐶𝑛(𝐴) ⊕ 𝐶𝑛(𝐵) 𝜓

// 𝐶𝑛(𝐴+𝐵) // 0.

where

𝜙 : 𝐶𝑛(𝐴 ∩𝐵) → 𝐶𝑛(𝐴) ⊕ 𝐶𝑛(𝐵)
𝛼 ↦→ (𝛼, 𝛼)

and
𝜓 : 𝐶𝑛(𝐴) ⊕ 𝐶𝑛(𝐵) → 𝐶𝑛(𝐴+𝐵)

(𝛼, 𝛽) ↦→ 𝛼− 𝛽
.

This induces a long exact sequence which is called the Mayer-Vietoris sequence.

Theorem 6.7.1

We have a long exact sequence

· · · // 𝐻𝑛(𝐴 ∩𝐵) 𝜙* // 𝐻𝑛(𝐴) ⊕𝐻𝑛(𝐵) 𝜓* // 𝐻𝑛(𝐴+𝐵) 𝛿 // 𝐻𝑛−1(𝐴 ∩𝐵) 𝜙* //

· · ·
𝜓* // 𝐻0(𝐴+𝐵) 𝛿 // 0

where
𝛿 : 𝐻𝑛(𝐴+𝐵) → 𝐻𝑛(𝐴+𝐵,𝐵) → 𝐻𝑛(𝐴,𝐴 ∩𝐵) → 𝐻𝑛−1(𝐴 ∩𝐵),

and 𝛿 = 𝜕 ∘𝜉* ∘pr*, with 𝜉 the natural isomorphism between 𝐶𝑛(𝐴+𝐵,𝐵) and 𝐶𝑛(𝐴,𝐴∩𝐵).

Proof. We first show that 𝛿 is well defined. For any [𝑧] ∈ 𝐻𝑛(𝐴+𝐵), we have an 𝑛-cycle

𝑧 = 𝑥+ 𝑦 ∈ 𝑍𝑛(𝐴+𝐵),

with 𝑥 ∈ 𝐶𝑛(𝑋) and 𝑦 ∈ 𝐶𝑛(𝑌 ). Hence we have

0 = 𝜕𝑧 = 𝜕𝑥+ 𝜕𝑦.

Therefore, we have
𝜕𝑥 = −𝜕𝑦 ∈ 𝐶𝑛−1(𝐴 ∩𝐵).

Since 𝜕(𝜕𝛼) = 0, we have
𝜕𝑥 ∈ 𝑍𝑛−1(𝐴 ∩𝐵).

Hence we have

𝛿 : 𝐻𝑛(𝐴+𝐵) → 𝐻𝑛(𝐴+𝐵,𝐵) → 𝐻𝑛(𝐴,𝐴 ∩𝐵) → 𝐻𝑛−1(𝐴 ∩𝐵),
[𝑥+ 𝑦]𝐴+𝐵 ↦→ [𝑥]𝐴+𝐵,𝐵 ↦→ [𝑥]𝐴,𝐴∩𝐵 ↦→ [𝜕𝑥]𝐴∩𝐵 .
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Now we try to show the following three equality

Im𝜙* = ker𝜓*

Im𝜓* = ker 𝛿
Im 𝛿 = ker𝜙*

We first consider

𝐻𝑛(𝐴 ∩𝐵) 𝜙* // 𝐻𝑛(𝐴) ⊕𝐻𝑛(𝐵) 𝜓* // 𝐻𝑛(𝐴+𝐵).

Im𝜙* ⊂ ker𝜓*: Since 𝜓 ∘ 𝜙 = 0, we have

𝜓* ∘ 𝜙* = (𝜓 ∘ 𝜙)* = 0,

hence
Im𝜙* ⊂ ker𝜓*.

Im𝜙* ⊃ ker𝜓*: For any ([𝑥]𝐴, [𝑦]𝐵) ∈ 𝐻𝑛(𝐴) ⊕ ker𝜓*, we have

[𝑥− 𝑦]𝐴+𝐵 = [0]𝐴+𝐵 .

Hence
𝑥− 𝑦 ∈ 𝐵𝑛(𝐴+𝐵),

or equivalently, there is an (𝑛+ 1)-chain 𝑥1 ∈ 𝐶𝑛+1(𝐴) and 𝑦1 ∈ 𝐶𝑛+1(𝐵), such that

𝑥− 𝑦 = 𝜕(𝑥1 + 𝑦1).

Hence we have
𝛼 = 𝑥− 𝜕𝑥1 = 𝑦 + 𝜕𝑦1 ∈ 𝐶𝑛(𝐴 ∩𝐵).

Since 𝑥 ∈ 𝑍𝑛(𝐴), we have
𝜕𝛼 = 𝜕𝑥 = 0.

Hence
𝛼 ∈ 𝑍𝑛(𝐴 ∩𝐵).

We have
𝜙*([𝛼]𝐴∩𝐵) = ([𝑥]𝐴, [𝑦]𝐵).

Hence
Im𝜙* ⊃ ker𝜓*.

Next we consider

𝐻𝑛(𝐴) ⊕𝐻𝑛(𝐵) 𝜓* // 𝐻𝑛(𝐴+𝐵) 𝛿 // 𝐻𝑛−1(𝐴 ∩𝐵)

Im𝜓* ⊃ ker 𝛿: Let 𝑧 ∈ ker 𝛿, hence we have 𝑥 ∈ 𝐶𝑛(𝐴) and 𝑦 ∈ 𝐶𝑛(𝑌 ), such that

𝑧 = 𝑥+ 𝑦

𝜕(𝑥+ 𝑦) = 0
[𝛿(𝑥+ 𝑦)]𝐴∩𝐵 = [0]𝐴∩𝐵

By the definition of 𝛿, we have

[𝜕𝑦]𝐴∩𝐵 = [𝜕𝑥]𝐴∩𝐵 = [𝛿(𝑥+ 𝑦)]𝐴∩𝐵 = [0]𝐴∩𝐵 .

Hence 𝑥 ∈ 𝑍𝑛(𝐴), −𝑦 ∈ 𝑍𝑛(𝐵), and we have

𝜓*([𝑥]𝐴, [−𝑦]𝐵) = [𝑥+ 𝑦]𝐴+𝐵 .
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Hence we have
Im𝜓* ⊃ ker 𝛿.

Im𝜓* ⊂ ker 𝛿: For any ([𝑥]𝐴, [𝑦]𝐵) ∈ 𝐻𝑛(𝐴) ⊕𝐻𝑛(𝐵), we have

(𝛿 ∘ 𝜓*)([𝑥]𝐴, [𝑦]𝐵) = 𝛿([𝑥− 𝑦]𝐴+𝐵) = [𝜕𝑥]𝐴∩𝐵 = [0]𝐴∩𝐵 .

Hence
Im𝜓* ⊂ ker 𝛿.

Finally, we consider

𝐻𝑛(𝐴+𝐵) 𝛿 // 𝐻𝑛−1(𝐴 ∩𝐵) 𝜙* // 𝐻𝑛−1(𝐴) ⊕𝐻𝑛−1(𝐵)

Im 𝛿 ⊂ ker𝜙*: For any [𝑧]𝐴+𝐵 ∈ 𝐻𝑛(𝐴+𝐵), there is an 𝑛-chain 𝑥 ∈ 𝐶𝑛(𝐴) and 𝑦 ∈ 𝐶𝑛(𝐵), such
that 𝑧 = 𝑥+ 𝑦. We have

𝛿([𝑥+ 𝑦]𝐴+𝐵) = [𝜕𝑥]𝐴∩𝐵 = [−𝜕𝑦]𝐴∩𝐵

Hence
𝜙*(𝛿([𝑥+ 𝑦]𝐴+𝐵)) = ([𝜕𝑥]𝐴, [−𝜕𝑦]𝐵) = ([0]𝐴, [0]𝐵).

Im 𝛿 ⊃ ker𝜙*: Let [𝑧]𝐴∩𝐵 ∈ ker𝜙*, then

𝑧 ∈ 𝐵𝑛−1(𝐴) and 𝑧 ∈ 𝐵𝑛−1(𝐵).

Hence there is an 𝑛-chain 𝑥 ∈ 𝐶𝑛(𝐴) and 𝑦 ∈ 𝐶𝑛(𝐵), such that

𝑧 = 𝜕𝑥 = 𝜕𝑦.

Let 𝑤 = 𝑥− 𝑦 ∈ 𝐶𝑛(𝐴+𝐵), we have

𝜕𝑤 = 𝑧 − 𝑧 = 0.

Hence
𝑤 ∈ 𝑍𝑛(𝐴+𝐵).

We consider
𝛿([𝑤]𝐴+𝐵) = [𝜕𝑥]𝐴∩𝐵 = [𝑧]𝐴∩𝐵 .

In the proof of Excision Theorem, we show the following two isomorphisms

𝜂 : 𝐻𝑛(𝐴+𝐵) → 𝐻𝑛(𝑋)
[𝛼]𝐴+𝐵 ↦→ [𝛼]𝑋

and
𝜌 : 𝐻𝑛(𝐴+𝐵,𝐵) → 𝐻𝑛(𝑋,𝐵)

[𝛼]𝐴+𝐵,𝐵 ↦→ [𝛼]𝑋,𝐵 .
Therefore the previous exact sequence can be rewritten as the following one

· · · // 𝐻𝑛(𝐴 ∩𝐵) 𝜙* // 𝐻𝑛(𝐴) ⊕𝐻𝑛(𝐵) 𝜓* // 𝐻𝑛(𝑋) ̃︀𝛿 // 𝐻𝑛−1(𝐴 ∩𝐵) 𝜙* //

· · ·
𝜓* // 𝐻0(𝑋) ̃︀𝛿 // 0

where ̃︀𝛿 : 𝐻𝑛(𝑋) → 𝐻𝑛(𝑋,𝐵) → 𝐻𝑛(𝐴,𝐴 ∩𝐵) → 𝐻𝑛−1(𝐴 ∩𝐵),
and 𝛿 = 𝜕 ∘ 𝜄−1

* ∘ pr*.
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Applications:

Next we give some applications of Mayer-Vietoris sequence. The first one is about the computation
of the homology group of spheres.

Proposition 6.7.2

For any 𝑘, 𝑛 ∈ N, we have

𝐻𝑘(𝑆𝑛) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z ⊕ Z, 𝑘 = 𝑛 = 0,
Z, 𝑘 = 0, 𝑛 > 0,
Z, 𝑘 = 𝑛 > 0,
0, 𝑘 ̸= 𝑛, 𝑘 ̸= 0.

Proof. Since 𝑆0 = {*, *} has two points, hence we have

𝐻𝑘(𝑆0) ∼= 𝐻𝑘({*}) ⊕𝐻𝑘({*}) ∼=
{︃
Z ⊕ Z, 𝑘 = 0
0, 𝑘 > 0

.

In the following we consider 𝑆𝑛 with 𝑛 > 0. Since 𝑆𝑛’s for 𝑛 > 0 are all path connected, we have

𝐻0(𝑆𝑛) ∼= Z,

for all 𝑛 > 0. Hence in the following we also consider only 𝑘 > 0.
Denote 𝑁 and 𝑆 the normal pole and south pole of 𝑆𝑛, and consider

𝐴 = 𝑆𝑛 ∖ {𝑁} and 𝐵 = 𝑆𝑛 ∖ {𝑆}.

We have the following homotopy equivalence

𝐴 ∼ 𝐵 ∼ 𝐷𝑛 and 𝐴 ∩𝐵 ∼ 𝑆𝑛−1.

We consider the following part of the Mayer-Vietoris sequence

𝐻𝑘(𝐴) ⊕𝐻𝑘(𝐵) 𝜓* // 𝐻𝑘(𝑆𝑛) ̃︀𝛿 // 𝐻𝑘−1(𝐴 ∩𝐵) 𝜙* // 𝐻𝑘−1(𝐴) ⊕𝐻𝑘−1(𝐵)

Since 𝑛 > 0, we have

𝐻𝑘(𝐴) ∼= 𝐻𝑘(𝐵) ∼= 𝐻𝑘(𝐷𝑛) ∼=
{︃
Z, 𝑘 = 0
0, 𝑘 > 0

.

For 𝑘 > 1, the above sequence becomes

0 𝜓* // 𝐻𝑘(𝑆𝑛) ̃︀𝛿 // 𝐻𝑘−1(𝑆𝑛−1) 𝜙* // 0

By the exactness, we have the following isomorphism

𝐻𝑘(𝑆𝑛) ∼= 𝐻𝑘−1(𝑆𝑛−1).

For 𝑘 = 1, we consider the following part of the long exact sequence

𝐻1(𝐴) ⊕𝐻1(𝐵) 𝜓* // 𝐻1(𝑆𝑛) ̃︀𝛿 // 𝐻0(𝐴 ∩𝐵) 𝜙* // 𝐻0(𝐴) ⊕𝐻0(𝐵) 𝜓* // 𝐻0(𝑆𝑛) // 0

If 𝑛 = 1, equivalently, we have

0 𝜓* // 𝐻1(𝑆1) ̃︀𝛿 // Z ⊕ Z
𝜙* // Z ⊕ Z

𝜓* // Z // 0
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Since the exactness at 𝐻0(𝑆1) (the Z on the most right) shows that

𝜓* : Z ⊕ Z → Z,

is surjective. Hence we have ker𝜓* ∼= Z. This can be obtained by considering both Z ⊕ Z and Z
as Z-free modules. The kernal of 𝜓* is a submodule of Z ⊕ Z, hence a Z-free module of rank at
most 1. If it has rank 2, then the image should be 0 or a torsion module. If it has rank 0, then
the image of 𝜓* should be Z ⊕ Z. Hence both are impossible. Hence it should be rank 1, i.e.
isomorphic to Z as Z-module and as group as well.

The exactness at Z ⊕ Z on the right shows that

Im𝜙* = ker𝜓* ∼= Z.

A similar reason as above shows that
ker𝜙* ∼= Z.

The exactness at Z ⊕ Z on the left shows that

Im ̃︀𝛿 ∼= ker𝜙* ∼= Z.

The exactness at 𝐻1(𝑆1) shows that ̃︀𝛿 is injective. Hence as a conclusion, we have

𝐻1(𝑆1) ∼= Z.

If 𝑛 > 1, the exact sequence becomes

𝐻1(𝐴) ⊕𝐻1(𝐵) 𝜓* // 𝐻1(𝑆𝑛) ̃︀𝛿 // Z
𝜙* // Z ⊕ Z

𝜓* // Z // 0

A similar discussion using the exactness at each position from the right to left shows that

𝐻1(𝑆𝑛) ∼= 0.

With all information obtained above, if 𝑘 > 𝑛, we have

𝐻𝑘(𝑆𝑛) ∼= 𝐻𝑘−1(𝑆𝑛−1) ∼= · · · ∼= 𝐻𝑘−𝑛(𝑆0) ∼= 0.

If 𝑘 < 𝑛, we have
𝐻𝑘(𝑆𝑛) ∼= 𝐻𝑘−1(𝑆𝑛−1) ∼= · · · ∼= 𝐻1(𝑆𝑛−𝑘) ∼= 0.

If 𝑘 = 𝑛, we have
𝐻𝑛(𝑆𝑛) ∼= · · · ∼= 𝐻1(𝑆1) ∼= Z.

Using this result, we can get some results which are closer to our initial goal: classification
of spaces in a topological way. This also shows that the homology groups can be used for this
purpose.

Corollary 6.7.3

Let 𝑚 and 𝑛 be two distinct natural numbers.

1) The sphere 𝑆𝑚 is not contractible.

2) The spheres 𝑆𝑚 and 𝑆𝑛 are not homotopy equivalent.
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Proof. These are a consequence of invariance of homology groups.
For 𝑚 = 0, the sphere 𝑆0 is not path connected, hence is not contractible. For 𝑚 > 0, we have

𝐻𝑚(𝑆𝑚) ∼= Z,

which is different from the 𝑚-th homology group for a contractible space which is trivial. Hence
𝑆𝑚 is not contractible for any 𝑚.

For 𝑚 ̸= 𝑛, without loss of generality, we may assume that 𝑚 < 𝑛, then

𝐻𝑛(𝑆𝑚) ∼= 0 ≇ Z ∼= 𝐻𝑛(𝑆𝑛).

Hence 𝑆𝑚 and 𝑆𝑛 are not homotopy equivalent to each other.

Remark 6.7.4.
Therefore spheres in different dimension are not homeomorphic to each other.

The above result may be not strange, but it seems impossible to prove it directly by simply
constructing maps and playing with definition. With this result, we can also compare Euclidean
spaces which seems also a mission impossible at the first glance.

Corollary 6.7.5

For two positive natural numbers 𝑚 ≠ 𝑛, the spaces R𝑚 and R𝑛 are not homeomorphic to
each other.

Proof. Assume there is a homeomorphism

𝑓 : R𝑚 → R𝑛.

This induces a homeomorphism

𝑓 : R𝑚 ∖ {𝑂} → R𝑛 ∖ {𝑓(𝑂)},

where 𝑂 is the origin of R𝑚.
Notice that R𝑚 ∖ {𝑂} is homotopy equivalent to 𝑆𝑚−1 while R𝑛 ∖ {𝑓(𝑂)} is homotopy

equivalent to 𝑆𝑛−1. Hence we have 𝑆𝑚−1 and 𝑆𝑛−1 homotopy equivalent to each other, which is
a contradiction.

In certain case, we can also show certain properties of continuous maps by comparing homology
groups.

Corollary 6.7.6 (Brouwer Fixed Point Theorem)

Let 𝑛 ∈ N ∖ {0, 1}. Any continuous map from 𝐷𝑛 to itself has a fixed point.

Proof. If not, there is a continuous map

𝑓 : 𝐷𝑛 → 𝐷𝑛,

has no fixed point.
Then for any 𝑝 ∈ 𝐷2, we have

𝑓(𝑝) ̸= 𝑝.

We consider the ray
𝑅(𝑝) = {𝑓(𝑝) + 𝑡(𝑝− 𝑓(𝑝)) | 𝑡 ∈ R≥0},
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and denote
𝑟(𝑝) = 𝑅(𝑝) ∩ 𝑆𝑛−1.

This gives a map
𝑟 : 𝐷𝑛 → 𝑆𝑛−1,

which is identity on 𝑆𝑛−1 and can be used to show that 𝑆𝑛−1 is a deformation retraction of 𝐷𝑛.
Hence for each 𝑚 ∈ N, we have

𝐻𝑚(𝐷𝑛) ∼= 𝐻𝑚(𝑆𝑛−1),

which is impossible, since
𝐻𝑛−1(𝐷𝑛) ∼= 0 ≇ Z ∼= 𝐻𝑛−1(𝑆𝑛−1).

6.8 Equivalence between simplicial homology and singular
homology

Let 𝑋 be a topological space with a simplicial complex structure. For simplicity, we assume
that 𝑋 is finite dimensional, i.e. there is an upper bound on the dimension of simplices in the
simplicial complex structure.

One could define the simplicial homology groups with respect to this simplicial complex
structure and the singular homology groups. We denote by (𝐶Δ

𝑛 (𝑋), 𝜕Δ)𝑛N the simplicial chain
complex, and by (𝐶𝑛(𝑋), 𝜕)𝑛∈N be the singular chain complex. Notice that a simplex in the
simplicial complex is also a singular simplex, hence for any 𝑛 ∈ N, we have a natural map

𝜙𝑛 : 𝐶Δ
𝑛 (𝑋) → 𝐶𝑛(𝑋).

Moreover taking the boundary of a simplex in a simplicial complex is defined in the same way as
when considering it as a singular simplex. Hence these (𝜙𝑛)𝑛∈N are chain maps between the two
chain complex:

· · · // 𝐶Δ
𝑛+1(𝑋) 𝜕Δ

//

𝜙𝑛+1

��

𝐶Δ
𝑛 (𝑋) 𝜕Δ

//

𝜙𝑛

��

𝐶Δ
𝑛−1(𝑋) 𝜕

Δ
//

𝜙𝑛−1

��

· · · 𝜕Δ
// 𝐶Δ

0 (𝑋) 𝜕
Δ
//

𝜙0

��

0

· · · // 𝐶𝑛+1(𝑋) 𝜕 // 𝐶𝑛(𝑋) 𝜕 // 𝐶𝑛−1(𝑋) 𝜕 // · · · 𝜕 // 𝐶0(𝑋) 𝜕 // 0

Hence we have the homomorphisms in the homology groups level: for any 𝑛 ∈ N,

(𝜙𝑛)* : 𝐻Δ
𝑛 (𝑋) → 𝐻𝑛(𝑋).

To compare the two kinds of homology groups, it is enough to understand these homomorphism
(𝜙𝑛)*’s. In particular, we would like to show the following theorem.

Theorem 6.8.1

For any 𝑛 ∈ N, the group homomorphism defined above

(𝜙𝑛)* : 𝐻Δ
𝑛 (𝑋) → 𝐻𝑛(𝑋),

is an isomorphism.
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Remark 6.8.2.
Before going into the proof, let us first make some remarks. First, in order to let this theorem
make sense, the space 𝑋 should be able to be equipped with a simplicial complex structure which
is not true for any topological space. On the other hand, the definition of singular simplices are
more flexible, since we only consider continuous maps.

Secondly, given a space with a simplicial complex structure, this theorem says that the
simplicial homology and the singular homology are the same. Notice that the singular homology
depends only on the topological structure on 𝑋, and is independent of the choice of any additional
structure on it. Moreover, it is a immediate consequence of its definition that the singular
homology groups are invariant under homeomorphism. Previously we have shown that it is even
homotopy invariant. On the other hand, the simplicial homology groups depends on the given
simplicial complex structure. From the previous discussion on the triangulations of surfaces, we
have seen that the simplicial complex structure may be not unique. Hence the above theorem
shows that the simplicial homology is independent of choice of simplicial complex structure.

Lastly, the singular homology groups is independent of choice of simplicial complex structure,
but the cost is that we have to consider lots of singular simplices. The chain groups are too large,
which makes the direct computation impossible. Although we have the homotopy invariance, the
long exact sequence for relative singular homology and the Excision Theorem, it is still quite
complicated to do computation. On the other hand, the simplicial homology are defined in a
much simpler and geometric way, which makes the direct computation doable. Remember one
reason that we would like to study the homology group is to use it as an invariant to tell different
spaces.

The tool used in the proof is the relative homology. The definition of relative homology can
be extends to the simplicial homology naturally. More precisely, for any 𝐴 ⊂ 𝑋 a Δ-subcomplex,
we can define for any 𝑛 ∈ N, the group of relative 𝑛-chains

𝐶Δ
𝑛 (𝑋,𝐴) := 𝐶Δ

𝑛 (𝑋)/𝐶Δ
𝑛 (𝐴).

Then the relative simplicial homology 𝐻Δ
𝑛 (𝑋,𝐴) is the homology groups for the relative simplicial

chain complex (𝐶Δ
𝑛 (𝑋,𝐴), 𝜕)𝑛∈N. We also have the long exact sequence for relative simplicial

homology in this case. In particular, the above relation between the two homology groups induces
the following commutative diagram relating the two long exact sequence together:

· · ·
prΔ

* // 𝐻Δ
𝑛+1(𝑋,𝐴) 𝜕Δ

//

(𝜙𝑛+1)*

��

𝐻Δ
𝑛 (𝐴)

𝑖Δ* //

(𝜙𝑛)*

��

𝐻Δ
𝑛 (𝑋)

prΔ
* //

(𝜙𝑛)*

��

𝐻Δ
𝑛 (𝑋,𝐴) 𝜕Δ

//

(𝜙𝑛)*

��

𝐻Δ
𝑛−1(𝐴)

𝑖Δ* //

(𝜙𝑛−1)*

��

· · ·

· · ·
pr* // 𝐻𝑛+1(𝑋,𝐴) 𝜕 // 𝐻𝑛(𝐴) 𝑖* // 𝐻𝑛(𝑋)

pr* // 𝐻𝑛(𝑋,𝐴) 𝜕 // 𝐻𝑛−1(𝐴) 𝑖* // · · ·

For any 𝑘 ∈ N, we define the 𝑘-skeleton of 𝑋 is the union of simplces in 𝑋 with dimension 𝑘
or less, and denote it by 𝑋𝑘. Hence it is a Δ-subcomplex of 𝑋. For any 𝑛 ∈ N, we define

𝐶Δ
𝑛 (𝑋𝑘, 𝑋𝑘−1) := 𝐶Δ

𝑛 (𝑋𝑘)/𝐶Δ
𝑛 (𝑋𝑘−1),

with the convention that 𝑋−1 = ∅.
If 𝑛 ̸= 𝑘, 𝑘 − 1, then there is no 𝑛-simplex in 𝑋𝑘. Hence

𝐶Δ
𝑛 (𝑋𝑘, 𝑋𝑘−1) ∼= 0.

If 𝑛 = 𝑘, then there is no 𝑛-simplex in 𝑋𝑘−1, hence

𝐶Δ
𝑘 (𝑋𝑘, 𝑋𝑘−1) ∼=

⨁︁
𝛼∈Ω

Z𝛼,
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where Ω is the collection of 𝑘-simplices in 𝑋 and Z𝛼 is the copy of Z associated to the 𝑘-simplex
𝛼.

If 𝑛 = 𝑘 − 1, then 𝑋𝑘 and 𝑋𝑘−1 have the same collection of (𝑘 − 1)-simplices. Hence

𝐶Δ
𝑘−1(𝑋𝑘, 𝑋𝑘−1) ∼= 0.

Hence we have

𝐻Δ
𝑛 (𝑋𝑘, 𝑋𝑘−1) ∼=

⎧⎪⎨⎪⎩
⨁︁
𝛼∈Ω

Z𝛼, 𝑛 = 𝑘;

0, 𝑛 ̸= 𝑘.

For each 𝑛 ∈ N, consider the singular relative homology groups 𝐻𝑛(𝑋𝑘, 𝑋𝑘−1). Now we would
like to discuss its relation with 𝐻Δ

𝑛 (𝑋𝑘, 𝑋𝑘−1).
For any 𝑘 ∈ N*, we consider the following commutative diagram for pairs of spaces(︃∐︁
𝛼∈Ω

Δ𝑘
𝛼,
∐︁
𝛼∈Ω

𝜕Δ𝑘
𝛼

)︃
𝑓1 //

𝑔1

��

(︃∐︁
𝛼∈Ω

Δ𝑘
𝛼,
∐︁
𝛼∈Ω

(Δ𝑘 ∖ {𝑏𝛼})
)︃

𝑔2

��

(︃∐︁
𝛼∈Ω

Δ̊𝑘
𝛼,
∐︁
𝛼∈Ω

(Δ̊𝑘 ∖ {𝑏𝛼})
)︃

𝑓2oo

𝑔3

��

(𝑋𝑘, 𝑋𝑘−1) ℎ1 //

(︃
𝑋𝑘, 𝑋𝑘 ∖

∐︁
𝛼∈Ω

{𝜎𝛼(𝑏𝛼)}
)︃ (︃

𝑋𝑘 ∖𝑋𝑘−1, (𝑋𝑘 ∖𝑋𝑘−1) ∖
∐︁
𝛼∈Ω

{𝜎𝛼(𝑏𝛼)}
)︃

ℎ2oo

Notice that 𝑔3 is a homeomorphism between the two pairs, hence it induces isomorphism between
the relative homology groups. The maps 𝑓2 and ℎ2 also induces isomorphisms between the relative
homology groups by Excision Theorem. Hence the map 𝑔2 also induces an isomorphism between
relative homology groups.

To see the maps 𝑓1 and ℎ1 induce isomorphisms between relative homology groups, we consider
the following fact.

Lemma 6.8.3

Let 𝑋 be a topological space with subspaces 𝐴 and 𝑈 satisfying the inclusion relation:

𝑈 ⊂ 𝐴 ⊂ 𝑋,

such that 𝑈 is a deformation retraction of 𝐴, then for any 𝑛 ∈ N, we have

𝐻𝑛(𝑋,𝐴) ∼= 𝐻𝑛(𝑋,𝑈).

We first recall the five lemma for abelian groups.

Lemma 6.8.4 (Five Lemma for Abelian Groups)

Consider the following commutative diagram of abelian groups

𝐴
𝑖 //

𝛼

��

𝐵
𝑗
//

𝛽

��

𝐶
𝑘 //

𝛾

��

𝐷
𝑙 //

𝛿
��

𝐸

𝜖

��

𝐴′ 𝑖′ // 𝐵′ 𝑗′
// 𝐶 ′ 𝑘′

// 𝐷′ 𝑙′ // 𝐸′

Assume that the first row is exact at 𝐵, 𝐶 and 𝐷, the second row is exact at 𝐵′, 𝐶 ′ and 𝐸′,
and the homomorphisms 𝛼, 𝛽, 𝛿 and 𝜖 are isomorphisms. Then 𝛾 is an isomorphism.
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Proof of Five Lemma. We first show that 𝛾 is surjective.
For any 𝑐′ ∈ 𝐶 ′, denote

𝑑′ = 𝑘′(𝑐′) ∈ Im 𝑘′ = ker 𝑙′.

Hence we have
𝑙′(𝑑′) = 0 ∈ 𝐸′.

Since 𝛿 is an isomorphism, there is 𝑑 ∈ 𝐷, such that

𝛿(𝑑) = 𝑑′.

Then since
𝜖(𝑙(𝑑)) = 𝑙′(𝛿(𝑑)) = 𝑙′(𝑑′) = 0,

and 𝜖 is an isomorphism, we have
𝑙(𝑑) = 0,

hence
𝑑 ∈ ker 𝑙 = Im 𝑘,

and there is an element 𝑐 ∈ 𝐶, such that

𝑘(𝑐) = 𝑑.

Hence
𝑘′(𝛾(𝑐)) = 𝛿(𝑘(𝑐)) = 𝑑′,

and
𝑘′(𝑐′ − 𝛾(𝑐)) = 0.

Therefore, we have
𝑐′ − 𝛾(𝑐) ∈ ker 𝑘′ = Im 𝑗′

and there is an element 𝑏′ ∈ 𝐵′, such that

𝑗′(𝑏′) = 𝑐′ − 𝛾(𝑐).

Since 𝛽 is isomorphism, there is an element 𝑏 ∈ 𝐵, such that

𝛽(𝑏) = 𝑏′.

Hence we have
𝛾(𝑗(𝑏)) = 𝑗′(𝛽(𝑏)) = 𝑐′ − 𝛾(𝑐).

Therefore
𝑐′ = 𝛾(𝑗(𝑏) + 𝑐) ∈ Im 𝛾.

The homomorphism 𝛾 is surjective.

Now we would like to show that 𝛾 is injective. It is enough to show that

ker 𝛾 = {0}.

Let 𝑐 ∈ ker 𝛾. Then we have

𝛿(𝑘(𝑐)) = 𝑘′(𝛾(𝑐)) = 𝑘′(0) = 0.

Since 𝛿 is an isomorphism, we have
𝑘(𝑐) = 0.

Hence
𝑐 ∈ ker 𝑘 = Im 𝑗,
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and there is an element 𝑏 ∈ 𝐵, such that

𝑗(𝑏) = 𝑐.

Now consider
𝑗′(𝛽(𝑏)) = 𝛾(𝑗(𝑐)) = 0.

We have
𝑏′ = 𝛽(𝑏) ∈ ker 𝑗′ = Im 𝑖′,

and there is an element 𝑎′ ∈ 𝐴′, such that

𝑖′(𝑎′) = 𝑏′.

Since 𝛼 is an isomorphism, there is an element 𝑎 ∈ 𝐴, such that

𝑎′ = 𝛼(𝑎).

Notice that
𝑖(𝑎) = 𝛽−1(𝑖′(𝛼(𝑎))) = 𝑏,

we have
𝑏 ∈ Im 𝑖 = ker 𝑗.

Hence
𝑐 = 𝑗(𝑏) = 0.

We therefore have
ker 𝛾 = {0}.

Proof of Lemma 6.8.3. Let 𝜄 : 𝑈 → 𝐴 be the inclusion map, and 𝑟 : 𝐴 → 𝑈 be the retraction
such that 𝜄 ∘ 𝑟 ∼= id𝐴. By the homotopy invariant of singular homology, we have for any 𝑛 ∈ N

𝐻𝑛(𝐴) ∼= 𝐻𝑛(𝑈).

Let 𝑋 = ⊔𝛼∈Ω𝑋𝛼 be the path connected component decomposition of 𝑋. Let Ω𝑈 (resp.
Ω𝐴) be the collection of indices 𝛼 such that 𝑈 ∩ 𝑋𝛼 (resp. 𝐴 ∩ 𝑋) is not empty. Since 𝑈 is a
deformation retraction of 𝐴, we have Ω𝑈 = Ω𝐴. Hence for 𝑛 = 0, we have

𝐻0(𝑋,𝑈) ∼=
⨁︁
𝛼∈Ω𝑈

Z𝛼 ∼= 𝐻0(𝑋,𝐴).

Now let 𝑛 > 0. For any 𝑛-chain 𝛼 ∈ 𝐶𝑛(𝑋), if [𝛼]𝑈 ∈ 𝑍𝑛(𝑋,𝑈), then there is an (𝑛− 1)-chain
𝛽 ∈ 𝐶𝑛−1(𝑈), such that 𝜕𝛼 = 𝛽. Since 𝐶𝑛−1(𝑈) < 𝐶𝑛−1(𝐴), we have

[𝛼]𝐴 ∈ 𝑍𝑛(𝑋,𝐴).

If [𝛼]𝑈 ∈ 𝐵𝑛(𝑋,𝑈), we have an (𝑛+ 1)-chain 𝛽 ∈ 𝐶𝑛+1(𝑋), such that

[𝛼]𝑈 = 𝜕[𝛽]𝑈 = [𝜕𝛽]𝑈 .

Hence there is an 𝑛-chain 𝛾 ∈ 𝐶𝑛(𝑈), such that 𝛼 = 𝜕𝛽 + 𝛾. Since 𝛾 ∈ 𝐶𝑛(𝐴), we have
[𝛼]𝐴 ∈ 𝐵𝑛(𝑋,𝐴). Hence the inclusions 𝑈 ⊂ 𝐴 ⊂ 𝑋 induce a group homomorphism

𝜙 : 𝐻𝑛(𝑋,𝑈) → 𝐻𝑛(𝑋,𝐴).
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Now consider the long exact sequence for relative homology and have the following commutative
diagram, we have

𝐻𝑛+1(𝑈)
(𝑗𝑈 )*

//

𝜄*

��

𝐻𝑛(𝑋)
(pr𝑈 )*

//

(id𝑋 )*

��

𝐻𝑛(𝑋,𝑈) 𝛿𝑈 //

𝜙

��

𝐻𝑛(𝑈)
(𝑗𝑈 )*
//

𝜄*

��

𝐻𝑛−1(𝑋𝑘−1)

(id𝑋 )*

��

𝐻𝑛+1(𝐴)
(𝑗𝐴)*

// 𝐻𝑛(𝑋)
(pr𝐴)*

// 𝐻𝑛(𝑋,𝐴) 𝛿𝐴 // 𝐻𝑛(𝐴)
(𝑗𝐴)*

// 𝐻𝑛−1(𝑋)

By the Five lemma, we have 𝜙 an isomorphism.

Using this lemma, the map 𝑓1 and ℎ1 induce isomorphisms in between relative homology
groups in each dimension. For any 𝑛 ∈ N, we have

𝐻𝑛(𝑋𝑘, 𝑋𝑘−1) ∼= 𝐻𝑛

(︃∐︁
𝛼∈Ω

Δ𝑘
𝛼,
∐︁
𝛼∈Ω

𝜕Δ𝑘
𝛼

)︃
∼=
⨁︁
𝛼∈Ω

𝐻𝑛(Δ𝑘
𝛼, 𝜕Δ𝑘

𝛼)

We have the homeomorphism between the pairs (Δ𝑘, 𝜕Δ𝑘) and (𝐷𝑘, 𝜕𝐷𝑘). In the homework
using the long exact sequence for relative homology groups, for any 𝑘, 𝑛 ∈ N, we have

𝐻𝑛(𝐷𝑘+1, 𝑆𝑘) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐻𝑛−1(𝑆𝑘), 𝑛 ≥ 2;
0, 𝑛 = 1, 𝑘 ≥ 1;
Z, 𝑛 = 1, 𝑘 = 0;
0, 𝑛 = 0.

Let 𝑛 = 𝑘 + 1. If 𝑘 = 0, then we have

𝐻0(𝐷1, 𝑆0) ∼= Z.

If 𝑘 > 0, then 𝑛 ≥ 2, and we have

𝐻𝑘+1(𝐷𝑘+1, 𝑆𝑘) ∼= 𝐻𝑘(𝑆𝑘) ∼= Z.

Hence for 𝑘 ≥ 1, we have
𝐻𝑘(𝑋𝑘, 𝑋𝑘−1) ∼= 𝐻Δ

𝑘 (𝑋𝑘, 𝑋−1).

Moreover, from the above discussion, we can check that this isomorphism is given by

(𝜙𝑛)* : 𝐻Δ
𝑘 (𝑋𝑘, 𝑋−1) → 𝐻𝑘(𝑋𝑘, 𝑋−1).

Now we start to give the proof of Theorem 6.8.1.

Proof of Theorem 6.8.1. Notice that there is an inclusion relation among all 𝑘-skeleton’s of 𝑋

𝑋0 ⊂ 𝑋1 ⊂ · · · ⊂ 𝑋𝑘 ⊂ · · · .

Since we assume that 𝑋 is finite dimensional, there is 𝑘 ∈ N, such that

𝑋 = 𝑋𝑘.

The proof is by induction on 𝑘.
Consider 𝑘 = 0, the 0-skeleton 𝑋0 is a collection of points. Hence we have

𝐻𝑛(𝑋0) ∼=

⎧⎪⎨⎪⎩
⨁︁
𝑝∈𝑋0

Z[𝑝]Δ, 𝑛 = 0;

0, 𝑛 > 0.
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On the simplicial side, by its definition, we have

𝐻Δ
𝑛 (𝑋0) ∼=

⎧⎪⎨⎪⎩
⨁︁
𝑝∈𝑋0

Z[𝑝], 𝑛 = 0;

0, 𝑛 > 0.

Hence we only have to check the case when 𝑛 = 0. Notice that a singular 0-simplex is also a
simplicial 0-simplex. Hence for any 𝑝 ∈ 𝑋0, the homomorphism (𝜙0)* sends each [𝑝]Δ ∈ 𝐻Δ

0 (𝑋0)
to [𝑝] ∈ 𝐻0(𝑋0). As a result, we have

𝐻0(𝑋0) ∼= 𝐻Δ
0 (𝑋0).

Now assume that 𝑘 > 0 and for any 0 ≤ 𝑖 ≤ 𝑘 − 1, and for any 𝑛 ∈ N, the homomorphism

(𝜙𝑛)* : 𝐻Δ
𝑛 (𝑋𝑖) → 𝐻𝑛(𝑋𝑖),

is an isomorphism. We consider the commutative diagram

𝐻Δ
𝑛+1(𝑋𝑘, 𝑋𝑘−1) 𝜕

Δ
//

(𝜙𝑛+1)*

��

𝐻Δ
𝑛 (𝑋𝑘−1)

𝑖Δ* //

(𝜙𝑛)*

��

𝐻Δ
𝑛 (𝑋𝑘)

prΔ
* //

(𝜙𝑛)*

��

𝐻Δ
𝑛 (𝑋𝑘, 𝑋𝑘−1) 𝜕Δ

//

(𝜙𝑛)*

��

𝐻Δ
𝑛−1(𝑋𝑘−1)

(𝜙𝑛−1)*

��

𝐻𝑛+1(𝑋𝑘, 𝑋𝑘−1) 𝜕 // 𝐻𝑛(𝑋𝑘−1) 𝑖* // 𝐻𝑛(𝑋𝑘)
pr* // 𝐻𝑛(𝑋𝑘, 𝑋𝑘−1) 𝜕 // 𝐻𝑛−1(𝑋𝑘−1)

Here the maps associated to vertical arrows are all isomorphism except the middle one. From
left to right, the first and the fourth are because of the previous discussion on relative homology
groups. The second and the fifth are because of the induction condition.

Using Five Lemma, we may conclude that

(𝜙𝑛)* : 𝐻Δ
𝑛 (𝑋𝑘) → 𝐻𝑛(𝑋𝑘),

is an isomorphism.
By induction, we have the theorem.

From this, we have the following immediate corollaries.

Corollary 6.8.5

The simplicial homology groups of 𝑋 given by different simplicial complex structures are
isomorphic to each other. In other words, the isomorphism type of the homology groups is
independent of choice of simplicial complex structure.

Corollary 6.8.6

For any 𝑛 ∈ N, if 𝑋 has a simplicial complex structure with finitely many 𝑛-simplices, then
𝐻𝑛(𝑋) is finitely generated.

6.9 First homology and fundamental group
In the study of surface, we use the abelianizations of the fundamental groups of surfaces to give
the classification of surfaces. We call it the first homology group of the surface. In fact the
abelianization of the fundamental group of a surface is indeed isomorphic to the first homology
group of the same surface. This is moreover a general fact.
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More precisely, let 𝑋 be a path connected space, and 𝑝 be a base point. Recall that a path in
𝑋 is a continuous map

𝛼 : [0, 1] → 𝑋.

By definition, this is also a singular 1-simplex in 𝑋.
For any 𝛼 ∈ ℒ(𝑋, 𝑝), we have

𝛼(0) = 𝛼(1),
hence 𝜕𝛼 = 0 and we have

𝛼 ∈ 𝑍1(𝑋).
We have a natural map from ℒ(𝑋, 𝑝) to 𝐻1(𝑋).

In order to have a map from 𝜋1(𝑋, 𝑝) to 𝐻1(𝑋), we should prove that the image is invariant
under path homotopy. We consider 𝛼′ be another loop in ℒ(𝑋, 𝑝) homotopic to 𝛼. Let us denote
the homotopy by

𝐻 : [0, 1] × [0, 1] → 𝑋,

with 𝐻0 = 𝛼 and 𝐻1 = 𝛼′.
Consider the square [0, 1] × [0, 1] with

𝑢0 = (0, 0), 𝑢1 = (1, 0), 𝑢2 = (1, 1), 𝑢3 = (0, 1).

There is a triangulation of [0, 1] × [0, 1] by adding the diagonal 𝑢0𝑢2. The restriction to each
triangle gives a singular 2-simplex in 𝑋, and we denote them by

𝜎1 = 𝐻|[𝑢0,𝑢1,𝑢2] and 𝜎2 = 𝐻|[𝑢0,𝑢2,𝑢3].

Let
𝜎 = 𝜎1 + 𝜎2.

Then we have
𝜕𝜎 = 𝜕𝐻|[𝑢0,𝑢1,𝑢2] + 𝜕𝐻|[𝑢0,𝑢2,𝑢3]

= 𝐻|[𝑢1,𝑢2] −𝐻|[𝑢0,𝑢2] +𝐻|[𝑢0,𝑢1] +𝐻|[𝑢2,𝑢3] −𝐻|[𝑢0,𝑢3] +𝐻|[𝑢0,𝑢2]

= 𝐻|[𝑢1,𝑢2] + 𝛼− 𝛼′ −𝐻|[𝑢0,𝑢3].

Notice that both 𝐻|[𝑢1,𝑢2] and 𝐻|[𝑢0,𝑢3] are constant map by the definition of a path homotopy.
We consider a singular 2-simplex

𝜏 : Δ2 → 𝑋,

which is a constant map with image 𝑞. Let

𝛽 : Δ1 → 𝑋,

be the singular 1-simplex which is a constant map with image 𝑞.
We still denote

Δ2 = [𝑣0, 𝑣1, 𝑣2].
Then we have

𝜕𝜏 = 𝜏 |[𝑣1,𝑣2] − 𝜏 |[𝑣0,𝑣2] + 𝜏 |[𝑣0,𝑣1] = 𝛽 − 𝛽 + 𝛽 = 𝛽.

Hence the singular 1-simplex in 𝑋 given by constant path gives a 1-boundary in 𝐶1(𝑋). Let 𝜏1
be the singular 2-simplex in 𝑋 with image 𝑝 and 𝜏2 be the singular 2-simplex in 𝑋 with image 𝑝.
We then have

𝛼− 𝛼′ = 𝜕𝜎 − 𝜕𝜏1 + 𝜕𝜏2.

Hence
[𝛼] = [𝛼′].

From this discussion, we find a well-defined map
ℎ : 𝜋1(𝑋, 𝑝) → 𝐻1(𝑋),

[𝛼]𝜋1 ↦→ [𝛼]𝑋 .
The main goal of this section is to show the following theorem.
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Theorem 6.9.1

The map ℎ is a group homomorphism. Moreover it is surjective and its kernel is the
commutator group of 𝜋1(𝑋, 𝑝).

By the definition of the abelianization of a group, we have the following corollary

Corollary 6.9.2

We have
𝜋1(𝑋, 𝑝)ab := 𝜋1(𝑋, 𝑝)/[𝜋1(𝑋, 𝑝), 𝜋1(𝑋, 𝑝)] ∼= 𝐻1(𝑋).

Proof. We first show that ℎ is a group homomorphism.
For any 𝛼 and 𝛼′ loops in 𝑋 based at 𝑝, we have

𝛽 = 𝛼 * 𝛼′ * 𝛼 * 𝛼′

is a loop based at 𝑝 which is homotopically trivial. We identify 𝑆1 with the quotient space
[0, 1]/0 ∼ 1. Since 𝛽 is a loop, it descends to a map 𝛽′ from 𝑆1 to 𝑋, such that we have the
following commutative diagram

[0, 1] 𝛽
//

pr
��

𝑋

𝑆1
𝛽′

==

Since 𝛽 is homotopically trivial, the map 𝛽′ can be extends to a map

̃︀𝛽 : 𝐷2 → 𝑋.

We may identify Δ2 with 𝐷2 and get a singular 2-simplex 𝜎, such that

𝜕𝜎 = 𝛼+ 𝛼′ − 𝛼 * 𝛼′.

Hence we have
[𝛼]𝑋 + [𝛼′]𝑋 = [𝛼 * 𝛼′]𝑋 ,

and ℎ is a homomorphism.

Now we would like to show that the map ℎ is surjective. Let 𝑧 ∈ 𝑍1(𝑋). It can be written as

𝑧 =
𝑘∑︁
𝑖=1

𝜎𝑖,

where 𝜎𝑖’s are singular 1-simplices in 𝑋. Here for different 𝑖 and 𝑗, it is possible that 𝜎𝑖 = 𝜎𝑗 .
Since 𝑧 is a singular 1 cycle, we have

𝜕𝑧 = 0.

Hence
𝑘∑︁
𝑖=1

(𝜎𝑖|𝑣0 − 𝜎𝑖|𝑣1) = 0.

This means each point in
{𝜎𝑖(𝑣0), 𝜎𝑣1 | 0 ≤ 𝑖 ≤ 𝑘}
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appears even times. Moreover the times as starting points and the times as ending points of
some 𝜎𝑖 are the same. Hence all 𝜎𝑖’s considered as paths in 𝑋 form several loops by taking
concatenation. Without loss of generality, we may assume that

𝛾 = 𝜎1 * · · · * 𝜎𝑘

is a loop in 𝑋 based at 𝑞.
First the concatenation

(𝜎1 * · · · * 𝜎𝑘) * 𝛾

is a loop homotopically trivial, hence when consider the associated map from 𝑆1 to 𝑋 by identifying
0 and 1 of [0, 1] together, it can be extends to a continuous map from 𝐷2 to 𝑋. Moreover, the
disk 𝐷2 can be considered as an (𝑘 + 1)-gon 𝑃 , where sides are given by 𝜎1, ..., 𝜎𝑘, 𝛾 following a
given orientation of 𝑆1. By taking the triangulation 𝑃 , we can show that

𝜎1 + · · ·𝜎𝑘 + 𝛾 = 𝜎1 + · · ·𝜎𝑘 − 𝛾 ∈ 𝐵1(𝑋).

We have
[𝑧] = [𝛾].

Now we consider a path 𝛼 in 𝑋 from 𝑝 to 𝑞. The changes of base point yields a loop based at 𝑝:

𝛾′ = 𝛼 * 𝛾 * 𝛼.

Notice that
𝛼 * 𝛾 * 𝛼 * 𝛾′

is again a loop homotopically trivial, by a similar argument as above, we have

(𝛼+ 𝛾 − 𝛼) − 𝛾′ ∈ 𝐵1(𝑋),

hence
[𝑧] = [𝛾] = [𝛾′] ∈ Im ℎ.

Now we determine the kernel of ℎ. Since 𝐻1(𝑋) is abelian, we have

[𝜋1(𝑋, 𝑝), 𝜋1(𝑋, 𝑝)] ⊂ kerℎ.

Now let [𝛼] ∈ kerℎ, hence we have

[𝛼]𝑋 = [0]𝑋 ∈ 𝐻1(𝑋),

or equivalently
𝛼 ∈ 𝐵1(𝑋).

Let

𝜎 =
𝑘∑︁
𝑖=0

𝜎𝑘,

where 𝜎1, ..., 𝜎𝑘 ∈ 𝐶2(𝑋), such that
𝜎 = 𝜕𝜎.

For each 1 ≤ 𝑖 ≤ 𝑘, we denote
𝜕𝜎𝑖 = 𝜏𝑖0 − 𝜏𝑖1 + 𝜏𝑖2

Hence

𝛼 =
𝑘∑︁
𝑖=1

(𝜏𝑖0 − 𝜏𝑖1 + 𝜏𝑖2).
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Notice that on the left hand side there is one singular 1-simplex. Hence all 𝜏𝑖𝑗 ’s should be all
canceled out with one left. We denote

𝜎𝑖 : Δ2
𝑖 → 𝑋,

then the above observation induces a way to glue all Δ2
𝑖 ’s together to a simplicial complex 𝑃 and

we have a map
𝜂 : 𝑃 → 𝑋,

such that 𝜂|Δ2
𝑖

= 𝜎𝑖. Here Δ2
𝑖 is identified with its image in 𝑃 after gluing. In particular, it is

connected. Hence the loop 𝛾 is homotopic to a concatenation of 𝜏𝑖𝑗 ’s considered as paths in 𝑋.
For each path 𝜏𝑖𝑗 , we consider a path 𝛾𝑖𝑗 going from 𝑝 to the starting point of 𝜏𝑖𝑗 . Hence we

have loop ̃︀𝜏𝑖𝑗 = 𝛾𝑖𝑗 * 𝜏𝑖𝑗 * 𝛾𝑖(𝑗+1),

here 𝑗 is taken up to mod 3. The loop 𝛾 is also changed to ̃︀𝛾 without changing its homotopy
class since each change is given by adding 𝛾𝑖𝑗 * 𝛾𝑖𝑗 which is homotopic to a constant path.

Notice that the path ̃︀𝜏𝑖𝑗 is based at 𝑝 now. And ̃︀𝛾 is a concatenation of ̃︀𝜏𝑖𝑗 ’s in certain order.
Now we consider them in the abelianization of 𝜋1(𝑋, 𝑝) (so that we can change their order) and
have

[̃︀𝛾]ab
𝜋1

= *𝑘𝑖=1([̃︀𝜏𝑖0]ab
𝜋1

* [̃︀𝜏𝑖0]ab
𝜋1

* [̃︀𝜏𝑖0]ab
𝜋1

) = *𝑘𝑖=1[̃︀𝜏𝑖0 * ̃︀𝜏𝑖0 * ̃︀𝜏𝑖0]ab
𝜋1

Notice that for each 𝑖, the path ̃︀𝜏𝑖0 * ̃︀𝜏𝑖0 * ̃︀𝜏𝑖0 is homotopically trivial as a path in 𝑋, since it
comes from the boundary map of a continuous map

𝜎𝑖 : Δ2
𝑖 → 𝑋.

Hence we have
[̃︀𝜏𝑖0 * ̃︀𝜏𝑖0 * ̃︀𝜏𝑖0]𝜋1 = [𝑐𝑝]𝜋1 ,

and we have
[𝛾]ab

𝜋1
= [̃︀𝛾]ab

𝜋1
= [𝑐𝑝]ab

𝜋1
.

This shows that
[𝛾] ∈ [𝜋1(𝑋, 𝑝), 𝜋1(𝑋, 𝑝)].



Chapter 7

CW-complex and cellular
homology

We will introduce another homology group for a space using cells in it. The structure on the space
to make this construction work is call a CW complex structure. The construction essentially
follows the same idea as the one for simplicial homology by considering cells instead of simplices,
although the first definition that we will give seems quite abstract.

7.1 CW-complex
Similar to simplicial complexes or simplicial complexes, the CW complex is also obtained by
gluing spaces with certain topological type.

For any 𝑛 ∈ N*, by a cell of dimension 𝑛, we mean a topological space homeomorphic to
the Euclidean unit closed ball:

𝐷𝑛 := {𝑝 ∈ R𝑛 | |𝑝| ≤ 1},

where | · | stands for the Euclidean norm in R𝑛.
An open cell of dimension 𝑛 is a topological space homeomorphic to the Euclidean unit

open ball
𝐷𝑛 := {𝑝 ∈ R𝑛 | |𝑝| < 1}.

where | · | stands for the Euclidean norm in R𝑛.
As a convention, a 0-cell consists of a single point.

Example 7.1.1 (Cells in dimension 0, 1, 2, 3).
Figure 7.1.1 illustrates cells in dimension 0, 1, 2, 3 respectively.

Figure 7.1.1: From left to right, we have 𝐷0, 𝐷1, 𝐷2 and 𝐷3.

257
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Next we would like to glue cells possibly in different dimensions together. Let 𝑋 and 𝑌 be
two topological spaces, and 𝐴 is a subspace of 𝑋. The space obtained by gluing 𝑋 to 𝑌 along 𝐴
is defined to be

𝑋 ∪𝑓 𝑌 := 𝑋 ⊔ 𝑌/𝑥 ∼ 𝑓(𝑥)

where 𝑓 : 𝐴 → 𝑌 is a continuous map, and ∼ is given by identifying 𝑥 ∈ 𝐴 with its image
𝑓(𝑥) ∈ 𝑌 .

Example 7.1.2 (Gluing a handle to a cup).
Topologically, We would like to glue a cylinder 𝐶 to a disk 𝐷2 by identifying the boundary of 𝐶
to circles in 𝐷2. Figure 7.1.2 illustrate how it works.

Figure 7.1.2: Glue a handle to a cup.

Definition of a CW-complex

A topological space 𝑋 is called a CW-complex if it has a filtration of subspaces

𝑋(0) ⊂ 𝑋(1) ⊂ · · · ⊂ 𝑋(𝑛) ⊂ · · ·

such that

1) 𝑋(0) is a disjoint union of points;

2) for any 𝑛 ∈ N*, we construct 𝑋(𝑛) by

𝑋(𝑛) := 𝑋(𝑛−1)
⋃︁

𝑔𝛼|𝛼∈Ω

(︃⨆︁
𝛼∈Ω

𝐷𝑛
𝛼

)︃

where for each 𝛼 ∈ Ω, 𝐷𝑛
𝛼 is a closed 𝑛-cell, and

𝑔𝛼 : 𝜕𝐷𝑛
𝛼 → 𝑋(𝑛−1),

is a continuous map.

3) we have
𝑋 =

⋃︁
𝑛∈N

𝑋(𝑛),

and the topological on 𝑋 is the weak topology given by (𝑋(𝑛))𝑛∈N. In the other words, a
subset 𝐴 of 𝑋 is open if and only if 𝐴 ∩𝑋(𝑛) is open in 𝑋(𝑛).
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For any 𝑛 ∈ N*, for any 𝛽 ∈ Ω, we have a continuous map

𝑓𝛽 : 𝐷𝑛
𝛽 → 𝑋(𝑛−1)

⨆︁
𝛼∈Ω

𝐷𝑛
𝛼 → 𝑋(𝑛) → 𝑋,

where the first arrow stands for the inclusion of 𝐷𝑛
𝛽 in the disjoint union, the second arrow stands

for the quotient map to glue all 𝑛-cells to 𝑋(𝑛−1), and the last arrow stands for the inclusion of
𝑋(𝑛) into 𝑋. Such a map 𝑓𝛽 is called the characteristic map for 𝐷𝑛

𝛼.
An easy observation shows the following two facts:

1) the restriction of 𝑓𝛼 to 𝜕𝐷𝑛
𝛼 is 𝑔𝛼;

2) the restriction of 𝑓𝛼 to 𝐷𝑛
𝛼 is a homeomorphism to the image.

For any 𝑛 ∈ N, the subspace 𝑋(𝑛) is called the 𝑛-skeleton of 𝑋.

Example 7.1.3.

A sub-CW-complex 𝑌 of 𝑋 is a subspace of 𝑋, such that it is a CW-complex and for any
𝑛 ∈ N, we have

𝑌 (𝑛) = 𝑋(𝑛) ∩ 𝑌.

Hence 𝑌 is closed.

Example 7.1.4 (Some spaces considered as CW-complexes).
Sphere/Torus/RP𝑛/Wedge sum of circles/Wedge sum of spheres

7.2 Properties of CW-complexes

Regarding the topological properties on 𝑋, since we construct 𝑋 by gluing cells, we have the
following proposition

Proposition 7.2.1

A CW-complex is Hausdorff and locally contractible.

Another property comes form the fact that when we cone off a subspace, the topology in
that part becomes trivial. When making a cover over loop in a space, it is equivalent to glue
a disk to along that circle. If this loop has non-trivial homotopy class, then after gluing the
disk, this loop is homotopic to a constant path. A rigorous proof can be given by considering
Seifert-Van-Kampen theorem.

By checking how gluing 𝑛 + 1-cells changes the topology of the 𝑛-skeleton 𝑋(𝑛) of a CW-
complex., we have the following proposition.
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Proposition 7.2.2

Assume that the 2-skeleton 𝑋(2) of a CW-complex 𝑋 is path connected. The inclusion

𝜄 : 𝑋(2) → 𝑋

induces an isomorphism
𝜄* : 𝜋1(𝑋(2), 𝑝) → 𝜋1(𝑋, 𝑝),

where 𝑝 ∈ 𝑋(2).

Proof. We consider the inclusion
𝑗 : 𝑋(𝑛) → 𝑋(𝑛+1)

We try to show that the induced homomorphism

𝑗* : 𝜋1(𝑋(𝑛), 𝑝) → 𝜋1(𝑋(𝑛+1), 𝑝),

is an isomorphism for 𝑛 ≥ 2.
Any point in any 𝑛-cell in 𝑋(𝑛) can be connected to 𝑋(𝑛−1) by a path. Then by induction, it

can be connected to 𝑋(2) which is path connected. Hence 𝑋(𝑛) is path connected, since any pair
of points in 𝑋(𝑛) can be connected to 𝑋(2) by paths, then by taking a concatenation of these two
paths with a path in 𝑋(2), we have a path in 𝑋(𝑛) to connect the two points.

Let 𝐷𝑛+1
𝛼 be a (𝑛+ 1)-cell glued to 𝑋(𝑛) by 𝑔𝛼 with characteristic map 𝑓𝛼. Let 𝛾𝛼 be a path

in 𝑋(𝑛) with 𝛾𝛼(0) = 𝑝 and 𝛾𝛼(1) ∈ 𝑔𝛼(𝜕𝐷𝑛+1
𝛼 ). We then glue a Euclidean band to 𝑋(𝑛+1) along

𝛼.
Let [0, 1] × [0, 1] be the band. Then we consider the map

̃︀𝛾𝛼 : [0, 1] × {0} ∪ {1} × [0, 1] → 𝑋(𝑛+1),

such that for any 𝑡 ∈ [0, 1], we have

̃︀𝛾𝛼(𝑡, 0) = 𝛾𝛼(𝑡),

and ̃︀𝛾𝛼({1} × (0, 1]) ⊂ 𝑓𝛼(𝐷𝑛+1
𝛼 ).

Then we glue [0, 1] × [0, 1] to 𝑋(𝑛+1) along [0, 1] × {0} ∪ {1} × [0, 1].
For any other 𝐷𝑛+1

𝛽 if exists, we repeat the same construction. Denote a path 𝛾𝛽 in 𝑋(𝑛)

with 𝛾𝛽(0) = 𝑝 and 𝛾𝛽(1) ∈ 𝑔𝛽(𝜕𝐷𝑛+1
𝛽 ). Then we glue a band [0, 1] × [0, 1] along

{0} × [0, 1] ∪ [0, 1] × {0} ∪ {1} × [0, 1].

by map ̃︀𝛾𝛽 , such that ̃︀𝛾𝛽 |{0}×[0,1] = ̃︀𝛾𝛼|{0}×[0,1],

and for any 𝑡 ∈ [0, 1], we have ̃︀𝛾𝛽(𝑡, 0) = 𝛾𝛽(𝑡),

and ̃︀𝛾𝛽({1} × (0, 1]) ⊂ 𝑓𝛽(𝐷𝑛+1
𝛽 ).

We denote the resulting space by 𝑍 which has 𝑋(𝑛+1) as a deformation retraction. Now we
consider

𝑈 = 𝑍 −𝑋(𝑛) and 𝑉 = 𝑍 −
⋃︁
𝛽∈Ω

𝑓𝛽(𝐷𝑛+1
𝛽 ).
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Hence 𝑈 ∩ 𝑉 is a obtained by gluing as many copies as (𝑛+ 1)-cells glued to 𝑋(𝑛)of [0, 1] × [0, 1]
along {0} × [0, 1], hence is contractible.

The space 𝑈 is given by taking union of 𝑈 ∩ 𝑉 with all 𝑓𝛽(𝐷𝑛+1
𝛽 ), hence is also contractible.

The space 𝑉 has 𝑋(𝑛) as a deformation retraction.
We choose a base point 𝑞 in ̃︀𝛾𝛼({0} × (0, 1)), then by the Seifert-Van Kampen Theorem, we

have

𝜋1(𝑋(𝑛+1), 𝑝) ∼= 𝜋1(𝑍, 𝑞) ∼= 𝜋1(𝑈, 𝑞) *
𝜋1(𝑈∩𝑉,𝑞)

𝜋1(𝑉, 𝑞) ∼= 𝜋1(𝑉, 𝑞) ∼= 𝜋1(𝑋(𝑛), 𝑝).

Hence we have the following sequence of isomorphism:

𝜋1(𝑋(2), 𝑝) ∼= 𝜋1(𝑋(3), 𝑝) ∼= · · · ∼= 𝜋1(𝑋(𝑛), 𝑝) ∼= · · · .

Now we consider a loop 𝛾 in ℒ(𝑋, 𝑝). If it is homotopically trivial, then there is a homotopy

𝐻 : [0, 1] × [0, 1] → 𝑋,

such that 𝐻0 = 𝛾 and 𝐻1 = 𝑐𝑝. Notice that the image of 𝐻 is compact in 𝑋.

Lemma 7.2.3

Given any 𝐾 a compact subset in 𝑋, 𝐾 only meets finitely many cells.

Proof. Suppose that 𝐾 is compact and meets infinitely many open cells. Then we denote by

𝑆 = {𝑝1, ..., 𝑝𝑚, ...}

whose points are in 𝐾 and meet different open cells.
Notice that 𝑆 is closed subset of 𝑋, hence is compact, since it is a subset of a compact set 𝐾.

A space with discrete topology which is compact must contain only finitely many points. Hence
the contradiction.

As a corollary, any compact subset of 𝑋 contained in 𝑋(𝑛) for some 𝑛 ∈ N. Since the image of 𝛾
and 𝐻 are both compact, hence there is 𝑛 > 2, such that

[𝛾] = [𝑐𝑝] ∈ 𝜋1(𝑋(𝑛), 𝑝).

Hence the homomorphism from 𝜋1(𝑋(2), 𝑝) to 𝜋1(𝑋, 𝑝) induced by the inclusion

𝜄 : 𝑋(2) → 𝑋,

is injective.
To see it is surjective, for any 𝛾 ∈ ℒ(𝑋, 𝑝), it is contained in 𝑋(𝑛) for some 𝑛 > 2. Since the

inclusion from 𝑋(2) to 𝑋(𝑛) induces an isomorphism between the fundamental group, we have a
loop 𝜂 ∈ ℒ(𝑋(2), 𝑝), such that

[𝜂] = [𝛾] ∈ 𝜋1(𝑋(𝑛), 𝑝).

Hence the homomorphism 𝜄* is surjective.

One corollary of this result is that

Corollary 7.2.4

Any group is a fundamental group of a CW-complex.
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Proof. Any group 𝐺 can have a presentation

⟨𝑆 | 𝑅⟩,

where 𝑆 is the set of generators and 𝑅 is the set of relations. Notice that the cardinal of 𝑆 and
that of 𝑅 could be arbitrary.

Notice that
𝐺 ∼= ⟨𝑆⟩/⟨⟨𝑅⟩⟩.

Where ⟨𝑆⟩ is the free group generated by 𝑆. To realize it as a fundamental group of a CW-complex,
we consider 𝑋(0) be a single point and

𝑋(1) =
⋁︁
𝛼∈𝑆

𝑆1
𝛼.

Now for any 𝑤 ∈ 𝑅, it corresponds to a loop 𝛾 in 𝑋(1), by identifying 0 with 1, we can rewrite
this loop as a map

𝛾′ : 𝑆1 → 𝑋(1).

The by identify 𝑆1
𝑤 with 𝑆1, we consider this map 𝛾′ and use it to glue 𝐷2

𝑤 to 𝑋(1) along
𝑆1
𝑤 = 𝜕𝐷2

𝑤. We repeat this for all relations 𝑤 ∈ 𝑅 and obtain 𝑋(2). Then the fundamental group
𝑋(2) is isomorphic to 𝐺.

Remark 7.2.5.
In the case where 𝑅 is infinite, we can use the generalized version of Seifert-Van-Kampen theorem
to see the final isomorphism.

7.3 Cellular homology group
Now we will give the construction of the cellular homology group for a CW-complex. For simplicity,
we consider the case when 𝑋 is of finite dimension, i.e. the dimension of cells glued has an upper
bound.

We consider first the singular (relative) homology group of 𝑋. As a convention, let 𝑋−1 = ∅.

Proposition 7.3.1

For any 𝑘, 𝑛 ∈ N, we have

1) the relative homology groups

𝐻𝑘(𝑋(𝑛), 𝑋(𝑛−1)) ∼=

⎧⎪⎨⎪⎩
⨁︁
𝛼∈Ω

Z𝛼, 𝑘 = 𝑛

0, 𝑘 ̸= 𝑛

where Ω is the index set of 𝑛-cells in 𝑋 and Z𝛼 is isomorphic to Z;

2) 𝐻𝑘(𝑋(𝑛)) = 0 for 𝑘 > 𝑛;

3) the inclusion
𝜄 : 𝑋(𝑛) → 𝑋,

induces an isomorphisms
𝜄* : 𝐻𝑘(𝑋(𝑛)) → 𝐻𝑘(𝑋),

for 𝑘 < 𝑛.
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Proof. The proof for 1) is similar to the one about simplicial complex when we try to show the
equivalence between the simplicial homology and singular homology.

For any 𝑛 ∈ N*, we consider the following commutative diagram for pairs of spaces(︃∐︁
𝛼∈Ω

𝐷𝑛
𝛼,
∐︁
𝛼∈Ω

𝜕𝐷𝑛
𝛼

)︃
𝑓1 //

𝑔1

��

(︃∐︁
𝛼∈Ω

𝐷𝑛
𝛼,
∐︁
𝛼∈Ω

(𝐷𝑛 ∖ {𝑏𝛼})
)︃

𝑔2

��

(︃∐︁
𝛼∈Ω

𝐷𝑛
𝛼,
∐︁
𝛼∈Ω

(𝐷𝑛 ∖ {𝑏𝛼})
)︃

𝑓2oo

𝑔3

��

(𝑋(𝑛), 𝑋(𝑛−1)) ℎ1 //

(︃
𝑋(𝑛), 𝑋(𝑛−1) ∖

∐︁
𝛼∈Ω

{𝑓𝛼(𝑏𝛼)}
)︃ (︃

𝑋(𝑛) ∖𝑋(𝑛−1), (𝑋(𝑛) ∖𝑋(𝑛−1)) ∖
∐︁
𝛼∈Ω

{𝑓𝛼(𝑏𝛼)}
)︃

ℎ2oo

For 2), we consider part of the long exact sequence for relative homology

𝐻𝑘+1(𝑋(𝑛), 𝑋(𝑛−1)) // 𝐻𝑘(𝑋(𝑛−1)) // 𝐻𝑘(𝑋(𝑛)) // 𝐻𝑘(𝑋(𝑛), 𝑋(𝑛−1)).

Since 𝑘 > 𝑛, we have 𝑘 + 1 > 0. By 1), we have

𝐻𝑘+1(𝑋(𝑛), 𝑋(𝑛−1)) ∼= 𝐻𝑘(𝑋(𝑛), 𝑋(𝑛−1)) ∼= 0.

The exactness of the sequence shows that

𝐻𝑘(𝑋(𝑛−1)) ∼= 𝐻𝑘(𝑋(𝑛)).

Hence we have
𝐻𝑘(𝑋(𝑛)) ∼= 𝐻𝑘(𝑋(𝑛−1)) ∼= · · · ∼= 𝐻𝑘(𝑋(0)) ∼= 0.

For 3), we consider the same part of the long exact sequence

𝐻𝑘+1(𝑋(𝑛+1), 𝑋(𝑛)) // 𝐻𝑘(𝑋(𝑛)) // 𝐻𝑘(𝑋(𝑛+1)) // 𝐻𝑘(𝑋(𝑛+1), 𝑋(𝑛)).

Since 𝑘 < 𝑛, by 1) we have

𝐻𝑘+1(𝑋(𝑛+1), 𝑋(𝑛)) ∼= 𝐻𝑘(𝑋(𝑛+1), 𝑋(𝑛)) ∼= 0.

By the exactness, we have
𝐻𝑘(𝑋(𝑛)) ∼= 𝐻𝑘(𝑋(𝑛+1)).

Hence we have for any 𝑚 ∈ N,

𝐻𝑘(𝑋(𝑛)) ∼= 𝐻𝑘(𝑋(𝑛+1)) ∼= · · · ∼= 𝐻𝑘(𝑋(𝑛+𝑚)).

Since 𝑋 is of finite dimension, we have 𝑋 = 𝑋(𝑛+𝑚) for some 𝑚 ∈ N. Hence

𝐻𝑘(𝑋) = 𝐻𝑘(𝑋𝑛).

We denote by
𝐷𝑛 := 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)).

For 𝑛 = 0, we have
𝐷0 := 𝐻0(𝑋(0), ∅) = 𝐻0(𝑋(0)).
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Notice that for 𝑛 > 0, the (𝑛−1)-skeleton appears in two pairs (𝑋(𝑛), 𝑋(𝑛−1)) and (𝑋(𝑛−1), 𝑋(𝑛−2)),
hence 𝐻𝑛−1(𝑋(𝑛−1)) appears in the intersection between two long exact sequences:

𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1))

𝜕

��

𝐻𝑛(𝑋(𝑛−1), 𝑋(𝑛−2)) 𝜕 // 𝐻𝑛−1(𝑋(𝑛−1)) 𝑖* // 𝐻𝑛−1(𝑋(𝑛−1))
pr* //

𝑖*
��

𝐻𝑛−1(𝑋(𝑛−1), 𝑋(𝑛−2))

𝐻𝑛−1(𝑋(𝑛))

pr*

��

𝐻𝑛−1(𝑋(𝑛), 𝑋(𝑛−1))

We then define
𝛿 : 𝐷𝑛 → 𝐷𝑛−1,

by taking the composition 𝛿 = pr* ∘ 𝜕 in the above diagram from 𝐷𝑛 to 𝐷𝑛−1 at the upper right
corner. As a convention for 𝑛 = 0, we define 𝛿 to be the unique homomorphism from 𝐷0 to 0 the
trivial group.

Proposition 7.3.2

We have 𝛿2 = 0.

Proof. For any 𝑛 > 0, we can write the composition:

𝛿2 : 𝐻𝑛+1(𝑋(𝑛+1), 𝑋(𝑛)) → 𝐻𝑛(𝑋(𝑛)) → 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) → 𝐻𝑛−1(𝑋(𝑛−1)) → 𝐻𝑛−1(𝑋(𝑛−1), 𝑋(𝑛−2))

Notice that this sequence is exact at 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)), hence 𝛿2 = 0.

From the above discussion, we conclude that (𝐷𝑛, 𝛿)𝑛∈N is a chain complex. We call it the
cellular chain complex for the CW-complex 𝑋. The 𝑛-th homology group associated to this
chain complex is called the 𝑛-th cellular homology group, we denote it by

𝐻CW
𝑛 (𝑋).

Theorem 7.3.3

For each 𝑛 ∈ N, we have
𝐻CW
𝑛 (𝑋) ∼= 𝐻𝑛(𝑋).

Proof. We review the above intersection between two exact sequences with the information given
by Proposition 7.3.1:

𝐻𝑛+1(𝑋(𝑛+1), 𝑋(𝑛))

𝜕

��

𝛿

))

0 // 0 // 𝐻𝑛(𝑋(𝑛))
pr*

(𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒)
//

𝑖*(𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒)
��

𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1))

𝐻𝑛(𝑋)

��

0
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Since 𝑖* is surjective, and the vertical sequence is exact at 𝐻𝑛(𝑋(𝑛)), we have

𝐻𝑛(𝑋) ∼= 𝐻𝑛(𝑋(𝑛))/Im 𝜕.

Since pr* is surjective, we have
Im 𝛿 ∼= Im 𝜕,

and
ker 𝛿 = ker 𝜕.

Consider the following diagram

𝐻𝑛+1(𝑋(𝑛+1), 𝑋(𝑛))

𝜕𝑛+1

��

𝛿𝑛+1

))

𝐻𝑛(𝑋(𝑛))
(pr𝑛+1)*

(𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒)
//

(𝑖𝑛+1)*(𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒)
��

𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1))

𝜕𝑛

��

𝛿𝑛

))

𝐻𝑛(𝑋) 𝐻𝑛−1(𝑋(𝑛−1))
(pr𝑛)*

(𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒)
//

(𝑖𝑛)*(𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒)
��

𝐻𝑛−1(𝑋(𝑛−1), 𝑋(𝑛−2))

𝐻𝑛−1(𝑋)

Notice that
𝐻𝑛(𝑋(𝑛)) → 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) → 𝐻𝑛−1(𝑋(𝑛−1))

is exact at 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)), hence

Im (pr𝑛+1)* = ker 𝜕𝑛 = ker 𝛿𝑛.

Hence
ker 𝛿𝑛/Im 𝛿𝑛+1 = Im (pr𝑛+1)*/Im ((pr𝑛+1)* ∘ 𝜕𝑛+1).

Since (pr𝑛+1)* is injective, we have

𝐻CW
𝑛 (𝑋) := ker 𝛿𝑛/Im 𝛿𝑛+1 ∼= 𝐻𝑛(𝑋(𝑛))/Im 𝜕𝑛+1 ∼= 𝐻𝑛(𝑋).

Remark 7.3.4.
Given any CW-complex, for any 𝑛 ∈ N, if there is no 𝑛-cells, then 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) is trivial,
hence

𝐻𝑛(𝑋) ∼= 𝐻CW
𝑛 (𝑋) ∼= 0.

If there are finitely many 𝑛-cells, then the singular homology group 𝐻𝑛(𝑋) is finitely generated.

Cellular boundary formula

From the construction, we use 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) to define the 𝑛-complex. We would like to
given another way to understand this chain complex which is more geometric and can be used to
construct a way to compute the cellular homology and eventually compute the singular homology.

We first study the structure of 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛)) for each 𝑛 ∈ N. The case when 𝑛 = 0 is clear.
For any 𝛼 ∈ N, we consider the morphism between pairs:

𝑓𝛼 : (𝐷𝑛
𝛼, 𝜕𝐷

𝑛
𝛼) → (𝑋(𝑛), 𝑋(𝑛−1)).
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For any 𝑛 ∈ N, it induces a homomorphism

(𝑓𝛼)* : 𝐻𝑛(𝐷𝑛
𝛼, 𝜕𝐷

𝑛
𝛼) → 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)).

To see the image, we use a discussion similar to the one used previously for studying𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)).
Consider the following commutative diagram for morphisms between pairs

(𝐷𝑛
𝛼, 𝜕𝐷

𝑛
𝛼) //

��

(𝐷𝑛
𝛼, 𝐷

𝑛
𝛼 ∖ {𝑏𝛼})

��

(𝐷𝑛
𝛼, 𝐷

𝑛
𝛼 ∖ {𝑏𝛼})oo

��(︃∐︁
𝛼∈Ω

𝐷𝑛
𝛼,
∐︁
𝛼∈Ω

𝜕𝐷𝑛
𝛼

)︃
𝑓1 //

𝑔1

��

(︃∐︁
𝛼∈Ω

𝐷𝑛
𝛼,
∐︁
𝛼∈Ω

(𝐷𝑛 ∖ {𝑏𝛼})
)︃

𝑔2

��

(︃∐︁
𝛼∈Ω

𝐷𝑛
𝛼,
∐︁
𝛼∈Ω

(𝐷𝑛 ∖ {𝑏𝛼})
)︃

𝑓2oo

𝑔3

��

(𝑋(𝑛), 𝑋(𝑛−1)) ℎ1 //

(︃
𝑋(𝑛), 𝑋(𝑛−1) ∖

∐︁
𝛼∈Ω

{𝑓𝛼(𝑏𝛼)}
)︃ (︃

𝑋(𝑛) ∖𝑋(𝑛−1), (𝑋(𝑛) ∖𝑋(𝑛−1)) ∖
∐︁
𝛼∈Ω

{𝑓𝛼(𝑏𝛼)}
)︃

ℎ2oo

This commutative diagram gives a free generating set of 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)):

{[𝑒𝑛𝛼] | 𝛼 ∈ Ω}.

Notice that the composition of the two vertical arrows on the left corresponds to 𝑓𝛼. Hence (𝑓𝛼)*
sends the generator of 𝐻𝑛(𝐷𝑛

𝛼, 𝜕𝐷
𝑛
𝛼) to one free generator of 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) associated to 𝐷𝑛

𝛼.
As previously discussed (See Corollary 6.6.6), the homology groups of a space 𝑋 relative to a

subspace 𝐴 are isomorphic to the homology group of the corresponding quotient space. Hence for
𝑛 > 0, we have

𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) ∼= 𝐻𝑛(𝑋(𝑛)/𝑋(𝑛−1))

Although 𝑋 and its skeletons of different dimensions could be quite complicated, the quotient
space is quite simple. If

𝑋(𝑛) = 𝑋(𝑛−1)
⋃︁

𝑔𝛼|𝛼∈Ω

(︃⨆︁
𝛼∈Ω

𝐷𝑛
𝛼

)︃
,

the the quotient space
𝑋(𝑛)/𝑋(𝑛−1)

with quotient map denote by 𝜋 is topologically can be considered as identifying the boundaries of
all 𝐷𝑛

𝛼’s together:
𝑋(𝑛)/𝑋(𝑛−1) ∼=

∐︁
𝛼∈Ω

𝐷𝑛
𝛼/
∐︁
𝛼∈Ω

𝜕𝐷𝑛
𝛼

∼=
⋁︁
𝛼∈Ω

𝐷𝑛
𝛼/𝜕𝐷

𝑛
𝛼.

Here ∼= stands for being homeomorphic. We denote by

𝜙 : 𝑋(𝑛)/𝑋(𝑛−1) →
∐︁
𝛼∈Ω

𝐷𝑛
𝛼/
∐︁
𝛼∈Ω

𝜕𝐷𝑛
𝛼

the obvious homeomorphism.
Recall that when identifying all points on the boundary of an 𝑛-cell, we obtain an 𝑛-sphere.

Hence we have
𝜓 : 𝑋(𝑛)/𝑋(𝑛−1) →

⋁︁
𝛼∈Ω

𝑆𝑛𝛼,

the homeomorphism induced by 𝜙.
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To describe 𝛿𝑛, it is enough to describe 𝛿𝑛(𝑒𝑛𝛼) for all 𝛼 ∈ Ω. In fact, by its definition, the
information of this map is determined by 𝑔𝛼. All we have to study is the following composition

𝜕𝐷𝑛
𝛼 → 𝑋(𝑛−1) → 𝑋(𝑛−1)/𝑋(𝑛−2) ∼=

⋁︁
𝛼∈Ω

𝑆𝑛𝛼.

Notice that each 𝑆𝑛𝛼 corresponds to a generator of 𝐻𝑛−1(𝑥(𝑛−1), 𝑋(𝑛−2)). Hence the whole study
is boiled down to answer the following question: How the 𝜕𝐷𝑛

𝛼 covers each (𝑛− 1)-sphere in⋁︁
𝛼∈Ω

𝑆𝑛𝛼.

degree

Let 𝑛 ∈ N*. We consider a continuous map

𝑓 : 𝑆𝑛 → 𝑆𝑛.

This map induces a homomorphism in the homology group level. In particular, we have

𝑓*𝐻𝑛(𝑆𝑛) → 𝐻𝑛(𝑆𝑛).

Since
𝐻𝑛(𝑆𝑛) ∼= Z,

the homomorphism 𝑓* is determined by the image of [𝛼] a generator of 𝐻𝑛(𝑆𝑛). There is a integer
𝑑 ∈ Z, such that

𝑓*([𝛼]) = 𝑑[𝛼].

Definition 7.3.5

The integer 𝑑 is defined to be the degree of 𝑓 , denoted by deg 𝑓

Here we list several properties of degree.

Proposition 7.3.6

For any 𝑛 ∈ N*, the degree of continuous maps from 𝑆𝑛 to 𝑆𝑛 satisfies the following
properties:

1) The identity map of 𝑆𝑛 has degree 1.

2) If 𝑓 : 𝑆𝑛 → 𝑆𝑛 is not surjective, then deg 𝑓 = 0.

3) If 𝑓, 𝑔 : 𝑆𝑛 → 𝑆𝑛 are two homotopic continuous maps, then we have

deg 𝑓 = deg 𝑔.

4) For any 𝑓, 𝑔 : 𝑆𝑛 → 𝑆𝑛, we have

deg 𝑓 ∘ 𝑔 = deg 𝑓 deg 𝑔.

5) A reflection of the sphere has degree −1.

6) The antipodal map has degree (−1)𝑛+1.

7) Any map 𝑓 : 𝑆𝑛 → 𝑆𝑛 with no fixed point has degree (−1)𝑛+1.
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Proof. The identity map of 𝑆𝑛 induces an identity homomorphism of 𝐻𝑛(𝑆𝑛), hence the degree
of identity map is 1.

Assume that 𝑓 is not surjective, then there is a point 𝑝 ∈ 𝑆𝑛 which is a not in the image of 𝑓 .
We may view 𝑓 as a continuous map from 𝑆𝑛 to 𝑆𝑛 ∖ {𝑝}. The latter is homotopy equivalent to a
single point space. Hence 𝐻𝑛(𝑆𝑛 ∖ {𝑝}) is trivial and the degree of 𝑓 is 0.

By Theorem 6.4.4, since 𝑓 and 𝑔 are homotopic to each other, they induces a same homomor-
phism between homology groups. Hence we have deg 𝑓 = deg 𝑔.

The fourth statement comes from the fact that (𝑓 ∘ 𝑔)* = 𝑓* ∘ 𝑔*.
By the previous statement, to show the fifth one, it is enough to show that it holds for one

reflection. Consider the map

𝑓 : 𝑆𝑛 → 𝑆𝑛,

(𝑥1, 𝑥2..., 𝑥𝑛+1) ↦→ (−𝑥1, 𝑥2..., 𝑥𝑛+1).

Let 𝐻+ = {(𝑥1, 𝑥2..., 𝑥𝑛+1) ∈ 𝑆𝑛 | 𝑥1 ≥ 0} and 𝐻− = {(𝑥1, 𝑥2..., 𝑥𝑛+1) ∈ 𝑆𝑛 | 𝑥1 ≤ 0} be the
two hemispheres of 𝑆𝑛. It changes the orientation of 𝑆𝑛. Let [𝛼] be a generator of 𝐻𝑛(𝑆𝑛), we
then have

𝑓*([𝛼]) = −[𝛼].

Hence deg 𝑓 = −1.
The antipodal map is a composition of 𝑛+ 1 reflections, hence its degree is (−1)𝑛+1.
To see the last one, we will show that a self-map on 𝑆𝑛 with no fixed point is homotopic to

the antipodal map. Let 𝑓 : 𝑆𝑛 → 𝑆𝑛 be a map with no fixed point. For any 𝑝 ∈ 𝑆𝑛, we have
𝑓(𝑝) ̸= 𝑝. Hence the segment connecting 𝑓(𝑝) and −𝑝 does not pass the origin, and the following
map is well defined:

𝐻 : 𝑆𝑛 × 𝐼 → 𝑆𝑛

(𝑝, 𝑡) ↦→ (1 − 𝑡)𝑓(𝑝) + 𝑡(−𝑝)
|(1 − 𝑡)𝑓(𝑝) + 𝑡(−𝑝)| .

Notice that 𝐻(𝑝, 0) = 𝑓(𝑝) and 𝐻(𝑥, 1) = −𝑥. Hence 𝑓 and the antipodal map are homotopic to
each other. By 3), we have deg 𝑓 = (−1)𝑛+1.

Here is one application of degree.

Proposition 7.3.7

If 𝑛 is even, then any group acts on 𝑆𝑛 freely is either trivial or isomorphic to Z2.

Proof. An action of a group 𝐺 on a set 𝑋 is free if for any 𝑥 ∈ 𝑋, for any 𝑔.𝑥 = 𝑥, then 𝑔 = 𝑒
which is the identity element of 𝐺. In the other words, the only element with at least one fixed
point is the identity element.

Let 𝐺 be a group acts freely on 𝑆𝑛. For any 𝑔 ∈ 𝐺, we denote its action 𝑆𝑛 still by 𝑔.
Since any element 𝑔 ∈ 𝐺 is invertible, the map 𝑔 : 𝑆𝑛 → 𝑆𝑛 is a homeomorphism. Therefore, it
induces an isomorphisms in the homology group level. Hence deg 𝑔 ∈ {1,−1}. Let {1,−1} be the
order 2 group. By considering the properties of the degree of maps on 𝑆𝑛, we have the group
homomorphism

𝜙 : 𝐺 → {1,−1}
𝑔 ↦→ deg 𝑔.

Any 𝑔 ∈ 𝐺 ∖ {𝑒} has no fixed point, hence deg 𝑔 = (−1)𝑛+1. Since 𝑛 is even, we have deg 𝑔 = −1.
Therefore, the kernel is trivial {𝑒} and 𝜙 is injective. The group 𝐺 is isomorphic to a subgroup of
Z2 which is either trivial group or Z2.
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Cellular boundary formula

Now we are ready to give the cellular boundary formula.

Theorem 7.3.8 (Cellular boundary formula)

For any 𝑛 ∈ N*, for any 𝛼 ∈ Ω, we have

𝛿𝑛([𝑒𝑛𝛼]) =
∑︁
𝛽∈Λ

𝑑𝛼𝛽 [𝑒𝑛−1
𝛽 ],

where Λ is the index set for (𝑛− 1)-cells in 𝑋, and for each 𝛽 ∈ Λ, the integer 𝑑𝛼𝛽 is the
degree of the following map

𝑐𝛼𝛽 : 𝜕𝐷𝑛
𝛼 → 𝑋(𝑛−1) → 𝑋(𝑛−1)/𝑋(𝑛−2) → 𝑋(𝑛−1)/(𝑋(𝑛−1) ∖ 𝑓𝛽(𝐷𝑛−1

𝛽 )) → 𝐷𝑛−1
𝛽 /𝜕𝐷𝑛−1

𝛽 .

Remark 7.3.9.
The last step can be considered as the projection to the (𝑛− 1)-sphere labeled by 𝛽:⋁︁

𝜂∈Λ

𝑆𝑛−1
𝜂 → 𝑆𝑛−1

𝛽 .

Proof. For 𝑛 = 0, by our convention, 𝐷−1 = 0.
For 𝑛 = 1, we consider the map

𝛿1 = 𝜕 : 𝐻1(𝑋(1), 𝑋(0)) → 𝐻0(𝑋(0)).

The formula can be checked directly by considering the definition of 𝑑𝛼𝛽 .
For 𝑛 > 2, for each 𝛽 ∈ Λ, we consider

𝜋𝛽 : 𝑋(𝑛−1)/𝑋(𝑛−2) → 𝑋(𝑛−1)/(𝑋(𝑛−1) ∖ 𝑓𝛽(𝐷𝑛−1
𝛽 )) → 𝐷𝑛−1

𝛽 /𝜕𝐷𝑛−1
𝛽 ,

and
𝜅𝑛−1 : 𝑋(𝑛−1) → 𝑋(𝑛−1)/𝑋(𝑛−2)

Then we consider the following commutative diagram

𝐻𝑛(𝐷𝑛
𝛼, 𝜕𝐷

𝑛
𝛼) 𝜕

∼=
//

(𝑓𝛼)*

��

𝐻𝑛−1(𝜕𝐷𝑛
𝛼)

(𝑐𝛼𝛽)*
//

(𝑔𝛼)*

��

𝐻𝑛−1(𝐷𝑛−1
𝛽 /𝜕𝐷𝑛−1

𝛽 )

𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) 𝜕 //

𝛿𝑛 ))

𝐻𝑛−1(𝑋(𝑛−1))
(𝜅𝑛−1)*

//

pr*

��

𝐻𝑛−1(𝑋(𝑛−1)/𝑋(𝑛−2))

(𝜋𝛽)*

OO

𝐻𝑛−1(𝑋(𝑛−1), 𝑋(𝑛−2))

∼=

(̃︀𝜅𝑛−1)*

44

Let [𝐷𝑛
𝛼] denote the generator in 𝐻𝑛(𝐷𝑛

𝛼, 𝜕𝐷
𝑛
𝛼), such that

[𝑒𝑛𝛼] = (𝑓𝛼)*([𝐷𝑛
𝛼])

We are interested in the expression of 𝛿𝑛([𝑒𝑛𝛼]) under the basis

{[𝑒𝑛−1
𝛽 ] | 𝛽 ∈ Λ}.
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The coordinate for label 𝛽 is given by the degree associated to

∘(𝜋𝛽)* ∘ (̃︀𝜅𝑛−1)* ∘ 𝛿𝑛 ∘ (𝑓𝛼)*.

Since
𝜕 : 𝐻𝑛(𝐷𝑛

𝛼, 𝜕𝐷
𝑛
𝛼) → 𝐻𝑛−1(𝜕𝐷𝑛

𝛼)
is an isomorphism, this is equivalently to compute the degree associated to

(𝜋𝛽)* ∘ (̃︀𝜅𝑛−1)* ∘ 𝛿𝑛 ∘ (𝑓𝛼)* ∘ (𝜕−1) = (𝑐𝛼𝛽)*.

Applications

Given any CW-complex 𝑋, we can now compute the cellular homology by using the cellular
boundary formula. As a result, we obtain the singular homology of 𝑋.

Example 7.3.10 (Genus 𝑛 surface).
Let 𝑛 ∈ N*. We consider the oriented closed surface Σ𝑛 of genus 𝑛. It can be considered as a
connected sum of 𝑛 torus.

From the classification of compact closed oriented surface (see Theorem 5.3.3 and Theorem
5.3.11), the surface Σ𝑛 can be obtained by gluing paired sides of a 4𝑛-gon whose sides are labeled
by 𝑎1, 𝑏1, 𝑎

−1
1 , 𝑏−1

1 , ..., 𝑎𝑛, 𝑏𝑛, 𝑎
−1
𝑛 , 𝑏−1

𝑛 following a cyclic order. After the sides gluing all vertices
are identified to a same point and the boundary of the polygon becomes an 2𝑛-rose.

This gives us a way to associated to Σ𝑛 a CW-complex. In particular, there is one 0-cell, 2𝑛
1-cell and one 2-cell. Moreover, the boundary of the 1-cells are all mapped to the only 0-cell, and
the boundary of the 2-cell covers each 1-cell twice with different orientation. Hence the degrees of
all maps induced by the gluing are 0. We summary the above information as follows. From the
number of cells in each dimension, we have

𝐻0(Σ(0)
𝑛 ) ∼= Z,

𝐻1(Σ(1)
𝑛 ,Σ(0)

𝑛 ) ∼= Z2𝑛,

𝐻2(Σ(2)
𝑛 ,Σ(1)

𝑛 ) ∼= Z,

𝐻𝑘(Σ(𝑘)
𝑛 ,Σ(𝑘−1)

𝑛 ) ∼= 0, 𝑘 ≥ 3.

Consider the chain complex

0 → 𝐻2(Σ(2)
𝑛 ,Σ(1)

𝑛 ) → 𝐻1(Σ(1)
𝑛 ,Σ(0)

𝑛 ) → 𝐻0(Σ(0)
𝑛 ) → 0.

From the information about the degree of maps going from boundaries of 𝑘-cells to (𝑘 − 1)-cells,
the boundary maps involved above are all zero maps. Hence the cellular homology groups of Σ𝑛
are as follows:

𝐻CW
0 (Σ𝑛) ∼= Z,

𝐻CW
1 (Σ𝑛) ∼= Z2𝑛,

𝐻CW
2 (Σ𝑛) ∼= Z,

𝐻CW
𝑘 (Σ𝑛) ∼= 0, 𝑘 ≥ 3.

Example 7.3.11 (Projective space).
For each 𝑛 ∈ N*, there is a degree 2 covering map from 𝑆𝑛 to RP𝑛. Meanwhile, we may consider
the hemispheres in 𝑆𝑛 defined as follows

𝑈𝑛 = {(𝑥0, ..., 𝑥𝑛) ∈ 𝑆𝑛 | 𝑥0 ≥ 0},
𝐿𝑛 = {(𝑥0, ..., 𝑥𝑛) ∈ 𝑆𝑛 | 𝑥0 ≤ 0}.
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Notice that 𝑈𝑛∩𝐿𝑛 is homeomorphic to 𝑆𝑛−1. By identifying (0, 𝑥1..., 𝑥𝑛) ∈ 𝑈𝑛 with −(0, 𝑥1..., 𝑥𝑛),
we have a map from 𝑈𝑛 to RP𝑛. In this way, we may write RP𝑛 as a disjoint union of an open
ball 𝐷𝑛 with RP𝑛−1. Repeating this process, we have

RP𝑛 = 𝐷𝑛 ⊔ ˚𝐷𝑛−1 ⊔ · · · ⊔𝐷2 ⊔𝐷1 ⊔ {*}.

This gives us a CW-complex structure on RP𝑛. From the number of cells in each dimension, we
have

𝐻0((RP𝑛)(0)) ∼= Z,

𝐻1((RP𝑛)(1),RP𝑛)(0)) ∼= Z,
· · ·

𝐻𝑛((RP𝑛)(𝑛),RP𝑛)(𝑛−1)) ∼= Z,

𝐻𝑘((RP𝑛)(𝑘),RP𝑛)(𝑘−1)) ∼= 0, 𝑘 ≥ 𝑛+ 1.
To compute the cellular homology group, we should find how cells of different dimension gluing
together. The above discussion shows that it is actually given by the antipodal map. In particular,
for any 𝑛 ∈ N*, the boundary of 𝐷𝑛 is 𝑆𝑛−1 which is obtained by gluing two copies of 𝐷𝑛−1

along its boundary. Hence the map from 𝜕𝐷𝑛 to 𝐷𝑛−1 is a 2 to 1 covering. If the map from
˚𝑈𝑛−1 to ˚𝐷𝑛−1 is denoted by 𝑓 , then the map from ˚𝐿𝑛−1 to ˚𝐷𝑛−1 if given by 𝑔 ∘ 𝑓 where 𝑔 is the

antipodal map on 𝑆𝑛−1. We may take 𝑓 to have degree 1, then deg 𝑔 = (−1)𝑛. Hence

𝛿([𝑒𝑛]) = (1 + (−1)𝑛)[𝑒𝑛−1].

It is easy to understand this. The antipodal map on 𝑆𝑛−1 sending one hemisphere to another
hemisphere in an orientation preserving way if and only if 𝑛 is even.

Now we consider the chain complex:

0 → 𝐻𝑛((RP𝑛)(𝑛), (RP𝑛)(𝑛−1)) → · · · → 𝐻1((RP𝑛)(1), (RP𝑛)(0)) → 𝐻0((RP𝑛)(0)) → 0.

By the above discussion, if 𝑛 is even, we have

0 0 // Z
𝑓
// Z 0 // · · · 0 // Z 0 // 0

and if 𝑛 is odd, we have

0 0 // Z 0 // Z
𝑓
// · · · 0 // Z 0 // 0

where 𝑓 : Z → Z is defined by 𝑓(1) = 2. Therefore, if 𝑛 is even, we have

𝐻𝐶𝑊
𝑘 (RP𝑛) ∼=

⎧⎪⎨⎪⎩
Z 𝑘 = 0
Z2 0 < 𝑘 < 𝑛 odd
0 otherwise

If 𝑛 is odd, we have

𝐻𝐶𝑊
𝑘 (RP𝑛) ∼=

⎧⎪⎨⎪⎩
Z 𝑘 = 0, 𝑛
Z2 0 < 𝑘 < 𝑛 odd
0 otherwise

7.4 Euler-Poincaré characteristic
In Chapter 5, we have discussed the Euler characteristic for a surface using triangulations. If we
compare it with the definition of CW-complex, we can see that any triangulation of a surface is a
special kind of CW-complex formed by cells of dimension 0, 1 and 2. In Chapter 5, the Euler
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characteristic is computed by counting numbers of vertices, edges and faces, i.e. the number of
0-cells, 1-cells and 2-cells. With this observation, we may try to generalize this notion for more
general CW-complexes.

Let 𝑋 be a CW-complex with finitely many cells of dimension at most 𝑛 ∈ N. We define its
Euler-Poincaé characteristic to be

𝜒(𝑋) :=
𝑛∑︁
𝑗=0

(−1)𝑗𝑎𝑗 ,

where for each 0 ≤ 𝑗 ≤ 𝑛, 𝑎𝑗 ∈ N is the number of 𝑗-cells in 𝑋. A surface may have different
triangulations. Similarly a CW-complex could be decomposed into cells in different ways. Hence
in order to have a topological invariant, we have to check if the quantity 𝜒(𝑋) depends on the
cell structures on 𝑋. To answer this, we will relate the quantity to the cellular homology groups
which are isomorphic to singular homology groups, hence the quantity depends only on the space
𝑋 itself.

To be more precise, let us recall some background on finitely generated abelian groups. Let
𝐺 be such a group. If it is torsion free, then there is 𝑟 ∈ N, such that 𝐺 ∼= Z𝑟. The number 𝑟
is called the rank of 𝐺. If it has torsion, then there are 𝑟 ∈ N and 𝑑1, ..., 𝑑𝑠 ∈ N ∖ {0, 1} with
𝑑1 | · · · | 𝑑𝑠, such that

𝐺 ∼= Z𝑟 ⊕ Z𝑑1 ⊕ · · · ⊕ Z𝑑𝑠 .

Here 𝑟 is called the rank of 𝐺 and 𝑑1, ..., 𝑑𝑠 are called the invariant factors of 𝐺.
We would like to compute the ranks of homology groups for 𝑋. To compute the cellular

homology groups of 𝑋, we consider the chain complex

0 → 𝐻𝑛(𝑋(𝑛), 𝑋(𝑛−1)) → · · · → 𝐻1(𝑋(1), 𝑋(0)) → 𝐻0(𝑋(0)) → 0.

We still denote by 𝛿 the boundary map. Then we have the following short exact sequence

0 → ker 𝛿𝑘 → 𝐻𝑘(𝑋(𝑘), 𝑋(𝑘−1)) → Im 𝛿𝑘 → 0,

where the second homomorphism is the inclusion map and the third one is 𝛿𝑘. By the definition
of the cellular homology group, we have

0 → Im 𝛿𝑘+1 → ker 𝛿𝑘 → 𝐻𝐶𝑊
𝑘 (𝑋) → 0,

Then we have the relations among ranks of above groups

rank(𝐻𝑘(𝑋(𝑘), 𝑋(𝑘−1))) = rank(ker 𝛿𝑘) + rank(Im 𝛿𝑘),
rank(ker 𝛿𝑘) = rank(Im 𝛿𝑘+1) + rank(𝐻𝐶𝑊

𝑘 (𝑋)).

For 𝐻0(𝑋(0)), we have

rank(𝐻0(𝑋(0)) = rank(ker 𝛿0) + rank(Im 𝛿0),
rank(ker 𝛿0) = rank(Im 𝛿1) + rank(𝐻𝐶𝑊

0 (𝑋)).

Notice that Im 𝛿0 = Im 𝛿𝑛+1 = 0. By summing up over 𝑘, we have

𝜒(𝑋) =
𝑛∑︁
𝑘=1

(−1)𝑛rank(𝐻𝑘(𝑋(𝑘), 𝑋(𝑘−1))) + rank𝐻0(𝑋(0)) =
𝑛∑︁
𝑘=0

(−1)𝑘rank(𝐻𝐶𝑊
𝑘 (𝑋))

Hence the Euler-Poincaré characteristic is a topological invariant for 𝑋, independent of choice of
cell structures for defining the cellular complex.

The rank of the 𝑘-th homology group 𝐻𝑘(𝑋) is called the 𝑘-th Betti number of 𝑋, which is
usually denoted by 𝑏𝑘. Hence the above relation shows that

𝜒(𝑋) =
𝑛∑︁
𝑘=0

(−1)𝑘𝑏𝑘.
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Remark 7.4.1.
Historically, Betti numbers were defined in an combinatorical way which were are about decom-
posing a manifolds in the most efficient way with lower dimensional submanifolds. The relation
among Betti numbers, ranks of homology groups and Euler-Poincaré characteristics are initially
built based on series of work of Riemann, Betti, Poincaré, etc.

7.5 Lefschetz fixed point theorem
In the previous section, we discussed the degree of maps from a sphere 𝑆𝑛 to itself, which helps
us to study the cellular homology groups of a space. We saw that the degree of a map can tell
us some information of the map. In particular, a map on 𝑆𝑛 with no fixed point homotopic to
the antipodal map. Hence any map of 𝑆𝑛 with degree different from that of the antipodal map
will have a fixed point. In this section, we would like to study similar questions for a general
topological space.

Let 𝑋 be a CW complex. Let 𝑓 be a map from 𝑋 to itself. As in the sphere case, the map 𝑓
induces endomorphisms of homology groups of 𝑋. We would like to study the relation between
this information and the existence of fixed points of 𝑓 . For any 𝑛 ∈ N, we have the endomorphism
of the 𝑛-th singular homology group

𝑓*,𝑛 : 𝐻𝑛(𝑋) → 𝐻𝑛(𝑋),
[𝜎] ↦→ [𝑓 ∘ 𝜎].

We consider the trace of 𝑓*,𝑛 defined as follows. Let 𝐺 be a finitely generated abelian group, and

Tor𝐺 := {𝑔 ∈ 𝐺 | 𝑔 has finite order}

denote its torsion subgroup. Given any endomorphism 𝜙 of 𝐺, it induces an endomorphism 𝜙 of
𝐺/Tor𝐺. Since 𝐺/Tor𝐺 is torsion free and is finitely generated, we have

𝐺/Tor𝐺 ∼= Z𝑟,

where 𝑟 is the rank of 𝐺. Hence 𝜙 is an endomorphism of Z𝑟. By choosing a basis of Z𝑟, the
endomorphism 𝜙 can be represented as a Z-valued matrix 𝑀𝜙. We define the trace of 𝜙 to be

tr𝜙 := tr𝑀𝜙.

Notice that tr𝑀𝜙 is independent of choice of basis of Z𝑟, hence tr𝜙 is well-defined.
Assume that 𝑋 is of dimension 𝑛. We then define the Lefschetz number of 𝑓 as follows:

𝜏(𝑓) :=
𝑛∑︁
𝑘=0

tr 𝑓*,𝑘.

Remark 7.5.1.
If 𝑓 is homotopy equivalent to id𝑋 , then 𝜏(𝑓) = 𝜒(𝑋).

Theorem 7.5.2 (Lefschetz fixed point theorem)

Let 𝑋 be a CW-complex with finitely many cells of dimension at most 𝑛 ∈ N. Any
continuous map 𝑓 : 𝑋 → 𝑋 with 𝜏(𝑓) ̸= 0 has a fixed point.

Before giving proof of the theorem, we first check some of its applications.
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Example 7.5.3 (Ball).
Let 𝐷𝑛 denote the ball of dimension 𝑛. It is homotopy equivalent to a point, hence its homology
groups are as follows:

𝐻𝑘(𝐷𝑛) ∼=
{︃
Z, 𝑘 = 0
0, 𝑘 > 0

Hence for any map 𝑓 : 𝐷𝑛 → 𝐷𝑛, we have

𝜏(𝑓) = tr 𝑓*,0 = 1.

By Lefschetz fixed point theorem, the map 𝑓 has a fixed point.

Example 7.5.4 (Projective space).
Another slightly non trivial example is the even dimensional real projective space. Previously, we
have compute the cellular homology groups of RP𝑛 for any 𝑛 ∈ N*. Let 𝑛 = 2𝑘 be even, then we
have

𝐻𝑗(RP2𝑘) =

⎧⎪⎨⎪⎩
Z 𝑗 = 0
Z2 0 < 𝑗 < 𝑛 odd
0 otherwise

Since to define the trace of a map from RP𝑛 to itself, we have consider each homology group
quotient by its torsion subgroup, we have

𝐻𝑗(RP2𝑘)/Tor𝐻𝑗(RP2𝑘) =
{︃
Z 𝑗 = 0
0 𝑗 > 0

Hence for any 𝑓 : RP𝑛 → RP𝑛, we have

𝜏(𝑓) = tr 𝑓*,0 = 1.

By Lefschetz fixed point theorem, the map 𝑓 has a fixed point.

Example 7.5.5 (Sphere).
The homology groups of sphere 𝑆𝑛 for 𝑛 ∈ N* are as follows:

𝐻𝑘(𝑆𝑛) ∼=
{︃
Z 𝑘 = 0, 𝑛
0 otherwise

Let 𝑓 be a map on 𝑆𝑛. The Lefschetz number of 𝑓 is then

𝜏(𝑓) = tr 𝑓*,0 + (−1)𝑛tr 𝑓*,𝑛 = 1 + (−1)𝑛tr 𝑓*,𝑛.

Therefore, by Lefschetz fixed point theorem, if 𝑓 has no fixed point, then tr 𝑓*,𝑛 = (−1)𝑛+1. Since
𝐻𝑛(𝑆𝑛) ∼= Z, we have tr 𝑓*,𝑛 = deg 𝑓 .

In particular, if 𝑓 is the antipodal map, then it has no fixed point, hence

deg 𝑓 = tr 𝑓*,𝑛 = (−1)𝑛+1.

Another consequence in the differential topology context is that there is a no non-zero vector
field over 𝑆2.

To prove the Lefschetz fixed point theorem, we would like to use the cellular approximation
theorem.
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Definition 7.5.6

Let 𝑋 and 𝑌 be two cellular complex. A map 𝑓 : 𝑋 → 𝑌 is said to be cellular if for any
𝑛 ∈ N, we have 𝑓(𝑋(𝑛)) ⊂ 𝑌 (𝑛).

Definition 7.5.7

Let 𝑋 and 𝑌 be two cellular complex. A map 𝑓 : 𝑋 → 𝑋 is said to be cellular approximated
by a map 𝑔 : 𝑋 → 𝑌 if 𝑔 is cellular and 𝑓 is homotopic to 𝑔.

Theorem 7.5.8 (Cellular approximation theorem)

Proof. content...

Theorem 7.5.9 (Hopf trace formula)

content...

Proof. content...

Proof of Lefschetz fixed point theorem. content...

7.6 Homology with arbitrary coefficients
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Chapter 8

Cohomology group

8.1 Cohomology of a chain complex

8.2 Cohomology and homology

8.3 Singular and cellular cohomology

8.4 Cup product
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Chapter 9

Poincaré duality

9.1 Manifolds and orientation

9.2 Cap product

9.3 Poincaré duality

9.4 Applications
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Appendix A

Free groups

Let 𝐺 be a finitely generated group. Let 𝑛 ∈ N*, such that there is a subset

{𝑎1, ..., 𝑎𝑛} ⊂ 𝐺,

generating 𝐺, i.e.
𝐺 = {𝑏1 · · · 𝑏𝑚 | 𝑚 ∈ N*, 𝑏1, ..., 𝑏𝑚 ∈ {𝑎±1

1 , ..., 𝑎±1
𝑛 }}.

Here all we know is that any element can be expressed as a products among finitely many elements
in

{𝑎±1
1 , ..., 𝑎±1

𝑛 }.

We call these expressions words in letters

{𝑎±1
1 , ..., 𝑎±1

𝑛 }.

However, we have no idea if the expression is unique or not. An example is that

𝑎1 = 𝑎1𝑎2𝑎
−1
2 .

The reason for this to happen is that the elements 𝑎2 and 𝑎−1
2 satisfy a relation:

𝑎2𝑎
−1
2 = 𝑒.

However, this is a little bit trivial, since this relation satisfied by any element and its inverse
in any group. Here is a less trivial example. Consider the group Z*

5 of multiplication. By a direct
computation, we know that Z*

5 can be generated by 2. Moreover by the Lagrange theorem, we
know that

24 = 1.

Of course
𝑎4 = 𝑒,

is not satisfied by all groups.
Another less trivial examples are abelian groups. Let 𝐺 be an abelian group. For any 𝑎, 𝑏 ∈ 𝐺,

we have
𝑎𝑏 = 𝑏𝑎.

Same as before, this is not a property satisfied by all groups.
This raises some problems when we try to study groups using words of letters in generating

sets:

• How do we know if two different words represent a same elements in the group?

281
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• If we have two groups which both can be generated by 𝑛 elements for some 𝑛 ∈ N*, how do
we know if they are isomorphic to each other?

• Is there a group with as less relation as possible?

• It seems that groups generated by 𝑛 elements with more relations look smaller in sense than
those with less relations. For example, for any 𝑚 ∈ N*, the group Z𝑚 can be considered as
a quotient group of Z. On the other hand, not every pair Z𝑚 and Z𝑛 can be compared in
this way. Is there a way to make this kind of relation more clear?

A.1 Definitions of free groups
We will first try to construct a group with least possibly many relations satisfied by a given
number of generators.

Let 𝑛 ∈ N*. Consider the set of 2𝑛 distinct elements

𝐴 = {𝑎±1
1 , ..., 𝑎±1

𝑛 },

as 2𝑛 letters.
For any 𝑘 ∈ N*, we call the expression

𝑎𝜖1
𝑖1

· · · 𝑎𝜖𝑘
𝑖𝑘
,

where for each 1 ≤ 𝑗 ≤ 𝑘, 𝜖𝑗 ∈ {1,−1} a word of letters in 𝐴.
A word

𝑎𝜖1
𝑖1

· · · 𝑎𝜖𝑘
𝑖𝑘
,

is said to be irreducible, if for any 1 ≤ 𝑗 ≤ 𝑘 − 1, we have

𝑎
−𝜖𝑗

𝑖𝑗
̸= 𝑎

𝜖𝑗+1
𝑖𝑗+1

.

We denote by 𝐹𝑛 the following set

𝐹𝑛 := {𝑒} ∪ {irreducible word},

where distinct irreducible words are distinct elements and 𝑒 is an elements distinct from all
irreducible words and is called the empty word.

Remark 1.1.1.
Another construction is using infinite sequences. We consider sequences in 𝐴∪{𝑒} of the following
form

(𝑎𝜖𝑖1
𝑖1
, 𝑎
𝜖𝑖1
𝑖2
, ..., 𝑎

𝜖𝑖1
𝑖𝑘
, 𝑒, 𝑒, ....),

i.e. only finitely many positions taking values in 𝐴, and all other entries are 𝑒.
An irreducible word is an infinite sequence such that if two adjacent elements are not 𝑒, then

we have
𝑎

−𝜖𝑖1
𝑖𝑗

̸= 𝑎
𝜖𝑖𝑗+1
𝑖𝑗+1

.

In this setting, an empty set is the infinite sequence

(𝑒, 𝑒, ....).

The set 𝐹𝑛 still consists of irreducible words and empty words.
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Next we will define a binary operator on 𝐹𝑛. It take two steps to get the result. Given any
𝑤1, 𝑤2 ∈ 𝐹𝑛, we first take their concatenation 𝑤1𝑤2. Then we simplify 𝑤1𝑤2. The rule is as
follows. If 𝑤1𝑤2 is not irreducible, then there exist two adjacent letters form 𝑎𝑖𝑎

−1
𝑖 or 𝑎−1

𝑖 𝑎𝑖. We
remove them. Check the resulting word again to see if it is irreducible. If we get an irreducible
word, then it is the result of the computation. If there is nothing left, then we set the result to
be the empty word, i.e.

𝑤1𝑤2 = 𝑒,

Example 1.1.2.
Let 𝑛 = 5. Consider

𝑤1 = 𝑎1𝑎3𝑎2𝑎4, 𝑤2 = 𝑎−1
4 𝑎−1

2 𝑎3𝑎5,

in 𝐹5, then
𝑎1𝑎3𝑎2𝑎4𝑎

−1
4 𝑎−1

2 𝑎3𝑎5 // 𝑎1𝑎3𝑎2𝑎
−1
2 𝑎3𝑎5 // 𝑎1𝑎3𝑎3𝑎5

Hence we have
𝑤1𝑤2 = 𝑎1𝑎3𝑎3𝑎5.

Proposition 1.1.3

The set 𝐹𝑛 with the above binary operator form a group.

Definition 1.1.4

The group 𝐹𝑛 is called the free group of 𝑛 letters {𝑎1, ..., 𝑎𝑛}. We call 𝑛 the rank of 𝐹𝑛.

Remark 1.1.5.
To distinguish with Z𝑛, we also call 𝐹𝑛 the rank 𝑛 non abelian free group.

A.2 The universal property of free groups
The free group 𝐹𝑛 has a so-called universal property, which can be stated as follows:

Theorem 1.2.1

For any group 𝐺, and 𝑛 elements 𝑢1, ..., 𝑢𝑛 in 𝐺, there is a unique group homomorphism

𝜑 : 𝐹𝑛 → 𝐺,

such that for any 1 ≤ 𝑖 ≤ 𝑛, we have 𝜑(𝑎𝑖) = 𝑢𝑖.

The proof is a direct verification. Any group generated by 𝑛 elements can be considered as a
quotient group of 𝐹𝑛.

𝐹𝑛
𝜑
//

𝜋

��

< 𝑢1, ..., 𝑢𝑛 >

𝐹𝑛/ ker𝜑
𝜑

77

where 𝜑 is a group isomorphism.
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A.3 Free bases
Consider

𝐴′ = {𝑎1𝑎2, 𝑎2, ..., 𝑎𝑛} ⊂ 𝐹𝑛.

Notice that
𝑎1 = (𝑎1𝑎2)𝑎−1

2 ∈ ⟨𝐴′⟩.

Hence we have
𝐹𝑛 = ⟨𝐴′⟩.

If we consider
𝑏1 = 𝑎1𝑎2, 𝑏2 = 𝑎2, ..., 𝑏𝑛 = 𝑎𝑛,

as new letters, and we can get a free group of 𝑛 letters {𝑏1, ..., 𝑏𝑛}. We denote it by 𝐹 . Using the
relation between {𝑏1, ..., 𝑏𝑛} and {𝑎1, ..., 𝑎𝑛}, we have a group homomorphism

𝜓 : 𝐹 → 𝐹𝑛.

which is surjective (𝑎1 = 𝜓(𝑏1𝑏
−1
2 )). To see the kernel of 𝜓, we should show that the image of any

irreducible word in 𝐹 is not identity in 𝐹𝑛. To see this, the rough idea is as follows. We consider
a word

𝑤(𝑏1, 𝑏2..., 𝑏𝑛).

Then its image will be
𝑤(𝑎1𝑎2, 𝑎2, ..., 𝑎𝑛).

In order to cancel out everything, any 𝑏1 should be followed by 𝑏−1
2 , then

𝑏1𝑏
−1
2 = 𝑎1.

Then to cancel 𝑎1, we need 𝑎−1
1 , but the only irreducible word for 𝑎−1

1 is 𝑏2𝑏
−1
1 , then the word in

𝑤(𝑏1, ..., 𝑏𝑛) is not irreducible.

Definition 1.3.1

Let 𝑚 ∈ N*. We call any 𝑚 elements 𝑐1, ..., 𝑐𝑚 in 𝐹𝑛, satisfying

• 𝐹𝑛 = ⟨𝑐1, ..., 𝑐𝑚⟩,

• irreducible words of 𝑐1, ..., 𝑐𝑚 are not identity in 𝐹𝑛,

a free basis of 𝐹𝑛.

Example 1.3.2.
Hence 𝐴 and 𝐴′ are both free bases of 𝐹𝑛.

An immediate question is that do all free bases of 𝐹𝑛 have 𝑛 elements?

Theorem 1.3.3

Let 𝑋 be a free basis of 𝐹𝑛. We have |𝑋| = 𝑛.
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Proof. We consider homomorphisms from 𝐹𝑛 to Z2. Given any free basis {𝑏1, ..., 𝑏𝑚}, any
homomorphism

𝜑 : 𝐹𝑛 → Z2,

can be determined by
𝜑(𝑏1), ...., 𝜑(𝑏𝑚) ∈ Z2.

On the other hand, by the universal property of 𝐹𝑛, given any 𝑢1, ..., 𝑢𝑛 ∈ Z2, we have a
group homomorphism

𝜑 : 𝐹𝑛 → Z2,

such that
𝜑(𝑎1) = 𝑢1, ..., 𝜑(𝑎𝑛) = 𝑢𝑛.

Hence the set of homomorphisms from 𝐹𝑛 to Z2 has cardinality 2𝑛

|Hom(𝐹𝑛,Z2)| = 2𝑛.

By the definition of a free basis, the group 𝐹𝑛 is isomorphic to 𝐹𝑋 the free group with letters
in 𝑋. By a similar argument, we have

|Hom(𝐹𝑋 ,Z2)| = 2|𝑋|.

Since a group homomorphism is a map which is independent of choice of free basis, hence we
have

2|𝑋| = 2𝑛.

equivalently, we have |𝑋| = 𝑛.

A.4 Presentations of groups
Let us consider the universal property of 𝐹𝑛. Given any group 𝐺 and its 𝑛 elements 𝑢1, ..., 𝑢𝑛,
we consider the homomorphism

𝜑 : 𝐹𝑛 → 𝐻 = ⟨𝑢1, ..., 𝑢𝑛⟩ < 𝐺,

such that for any 1 ≤ 𝑖 ≤ 𝑛, we have 𝜑(𝑎𝑖) = 𝑢𝑖. From the fundamental theorem of group
homomorphism, we have the following commutative diagram

𝐹𝑛
𝜑

//

𝜋

��

𝐻

𝐹𝑛/ ker𝜑
𝜑

;;

where 𝜑 is an isomorphism. For any non identity element 𝑤 ∈ ker𝜑, it is an irreudicble word of
𝑎𝑖’s

𝑤 = 𝑎𝜖1
𝑖1

· · · 𝑎𝜖𝑘
𝑖𝑘
.

By taking value 𝑢𝑖’s, we have the following identity in 𝐺:

𝑢𝜖1
𝑖1

· · ·𝑢𝜖𝑘
𝑖𝑘

= 𝑒𝐺.

We call the left side is a relation among 𝑢𝑖’s
Therefore, the construction of 𝐻 can be considered as a two steps process. First, we consider

the free group of letters {𝑢1, ..., 𝑢𝑛}, then taking its quotient by the relations satisfied by 𝑢𝑖’s.
The rough idea of a presentation of a group is that to describe a group by giving its generators
and the relations satisfied among the generators.
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Normal closure

Let 𝐺 be a group.

Definition 1.4.1

Consider any non-empty subset 𝑆 ⊂ 𝐺, we call

⟨⟨𝑆⟩⟩ :=
⋂︁

{𝑁 ◁𝐺 | 𝑆 ⊂ 𝑁},

the normal subgroup generated by 𝑆, or the normal closure of 𝑆.

Remark 1.4.2.
Notice that given any normal subgroup 𝑁1, 𝑁2 ◁𝐺, we have 𝑁1 ∩𝑁2 ◁𝐺. Moreover this holds
for any intersections among normal subgroups of 𝐺. Hence the above definition is well defined.

There are two ways to understand the normal closure. The definition shows that it is the smallest
normal subgroup of 𝐺 containing 𝑆. The second way of understanding is that it is the biggest
normal subgroup which could be "generated" by 𝑆.

To be more precise, for any 𝑎 ∈ 𝐺, we consider [𝑎] the conjugacy class of 𝑎 in 𝐺. For any non
empty subset 𝑆 of 𝐺, we denote

[𝑆] := ∪{[𝑎] | 𝑎 ∈ 𝑆}.

Proposition 1.4.3

We have the following relation

⟨⟨𝑆⟩⟩ = {𝑎1 · · · 𝑎𝑘 | 𝑘 ∈ N*, 𝑎1, ..., 𝑎𝑘 ∈ [𝑆] ∪ [𝑆−1]}.

Remark 1.4.4.
In the other words, ⟨⟨𝑆⟩⟩ is the subgroup generated by the union of conjugacy class of elements
in 𝑆 and 𝑆−1.

Now back to our discussion on presentations of groups. Let 𝐻 be a group generated by 𝑛
distinct elements {𝑢1, ..., 𝑢𝑛}. Let 𝐹𝑛 be the free group of letters 𝑎1, ..., 𝑎𝑛. We consider the
homomorphism

𝜑 : 𝐹𝑛 → 𝐻,

such that for each 1 ≤ 𝑖 ≤ 𝑛, we have 𝜑(𝑎𝑖) = 𝑢𝑖. Denote 𝑁 by its kernel. Let 𝑅′ be a normal
generating set of 𝑁 . We denote by

𝑅 := {𝑤(𝑢1, ..., 𝑢𝑛) | 𝑤(𝑎1, ..., 𝑎𝑛) ∈ 𝑅′}.

Then a presentation of 𝐻 can be given as

𝐻 = ⟨𝑆|𝑅⟩.

Remark 1.4.5.
In general a group need not to be finitely generated, and the relation set 𝑅 need not to be finite
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either. The notion of presentation can be used for any group. When 𝑆 is finite, we say it is
finitely generated. When both 𝑆 and 𝑅 are finite, we say that it is finitely presented.

Example 1.4.6.
The quaternion Group 𝑄8 has the following presentation:

𝑄8 = ⟨𝑎, 𝑏 | 𝑎4, 𝑏4, 𝑎2𝑏2, 𝑎𝑏𝑎𝑏−1⟩.

Example 1.4.7.
The symmetry group 𝑆3 has the following presentation:

𝑆3 = ⟨𝑎, 𝑏 | 𝑎2, 𝑏3, 𝑎𝑏𝑎𝑏⟩.

Example 1.4.8.
The dihedral group 𝐷4 has the following presentation:

𝐷4 = ⟨𝑟, 𝑠 | 𝑟4, 𝑠2, 𝑠𝑟𝑠𝑟⟩.

Example 1.4.9.
The free abelian group Z2 has the following presentation:

Z2 = ⟨𝑎, 𝑏 | 𝑎𝑏𝑎−1𝑏−1⟩.

A.5 Visualization of the presentations of groups
Cayley graph is an efficient tool to help us to see the structure of a group from the generating set
and generating relations.

Let 𝐺 be a group. Let 𝑆 be a generating set of 𝐺, such that 𝑆 = 𝑆−1.

Definition 1.5.1

The Cayley graph of 𝐺 with respect to the generating set 𝑆 is a graph Γ(𝐺,𝑆) = (𝑉,𝐸),
where

• Vertices are elements in 𝐺 (𝑉 = 𝐺),

• For any 𝑤,𝑤′ ∈ 𝐺, there exists an edge in 𝐸 connecting 𝑤 and 𝑤′ if and onlt if
𝑤′ = 𝑤𝑠, for some 𝑠 ∈ 𝑆.

By the cancellation rule in a group, if 𝑤′ = 𝑤𝑠, the element 𝑠 is unique. Hence there is a unique
way to associated to each orientation of an edge an element of 𝑆.

If we following a path in the graph from the identity element 𝑒 to an element 𝑤, by writing
down elements associated to each edge with the orientation induces by the orientation of the path
from 𝑒 to 𝑤, then we get a word for 𝑤 of letters in 𝑆. On the other hand, any word of letters in
𝑆 associated to the element 𝑤 will correspond to a path from 𝑒 to 𝑤.

For example, for the element
𝑤 = 𝑎1 · · · 𝑎𝑘.

we have
𝑒 𝑎1 𝑎1𝑎2 𝑎1𝑎2𝑎3 · · · (𝑎1𝑎2 · · · 𝑎𝑘).

Here are some examples
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Example 1.5.2.
Let 𝐺 = Z2, and 𝑆 = {1}, then we have

0 1

Example 1.5.3.
Let 𝐺 = 𝐷4. Consider the four points in R2:

𝑣1 = (1, 1), 𝑣2 = (−1, 1), 𝑣3 = (−1,−1), 𝑣4 = (1,−1).

Let 𝑠 be the reflection of the plane fixing 𝑣1 and 𝑣3, and 𝑟 be the rotation sending (𝑣1, 𝑣2, 𝑣3, 𝑣4)
to (𝑣2, 𝑣3, 𝑣4, 𝑣1).

We denote 𝑆 = {𝑠, 𝑟, 𝑟−1 = 𝑟3}, then have

𝑟𝑠 𝑠

𝑟 𝑒

𝑟2 𝑟3

𝑟2𝑠 𝑟3𝑠

Example 1.5.4.
Let 𝐺 = 𝑄8. Consider the generating set

𝑆 = {±𝑖,±𝑗},

and we have
𝑗 𝑘

𝑖 1

−1 −𝑖

−𝑘 −𝑗

Now we assume that 𝐺 is generated by 𝑛 elements 𝑎1, ..., 𝑎𝑛 and denote

𝑆 = {𝑎±
1 , ..., 𝑎

±
𝑛 }.

As discussed previous, when different ways of writing 𝑤 ∈ 𝐺 into words of letters in 𝑆 correspond
to different paths connecting 𝑒 to 𝑤. In particular, we consider 𝑤 = 𝑒, then each loop from 𝑒 to 𝑒
corresponds to a word of letters in 𝑆 which is in the kernel of

𝜑 : 𝐹𝑛 → 𝐺,

if we view it as an elements in 𝐹𝑛.
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The Cayley graph of Z2

Now we consider Z2 as an example to give a more precise description. Let

𝑆 = {(1, 0), (−1, 0), (0, 1), (0,−1)},

then the Cayley graph of Z2 can be given as follows:

...
...

...
...

...

· · · (−1, 3) (0, 3) (1, 3) (2, 3) (3, 3) · · ·

· · · (−1, 2) (0, 2) (1, 2) (2, 2) (3, 2) · · ·

· · · (−1, 1) (0, 1) (1, 1) (2, 1) (3, 1) · · ·

· · · (−1, 0) (0, 0) (1, 0) (2, 0) (3, 0) · · ·

· · · (−1,−1) (0,−1) (1,−1) (2,−1) (3,−1) · · ·

...
...

...
...

...

Notice that this is an infinite graph. Now we consider the presentation of Z2.

𝐹2 = ⟨𝑎, 𝑏⟩.

and the group homomorphism
𝜑 : 𝐹2 → Z2,

such that
𝜑(𝑎) = (1, 0), 𝜑(𝑏) = (0, 1).

With the above graph, we would like to show that

ker𝜑 = 𝑁(𝑎𝑏𝑎−1𝑏−1).

Given any element 𝑤 ∈ 𝐹2, it can be written as a word of 𝑎, 𝑏, 𝑎−1, 𝑏−1,

𝑤 = 𝑤(𝑎, 𝑏).

Its image under 𝜑 is then
𝜑(𝑤) = 𝑤((1, 0), (0, 1)),

which corresponds to a path in the Cayley graph.
Moreover 𝑤 ∈ ker𝜑 if and only if

𝑤((1, 0), (0, 1)) = (0, 0),

or equivalently, 𝑤((1, 0), (0, 1)) corresponds to a loop starting and ending at (0, 0).
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First consider the loop corresponds to 𝑎𝑏𝑎−1𝑏−1:

(0, 1) (1, 1)

(0, 0) (1, 0)

This relation tells us that the generators of Z2 commute with each other, hence Z2 is an abelian
group.

Notice that any loop in Z2 can be decomposed into small squares of the form:

(𝑝, 𝑞 + 1) (𝑝+ 1, 𝑞 + 1)

(𝑝, 𝑞) (𝑝+ 1, 𝑞)

By connecting one vertex to (0, 0), for example we take

(𝑝, 𝑞 + 1) (𝑝+ 1, 𝑞 + 1)

(𝑝, 𝑞) (𝑝+ 1, 𝑞)

...

(0, 0) · · · (𝑝, 0)

then we have a loop starting and ending at (0, 0) corresponding to the following word in 𝐹2

𝑤 = (𝑎𝑝𝑏𝑞)𝑎𝑏𝑎−1𝑏−1(𝑏−𝑞𝑎−𝑝).

Notice that 𝑤 is conjugate to 𝑎𝑏𝑎−1𝑏−1.
By this observation, any loop based starting and ending at (0, 0) corresponds to a product

among elements in [𝑎𝑏𝑎−1𝑏−1]. Hence we have

ker𝜑 = ⟨⟨𝑎𝑏𝑎−1𝑏−1⟩⟩.

For example, we consider the following loop in the Cayley graph

(0, 2) (1, 2)

(0, 1) (1, 1)

(0, 0) (1, 0)

If we walk around counterclockwise, the corresponding element in 𝐹2 is

𝑎𝑏𝑏𝑎−1𝑏−1𝑏−1.
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If we go back to (0, 0) in the middle, we can decompose it into two loops

(0, 1) (1, 1)

(0, 0) (1, 0)

(0, 2) (1, 2)

(0, 1) (1, 1)

(0, 0)

corresponds to 𝑎𝑏𝑎−1𝑏−1 and 𝑏𝑎𝑏𝑎−1𝑏−1𝑏−1 respectively.
Hence we have

𝑎𝑏𝑏𝑎−1𝑏−1𝑏−1 = (𝑎𝑏𝑎−1𝑏−1)(𝑏𝑎𝑏𝑎−1𝑏−1𝑏−1) ∈ ⟨⟨𝑎𝑏𝑎−1𝑏−1⟩⟩.

Remark 1.5.5.
Another application of Cayley graphs is to allow us to define a metric on a group, so that we could
study groups using geometric method. This leads us to the research area so called Geometric
Group Theory.
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Appendix B

Construction of groups

B.1 Free Product between groups
In the previous part, we introduce the notion of free group. We may follow this idea and define
the so called free product between groups. Roughly speaking, a free group is a group generated
by a collection of elements which have no relation among them. A free product between groups
is a group generated by elements in two groups, such that elements in different groups has no
relation among them.

Let 𝐺 and 𝐻 be two non trivial groups. We consider elements in 𝐺* ∪𝐻* as letters, for any
𝑘 ∈ N*, we call any one of the following expressions a word

𝑔1ℎ1 · · · 𝑔𝑘ℎ𝑘,
𝑔1ℎ1 · · ·ℎ𝑘−1𝑔𝑘,

ℎ1𝑔1 · · ·ℎ𝑘𝑔𝑘,
ℎ1𝑔1 · · · 𝑔𝑘−1ℎ𝑘.

We denote
𝐺 *𝐻 := {𝑒} ∪ {words}.

To define an binary operator on 𝐺 * 𝐻, we follow the same idea as what we have done for
constructing free groups. For any 𝑤1, 𝑤2 ∈ 𝐺*𝐻 different from 𝑒, we first take their concatenation,
if the last letter of 𝑤1 and the first letter of 𝑤2 belong to different groups, then the concatenation
is the result 𝑤1𝑤2. Otherwise, without loss of generality, we may assume that

𝑤1 = 𝑔1ℎ1 · · · 𝑔𝑘ℎ𝑘, 𝑤2 = ℎ′
1𝑔

′
1 · · ·ℎ′

𝑘𝑔
′
𝑘.

Their concatenation is then
𝑔1ℎ1 · · · 𝑔𝑘ℎ𝑘ℎ′

1𝑔
′
1 · · ·ℎ′

𝑘𝑔
′
𝑘.

We do the computation in 𝐻 to get the element ℎ𝑘ℎ′
1.

If ℎ𝑘ℎ′
1 ̸= 𝑒𝐻 , then we obtain the result 𝑤1𝑤2.

If ℎ𝑘ℎ′
1 = 𝑒𝐻 , we cancel it and obtain

𝑔1ℎ1 · · ·ℎ𝑘−1𝑔𝑘𝑔
′
1ℎ

′
2 · · ·ℎ′

𝑘𝑔
′
𝑘.

Now we consider the computation in 𝐺 and get the element 𝑔𝑘𝑔′
1.

If 𝑔𝑘𝑔′
1 ̸= 𝑒𝐺, then we get the result 𝑤1𝑤2.

If 𝑔𝑘𝑔′
1 = 𝑒𝐺, we cancel

𝑔1ℎ1 · · ·ℎ𝑘−1ℎ
′
2 · · ·ℎ′

𝑘𝑔
′
𝑘.

Then we repeat the above process again.

293
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Since there are only finitely many elements 𝐺 and 𝐻 involved, the process will stop at finite
time.

If there are letters left after the cancellation, the word formed by them is the result 𝑤1𝑤2.
Otherwise, all letters are canceled out, and we define in this case

𝑤1𝑤2 = 𝑒,

Proposition 2.1.1

The set 𝐺 *𝐻 with above binary operator is a group.

Definition 2.1.2

The group 𝐺 *𝐻 is called the free product between 𝐺 and 𝐻.

Remark 2.1.3.
From its definition, we can see that 𝐻 * 𝐺 = 𝐺 *𝐻. By consider single letter words in 𝐺 *𝐻,
both groups 𝐺 and 𝐻 can be considered as subgroups of 𝐺 *𝐻.

Remark 2.1.4.
By repeating this construction, we may define free product among several groups.

With this definition, we now review the notion of free group. Let 𝐴 = {𝑎}, denote

𝐹 (𝑎) = {𝑎𝑛 | 𝑛 ∈ Z},

the free group of 1 letter.
For any 𝑛 ∈ N ∖ {0, 1}, let

𝐴 = {𝑎1, ..., 𝑎𝑛}

and denote 𝐹𝑛 the free group of 𝑛 letter 𝑎1, ..., 𝑎𝑛.

Proposition 2.1.5

We then have
𝐹𝑛 ∼= 𝐹 (𝑎1) * · · · * 𝐹 (𝑎𝑛).

Similar to free groups, the free products between groups also have certain universal property.
Let 𝐺 and 𝐻 be two groups.
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Theorem 2.1.6

For any group 𝐾 and any group homomorphisms

𝜑𝐺 : 𝐺 → 𝐾, 𝜑𝐻 : 𝐻 → 𝐾,

there exists a unique group homomorphism

𝜑 : 𝐺 *𝐻 → 𝐾,

such that
𝜑|𝐺 = 𝜑𝐺, 𝜑|𝐻 = 𝜑𝐻 .

B.2 Amalgamated free product between two groups
Let 𝐻, 𝐺1 and 𝐺2 be three groups. Assume that there exist group homomorphisms

𝜑1 : 𝐻 → 𝐺1,

𝜑2 : 𝐻 → 𝐺2.

We consider the free product between 𝐺1 and 𝐺2, and consider its subset

𝑆 = {𝜑1(𝑎)𝜑2(𝑎)−1 | 𝑎 ∈ 𝐻}.

Definition 2.2.1

The amalgamated free product between 𝐺1 and 𝐺2 over 𝐻 through 𝜑1 and 𝜑2 is the following
quotient group

𝐺1 *
𝐻
𝐺2 := (𝐺1 *𝐺2)/⟨⟨𝑆⟩⟩.

All groups mentioned above form the following commutative diagram:

𝐺1

𝜄1

##

𝑖1

))

𝐻

𝜑1

??

𝜑2
��

𝐺1 *𝐺2
𝜋 // 𝐺1 *

𝐻
𝐺2

𝐺2

𝜄2

;;

𝑖2

55

where 𝜄1 and 𝑖1 (resp. 𝜄2 and 𝑖2) are inclusion of 𝐺1 (resp. 𝐺2) into 𝐺1 * 𝐺2 and 𝐺1 *
𝐻
𝐺2

respectively.

Remark 2.2.2.
Notice that if 𝐻 = {𝑒}, the an amalgamated free product over 𝐻 is a free product.

B.3 HNN extension
This method was first introduced by Graham Higman, Bernhard Neumann, and Hanna Neumann
in 1949 in their paper "Embedding Theorems of Groups".
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In stead of "gluing" different groups together along their subgroups, here we consider glue two
parts of a group together.

More precisely, let 𝐻 and 𝐺 be two groups. Assume that there are two injective group
homomorphisms

𝜑1 : 𝐻 → 𝐺, 𝜑2 : 𝐻 → 𝐺.

We denote by 𝑡 a letter, and consider the free group generated by 𝑡 denoted by 𝐹 (𝑡). Let 𝐺 *𝐹 (𝑡)
be the free product between 𝐺 and 𝐹 (𝑡). Consider the subset

𝑆 = {𝑡𝜑1(𝑎)𝑡−1𝜑2(𝑎)−1 | 𝑎 ∈ 𝐻}.

Definition 2.3.1

The HNN extension of 𝐺 over 𝐻 through 𝜑1 and 𝜑2is the following quotient group

*
𝐻
𝐺 := 𝐺 * 𝐹 (𝑡)/⟨⟨𝑆⟩⟩.
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